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Accurate and reliable prediction of diarrhoea outpatient visits is necessary for the health authorities to
ensure the appropriate action for the control of the outbreak. In this study, a novel method based on time
series decomposition and multi-local predictor fusion has been proposed to predict the diarrhoea
outpatient visits. For time series decomposition, the Ensemble Empirical Mode Decomposition with
Adaptive Noise (EEMDAN) is used to decompose diarrhoea outpatient visits time series into a finite set
of Intrinsic Mode Function (IMF) components and a residue. The IMF components and residue are mod-
eled and predicted respectively by means of Generalized Regression Neural Network (GRNN) as local
predictor. Then the prediction results of all components are fusioned using another independent GRNN
as fusion predictor to obtain final prediction results. This is the first study on using a EEMDAN and
GRNN to constructing an prediction model for diarrhoea outpatient visits prediction problems. The
pre-procession and post-processing techniques are used to take into account the seasonal and trend
effects in the datasets for improving the prediction precision of proposed model. The performance of
the proposed EEMDAN–GRNN model has been compared with Seasonal Auto-Regressive Moving
Average (SARIMA), Single GRNN, Wavelet-GRNN and also with EEMD–GRNN by applying them to predict
four real world diarrhoea outpatient visits. The results indicate that the proposed EEMDAN–GRNN
model provides more accurate prediction results compared to the other traditional techniques. Thus
EEMDAN–GRNN can be an alternate tool to facilitate the prediction of diarrhoea outpatient visits.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Diarrhoea is the passage of three or more loose or liquid stools
per day, or more frequently than is normal for the individual [1].
Diarrhoeal caused by a variety of bacterial, viral and parasitic
organisms is usually a symptom of gastrointestinal infection. Infec-
tion is spread through contaminated food or drinking-water, or
from person to person as a result of poor hygiene [1]. Diarrhoeal
disease is a serious threat to the health and well-being of the citi-
zens of the world, especially in the developing countries like China,
African countries and India. Thousands of people, in particular for
children less than five years old, suffer from this disease every year.
In spite of many studies on the diarrhoea still there were nearly 1.7
billion cases of diarrhoeal disease every year [1]. Diarrhoeal disease
is the second leading cause of death in children under five years
old, and is responsible for killing around 760,000 children every
year. Government authorities are incurring huge cost to control
and eliminate the outbreaks of diarrhoea. Thus, accurately and
timely predict diarrhoea outpatient visits in advance outbreaks is
an important issue for various national governments and
international organizations. It facilitates preventive medicine and
health care intervention strategies, by pre-informing health service
providers to take appropriate mitigating actions to minimize risks
and manage demand [2].

However, many problems have occurred in prevention and con-
trol of diarrhoeal disease. One of the main problems associated
with prediction of diarrhoeal disease is the complexity and diver-
sity of influence factors that affect the diarrhoeal incidences, such
as malnutrition, meteorological, living surroundings, and living
habits. Especially due to global warming, rapid climate changes
are occurring which result in the increase of diarrhoeal disease
incidence depending upon the specific micro-climate of that par-
ticular region [56–58]. The complexity and diversity of the influ-
ence factors make it is great challenge for the researchers to
predict the diarrhoeal disease outbreaks in advance. In the absence
of knowledge about probabilistic attack of these diseases and
exogenous factors are often limited by the availability of data,
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government fails to provide adequate treatment facility on time.
Thus, it is necessary to forecast the occurrence of these diseases
in advance so that its devastating impact on the society can be
reduced.

There have been wide attempts to capture the relationship
between the available information using some straightforward lin-
ear regression models like Auto-Regressive Integrated Moving
Average (ARIMA) [3–10]. Such traditional techniques do require
minimum computational efforts to set up prediction models which
are considered to be an advantage. However, with non-linear nat-
ure of diarrhoeal disease it becomes difficult to use these tech-
niques. In recent years, many recent studies focus on the use of
machine learning techniques, such as Artificial Neural Networks
(ANNs), to build a prediction model for time series prediction prob-
lems. Unlike traditional statistical models, ANNs are data-driven
and non-parametric models. They do not require strong model
assumptions and can map any nonlinear function without a priori
assumption about the properties of the data, even though the
underlying relationships are unknown or hard to describe. Related
works have shown that machine learning techniques outperform
many traditional models [11–15].

Due to the nonlinear and non-stationary characteristic, accurate
prediction diarrhoea outpatient visits by the building a single glo-
bal predictor is often not possible. One of the best ways to solve
these problems is using decomposition-and-ensemble principle.
Firstly, a complex problem is decomposed into a set of sub-
problems according to the inherent class relations among training
data, then gives a local predictor to learn each of the sub-problems,
finally, combination the multi-local predictors into a solution to
the original problem [16–19]. In the area of time series forecasting
(TSF), decomposition-and-ensemble principle has proven to be a
method superior to single global predictor. Many recent studies
in the different area have been shown to perform better than single
models [20–28]. However, so far as I know, this is the first study on
using a decomposition-and-ensemble principle to constructing a
prediction model for diarrhoea outpatient visits prediction prob-
lems in health forecasting.

In order to decompose a complex time series prediction task
into several relative simple subtasks, time series decomposition
methodologies have been widely used in different studies. These
techniques can divide the data into local characteristic time scale
and extracting meaningful features embedded implicitly in data.
The Empirical Mode Decomposition (EMD) [34] and its improved
version named Ensemble Empirical Mode Decomposition (EEMD)
[35], have been widely used as a promising alternative for nonlin-
ear and non-stationary time series and successfully applied to dif-
ferent areas [22–24,29–33]. In this paper, a variation of the EEMD
algorithm, called Ensemble Empirical Mode decomposition with
Adaptive Noise (EEMDAN) [36] is used for the time series decom-
position. The EEMDAN provides an exact reconstruction of the
original signal and a better spectral separation of the modes, with
a lower computational cost.

Among ANN models, multilayer perceptron (MLP) trained by
the standard Back-Propagation (BP) learning algorithm is popular
ANNs for predicting time series. Despite the advantages of MLP,
they have several weaknesses (e.g., a large number of design
parameters, long training time, and suffering from local minima)
which make modeling more difficult [37]. In this paper, we attempt
to develop local predictors using generalized regression neural net-
works (GRNN), a special type of ANNs. GRNN has only a single
design parameter and is simple and fast in training. Our effort in
this paper focuses on designing a modeling scheme to take full
advantage of EEMDAN and GRNN properties for diarrhoea outpa-
tient visits prediction. Therefore, a novel prediction algorithm call
EEMDAN–GRNN is proposed. To increase the accuracy of the pre-
diction, we perform data pre-processing techniques such as data
transformation, detrending and deseasonalizing. In order to
improve the robustness and error tolerance of proposed model, a
trainable fusion method (another independent GRNN predictor)
is used to fusion the prediction results of multi-local predictors.
The strength of the proposed prediction method is tested on four
real word monthly diarrhoea outpatient visits time series datasets
from three different geographical location of China.

In summary, the primary innovation and contributions of our
study can be outlined as follows:

(1) Based on a literature review, there is no works has been car-
ried out to utilize the decomposition-and-ensemble princi-
ple method in predicting diarrhoea outpatient visits. In this
study, following the decomposition-and-ensemble principle,
a novel model based on time series decomposition and
multi-local predictor fusion has been proposed to predict
the diarrhoea outpatient visits.

(2) A variation of the EEMD algorithm, called EEMDAN is used
for the diarrhoea outpatient visits time series decomposi-
tion. The GRNN is used as local predictor. So far, EEMDAN
and GRNN have not been used in this direction. The pro-
posed EEMDAN–GRNN algorithm adequately makes use of
the advantages of the EEMDAN decomposition method and
GRNN and integrates them well, which conduce to boosting
the model prediction ability and enhancing prediction
efficiency.

(3) Our proposed EEMDAN–GRNN algorithm uses a dynamic
nonlinear weighted scheme to fusion the multi-local predic-
tor into a single predictor. Each local GRNN predictor inde-
pendently predicts the output. A fusion predictor is then
trained to predict the final output from the outputs of local
predictor. Consequently, fusion predictor can capture inter-
actions among local predictors.

The remainder of this paper is organized as follow. The method-
ologies that are used in this study are briefly described in Section 2.
The proposed EEMDAN–GRNN modeling framework is presented
in detail in Section 3. Section 4 illustrates the experimental design
and methodologies implementation in details. Following that, in
Section 5, the experimental results obtained from four real diar-
rhoea outpatient visits datasets are presented and discussed.
Finally, the study is concluded in Section 6.
2. Methodologies

Before starting to present the proposed method, it is necessary
to describe the theory of the acquired methodologies in the pro-
posed approach. In this section, the decomposition technique of
EEMDAN and the theory of GRNN algorithm are briefly introduced.
2.1. EEMD with adaptive noise

The EMD [34] is an adaptive signal processing technique intro-
duced to analyze non-linear and non-stationary time series. It con-
sists in a local and fully data-driven separation of a time series in
fast and slow oscillations. However, EMD experiences some prob-
lems, such as the presence of oscillations of very disparate ampli-
tude in a mode, or the presence of very similar oscillations in
different modes, named as mode mixing [36]. To overcome these
problems, the EEMD method was proposed [35]. It performs the
EMD over an ensemble of the signal plus Gaussian white noise.
The addition of white Gaussian noise solves the modemixing prob-
lem by populating the whole time–frequency space to take advan-
tage of the dyadic filter bank behavior of the EMD [38]. However it
creates some new ones. Indeed, the reconstructed signal includes
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residual noise and different realizations of signal plus noise may
produce different number of modes. In order to overcome these
situations, Torres et al. [36] proposed a variation of the EEMD algo-
rithm that provides an exact reconstruction of the original signal
and a better spectral separation of the modes, with a lower compu-
tational cost. The improved EEMD with adaptive noise (EEMDAN)
is depicted by the following algorithm [36]:

Step 1. Decompose by EMD realizations x½n� þ e0xi½n�
ði ¼ 1;2; . . . ; IÞ to obtain their first modes and compute

IMF1

_

½n� ¼ 1
I

PI
i¼1IMFi

1½n� ¼ IMF1

$
½n�;

Step 2. At the first stage (k = 1) calculate the first residue:

r1½n� ¼ x½n� � IMF1

_

½n�;
Step 3. Decompose realizations r1½n� þ e1E1ðxi½n�Þði ¼ 1;2; . . . ; IÞ,
until their first EMD mode and define the second mode:
IMF2

_

½n� ¼ 1
I

XI

i¼1

E1ðr1½n� þ e1E1ðxi½n�ÞÞ

Step 4. For k ¼ 2;3; . . . ; k calculate the kth residue: rk½n� ¼
rðk�1Þ½n� � IMFk

_

½n�;
Step 5. Decompose realizations rk½n� þ ekE1ðxi½n�Þði ¼ 1;2; . . . ; IÞ,
until their first EMD mode and define the (k + 1)th mode as:

IMFðkþ1Þ
_

½n� ¼ 1
I

XI

i¼1

E1ðrk½n� þ ekEkðxi½n�ÞÞ

Step 6. Go to step 4 for next k.
Steps 4–6 are performed until the obtained residue is no longer
feasible to be decomposed (the residue does not have at least
two extrema). The final residue satisfies:

R½n� ¼ x½n� �
XK
k¼1

IMFk

_

With K is the total number of modes. Therefore, the given signal
x½n� can be expressed as:
x½n� ¼
XK
k¼1

IMFk

_

þR½n� ð1Þ
Eq. (1) makes the proposed decomposition complete and
provides an exact reconstruction of the original data.

Where operator Ejð�Þ produces the jth mode obtained by EMD,
the wi is white noise with N(0, 1), x[n] is the targeted data and
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2.2. Generalized regression neural network

Generalized Regression Neural Network (GRNN), developed by
[39], is a kind of radial basis function (RBF) networks which is
based on a standard statistical technique called kernel regression
[26]. A typical GRNN is organized using four layers, namely the
input layer, the pattern layer (radial basis layer), the summation
layer, and the output layer. The hidden layer has radial basis neu-
rons, while neurons in the output layer have a linear transfer func-
tion. A typical schematic diagram of the GRNN architecture is
presented in Fig. 1. Given a sufficient number of neurons, GRNN
can approximate a continuous function to an arbitrary accuracy
[39].

As a standard regression technique, GRNN is used for the esti-
mation of continuous variables. It is related to the radial basis func-
tion network and is based on a standard statistical technique called
kernel regression. By definition, the regression of a dependent vari-
able y on an independent x, estimates the most probable value for
y, given x and a training set. The regression method will produce
the estimated value of y which minimizes the Mean Squared Error
(MSE). The GRNN is a method for estimating the joint probability
density function of x and y, given only a training dataset. Because
the probability density function is derived from the data with no
preconceptions about its form, the system is perfectly general.

If f ðx; yÞ represents the known joint continuous probability den-
sity function of a vector random variable x, and a scalar random
variable y, the conditional mean of y given x, also called the regres-
sion of y on x, is given by:

E yjx½ � ¼
R1
�1 yf ðy; xÞdyR1
�1 f ðy; xÞdy ð2Þ

where x ¼ ½x1; x2; . . . ; xN�T is input and xi ¼ ðxi1; xi2; . . . ; xidÞ is a d-

dimensional input vector; y ¼ ½y1; y2; . . . ; yN�T is target output;
E½yjx� is the expected value of the output y, given the input vector
x, f ðy; xÞ is the joint probability density function of x and y.

When the density f ðy; xÞ, is not known, it must usually be
estimated from a sample of observations of x and y. Given N

input–output pairs xi; yif gNi¼1 2 Rd �R1 and as the training sam-
ples, assume the original design of GRNN, that is, the number of
hidden neurons is equal to the number of training samples. For a
desired estimate of system output vectors y, under the input

vectors x, is achieved by a regression calculation �yi ¼ f̂ ðxiÞ, where
D

S

Summation Layer Output Layer

1

2

y

m

NN structure.
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f ð�Þ : Rd ! R is the predictor function. When probability density
function adopt Gaussian function, the procedure of the GRNN
model can be represented as:

f̂ ðxiÞ ¼
PN

i¼1yi exp �D2
i =2r2

� �
PN

i¼1 exp �D2
i =2r2

� � ð3Þ

where D2
i is defined as D2

i ¼ ðx� xiÞTðx� xiÞ, r denotes the smooth-
ing parameter, x is the input variable of the network, xi is a specific
training vector of the neuron i in the pattern layer.

A good performance of GRNN method depends on smoothing/
spread factor r (in Eq. (3) above), which is very important in using
GRNN for prediction and determines the generalization capability
of the GRNN. The smoothing factor (SF) is only free parameter,
apart from the input and output layer, involved in the designing
of the network. The recommended value for smoothing factor is
smaller than the typical distance between input vectors. Smooth-
ing factor is smaller and the function approximation capability will
be stronger, while smoothing factor becomes larger, the perfor-
mance will tend to be smoother [26].

As discussed in Section one, MLP networks have several short-
comings that make design of MLP a difficult task. GRNN, on the
other hand, have several advantages [37], including: (1) it has
one design parameter (i.e., smoothing factor); (2) it is easy to train
since it is a one-pass algorithm; (3) it can accurately approximate
functions from sparse and noisy data; (4) it can converge to the
conditional mean surface by increasing the number of data sam-
ples; and (5) ability to model from a relatively small data set,
and ability to handle outliers. It is these unique advantages that
make us to choose GRNN in our ANN modeling scheme as predic-
tor. Some recent papers [40–43] employed GRNN to TSF and con-
cluded that GRNN have a higher degree of prediction accuracy
than MLP neural networks.
Fig. 2. The proposed EEMDAN–G
3. The proposed EEMDAN–GRNN algorithm

Considering the aforementioned points in Section one, in the
current research, the powerful combination of positive aspects of
EEMDAN and GRNN algorithm is presented to one-step-ahead
diarrhoea outpatient visits time series prediction problem. The
research scheme of the proposed EEMDAN–GRNN algorithm is pre-
sented in Fig. 2. As shown in Fig. 2, the proposed algorithm can be
separated into five steps: (1) the data pre-processing; (2) the time
series decomposition; (3) the local predictor construction; (4) the
multi-local predictor fusion and (5) prediction results post-
processing. The detailed illustration of each step in the proposed
algorithm is described as follows:

Step 1: Data pre-processing.
Kotsiantis et al. [44], Azadeh et al. [45] and Kuvulmaz et al. [46]
pointed out that input data pre-processing has significant
effects for improving prediction performance of supervised
learning models. Besides the conventional rescaling or normal-
ization of data, pre-processing methods such as detrending and
deseasonalization were used in this paper. A pre-processing
method should contain the capability of transforming pre-
processed data into its original scale (called post-processing).
Since GRNN perform prediction based on the similarity of the
input point to the historical data points in the input space,
GRNN are inherently ineffective in modeling trend [37]. Thus
effective detrending is more important for GRNN than other
ANN models. The same conclusions were also drawn for highly
seasonal time series that deseasonalization can significantly
improve prediction accuracy [26]. For data normalization, there
are different normalization algorithms, such as Min–Max nor-
malization, Z-score normalization and sigmoid normalization.
RNN algorithm framework.
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In this paper we use Min–Max normalization (Eq. (4)) which is a
common approach in this field.

y�new ¼ yold � ymin

ymax � ymin

� �
y�max � y�min

� �þ y�min ð4Þ

where y�new is the normalized value, yold; ymax; ymin are the
original, maximum and minimum values of the raw data,
respectively and y�max; y�min, are the maximum and minimum of
the normalized data, respectively. Given an original one-
dimensional time series Yt ¼ ytf gNt¼1 2 R1, the output of this step

is a one-dimensional time series Y�
t ¼ y�t

� 	N
t¼1 2 R1, where N

represents the length of the series.
Step 2: Decompose time series using EEMDAN.
In this Step, the EEMAN is used to decomposes the pre-
processed time series data into a finite and often a small num-
ber of intrinsic mode functions (IMFs) and plus a residue.1 Each
IMF component can represent the local characteristic time scale
by itself. Then, these subseries can be predicted more accurately.
The output of this step is k IMFs and a residue and k is the num-
ber of IMFs:
1

Y�
t ¼

IMF1;t

IMF2;t

IMF3;t

. . .

IMFk;t

Rkþ1;t

2
666666664

3
777777775
¼

x1;1 x1;2 x1;3 . . . x1;N
x2;1 x2;2 x2;3 . . . x2;N
x3;1 x3;2 x3;3 . . . x3;N
. . . . . . . . . . . . . . .

xk;1 xk;2 xk;3 . . . xk;N
xkþ1;1 xkþ1;2 xkþ1;3 . . . xkþ1;N

2
666666664

3
777777775

ð5Þ

Step 3: Local predictor construction.
After the components (IMFs and a residue) are adaptively
extracted via EEMDAN, each component is modeled by an inde-
pendent GRNN model which is used to generate local predictor
to predict the component series respectively. So, for each
IMFi (ith IMF series), following three sub-steps were executed:

(1) Input selection for IMFi
Several studies, for example [47–49], have indicated that select-
ing model input lags is probably the most critical task for a time
series prediction model, since it contains important information
embedded in the data. The statistical approach to examine
auto- and partial-auto-correlation of the observed time series
was recognized as a good and parsimonious method in the
determination of model inputs [50,51]. So, in this study, the
model inputs are mainly determined by the plot of partial-
auto-correlation function (PACF).

(2) Construction of input/output pairs for IMFi
In this sub-stage, a single-variable IMFi time series is embedded
from the original one-dimensional space into a p-dimensional
reconstruction space, which indicates the system state at differ-
ent time. Let IMFit ¼ fxi1; xi2; . . . ; xiNg 2 Rði ¼ 1;2; . . . ; kÞ stand
for ith IMF series, we can reconstructed the original IMFi series
into an input–output pair format:

x1i
x2i
x3i
. . .

xNi

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

T

!

xi;1 xi;2 xi;3 . . . xi;p
xi;2 xi;3 xi;4 . . . xi;pþ1

xi;3 xi;4 xi;5 . . . xi;pþ2

. . . . . . . . . . . . . . .

xi;N�pþ1 xi;N�p xi;N�p�1 . . . xi;N�1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

input

xi;pþ1

xi;pþ2

xi;pþ3

. . .

xi;N

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;|fflfflfflfflfflffl{zfflfflfflfflfflffl}

output

ð6Þ
In this paper, the residual also be considered as an IMF.
where p is a positive integer often referred to as the embedded
dimension of the model and N � pþ 1 stands for the number
of input/output pairs. The N � pþ 1 new training dataset is used
to construction ith local predictor for ith IMF.

(3) Train local predictors for IMFi
The main problem for local predictor modeling for IMFi is con-
structing such a function with satisfactory prediction accuracy,
f localðxinput; xoutputÞ : Rp ! R1, with the following form:
xout ¼ f localðxinput;/Þ þ et ð7Þ

where local-predictors f localð�Þ are trained and defined using Eq.
(3) in different regions of the input space, / is a parameter vector
to be determined, and et denotes noise usually regarded as Gaus-
sian white noise independent of the previous observations.
Through the implementation of Step 3, kþ 1 prediction results
can be obtained and organized into a kþ 1-dimensional vector
z ¼ f�xtig 2 Rkþ1ði ¼ 1;2; . . . ; kþ 1; t ¼ 1;2; . . . ;NÞ.
Step 4: Muti-local predictor fusion.
To capture the correlation of local predictors more robust and
flexibly, in this Step, trainable fusion method can be adopted
in our work. Based on results of Step 3 and actual pre-
processed data, a new training dataset Z ¼ �xti; y�t

� 	
is formed.

Based on Z, a fusion predictor is trained, in which GRNN can
be adopted as well:
�yt ¼ f fusionðf local jðxt�1;xt�2; . . .xt�pj Þ;/Þ þ et; ðj¼ 1;2; . . . ;kþ1Þ
ð8Þ
where f fusionð�Þ is a fusion predictor; �yt is prediction results for
pre-processed data and pj denotes model inputs for jth local pre-
dictor. In trainable fusion model, the correlation of local predic-
tors is depicted by function f fusionð�Þ, which is not based on any
assumption such as linear restriction. As a result, the local pre-
dictor can be combined in a better-organized way according to
data’s intrinsic distribution.
Step 5: Post-processing data.
Post-processing (rolling back of the preprocessing step per-
formed, such as deseasonalization, detrending and returned to
original scale) of the estimated results is done in this step and
the final prediction value of the raw diarrhoea outpatient visits
data can be obtained.

4. Experimentation design

In this section, the details about the experimental design will be
presented. In Section 4.1, the briefly describes of the datasets are
given in our experimentations. Section 4.2 describe the experimen-
tal setting and implementations of proposed EEMDAN–GRNN algo-
rithm in detail. Section 4.3 presents the selected counterparts for
comparison and the implementations of counterpart models. Our
experiments are conducted on four real word diarrhoea outpatient
visits datasets. The hardware used is an AMD 2.20 GHz CPU with
4 GB memory. Programs were written in Matlab (R2013b, The
Math works, Inc., Natick, MA, USA) and run using Windows 7.

4.1. Experimental datasets

To evaluate the performance of proposed prediction algorithm
EEMDAN–GRNN, four real-world monthly numbers of diarrhoea
outpatient visits datasets were collected from the Shanghai Munic-
ipal Center for Disease Control & Prevention (SCDC) and National
Disease Supervision Information Management System (NDSIMS),
respectively. A brief summary of the four data sets is given in
Table 1. The temporal variation behavior of four datasets are illus-



Table 1
Diarrhoea outpatient visits time series dataset.

Dataset Seasonal Trend Size Periods Location Source

SH_Chindren 12 Yes 84 2006.1–2012.12 Shanghai SCDC
SH_Adult 12 Yes 84 2006.1–2012.12 Shanghai SCDC
BJ 12 Yes 108 2004.1–2012.12 Beijing NDSIMS
GD 12 Yes 108 2004.1–2012.12 Guangdong NDSIMS
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trate in Fig. 3. It is clear that four diarrhoea outpatient visits time
series exhibit upward increasing trend pattern together with sea-
sonal pattern as shown in Fig. 3.
4.2. Experimental setting

To test the algorithms with different training and testing
periods, all methods were assessed using 5-fold time ordered
cross-validation [55] procedure for each dataset in this study.
The implementation of the 5-fold time ordered cross-validation
was carried out by splitting (using time order) the original dataset
into five equal-sized subsets. Any four of the five subsets as
training datasets are selected to perform training. The remaining
part as testing dataset will be executed to test the generalization
performance of model. The structure of data sets using 5-fold
cross-validation is shown in Fig. 4.
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Fig. 3. Monthly diarrhoea outpatient visits. (a)
As a result, each part will be trained and tested five times. The
values reported are averages of the cross-validation estimates over
these different testing datasets. The root mean squares error
(RMSE) metric is calculated on the testing subsets in order to eval-
uate the generalization capabilities of the tested methods.

According to the proposed EEMDAN–GRNN approach, in Stage
1, the original datasets is first scaled into the range of [0,1] using
Eq. (4). Once the final prediction results are obtained using scaled
data, inverse transformation is carried out to obtain final predic-
tion results. Since the diarrhoea outpatient visits time series exhi-
bit strong seasonal component and trend pattern (see Fig. 3), we
conduct deseasonalizing by means of the multiplicative seasonal
decomposition using SPSS.19 statistical software. In addition,
detrending is performed by the 13-term moving average and then
dividing the estimated trend from the series.

In fact, there are three types of parameters to be set for our
EEMDAN–GRNN algorithm (Input lag p for each IFM, smoothing
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Fig. 4. Schematic illustration of the data partitioning for 5-fold time ordered cross-validation.

Table 2
Values of input lags and smoothing factors provide the average cross-validation errors in the different datasets in developing local GRNN predictors for each IMF.

IMF SH_Children SH_Adult BJ GD

Lag SF Lag SF Lag SF Lag SF

IMF1 2 0.04 2 0.02 2 0.01 2 0.05
IMF2 4 0.02 4 0.01 4 0.02 2 0.01
IMF3 2 0.01 3 0.01 3 0.01 3 0.01
IMF4 3 0.01 2 0.01 3 0.01 3 0.05
IMF5 2 0.01 3 0.01 4 0.01 3 0.01
IMF6 1 0.01 2 0.01 5 0.01 4 0.03
IMF7 – – 1 0.01 1 0.01 1 0.01
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factor r for each local predictor and smoothing factor r for fusion
predictor). In this study, EEMDAN2 is implemented using the pro-
gram provided by Torres et al. [36] and the PACF was used to deter-
mine the numbers of input lag for the local GRNN predictors for each
IMF. After determining the number of lagged inputs, the GRNN is
optimized with respect to the smoothing factor. In this study, the
value of smoothing factor is selected according to 5-fold cross-
validation performance on the testing datasets. And in each fold
experiment, an iterative optimization procedure is implemented in
this study. The range of the smoothing factor parameter is selected
large enough (between 0.01 and 1, increases at the step of 0.01) to
ensure convergence for all-time series and the optimal smoothing
factor for each IFM is then selected based on the corresponding min-
imum the root mean square error (RMSE) value between observed
values and model outputs on the testing datasets.

In Stage 4, an independent GRNN model is used as trainable
fusion strategy to obtain a more robust and accurate result. In this
study, the inputs of the fusion GRNN predictor are the prediction
results of IMFs, and the smoothing factor are selected through
the implementation of iterative optimization procedures,
described above. The final prediction value of the raw diarrhoea
outpatient visits was obtained by post-processing in Stage 5.
4.3. The selected counterparts for comparison

In order to reflect the model superiority, it is necessary to build
other models to compare with the proposed model. Seasonal
ARIMA (SARIMA), Single GRNN, Wavelet-GRNN and EEMD–GRNN
are selected as counterparts for the purpose of comparison. It
should be noted the reason for selecting single GRNN is to justify
the effectiveness of based on time series decomposition modeling
framework, for the selection of SARIMA is due to the exhibited
characteristics of strong seasonality of the diarrhoea outpatient
visits data sets, and for the selection of Wavelet-GRNN is the sim-
ilar modeling mechanism shared by EEMDAN-based and Wavelet-
based modeling frameworks. The reason for selecting EEMD–GRNN
is to justify the effectiveness of EEMDAN-based modeling
2 Matlab code is available at: http://perso.ens-lyon.fr/patrick.flandrin/emd.html.
framework. All methods were assessed using 10-fold cross-
validation procedure.

In this study, the implementation of SARIMA model has three
steps: model identification, parameter estimation, and diagnostic
checking. We used the SPSS.19 to formulate the SARIMA model.
The parameters in SARIMA models have been estimated using
the ordinary least squares method and the most suitable model
structure is identified using the Akaike Information Criterion
(AIC) value. The model obtained from the 5-fold cross-validation
are SARIMA(2,1,1) � (1,1,1)12 for children, SARIMA(2,1,0) �
(1,1,1)12 for adult, SARIMA(0,1,0) � (0,1,1)12 for BJ and SARIMA
(1,1,1) � (0,1,1)12 for GD. According to the above SARIMA models,
the prediction results can be obtained for out-of-sample testing
samples.

The Wavelet toolbox in Matlab is used to implement the dis-
crete Wavelet transform. Generally speaking, when Wavelet trans-
form is employed to construct a prediction model, the Wavelet
basis functions and decomposition stages need to be determined
first. In this study, Daubechies’s Wavelets of order 4 is adopted
through preliminary simulation in a trial-error fashion. To deter-
mine the number of decomposition levels, L = int[log(N)] is used
[52], where L presents the decomposition level and N denotes
the length of the data series.

In this paper, the EEMD3 is also implemented using the program
provided by [36]. The simulation of the Wavelet-GRNN and EEMD–
GRNN are in general similar to the proposed EEMDAN–GRNN model
and can be implemented following the above procedures. In order to
save space and keep paper concise, detailed introduction of imple-
mentation procedures to these methods will not be repeated here.
4.4. Performance evaluation criteria

To numerical assessment the effectiveness of the different pre-
diction models’ accuracy, no single accuracy measure can capture
all the distributional features of the errors when summarized
across data series [22]. To identify the best model quantitatively,
two criteria were used to evaluate and compare the models. These
evaluation criteria include the Root Mean Square Error (RMSE) and
3 Matlab code is available at: http://perso.ens-lyon.fr/patrick.flandrin/emd.html.

http://perso.ens-lyon.fr/patrick.flandrin/emd.html
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Fig. 5. Average RMSE of the local predictors on four datasets with different smoothing factor value. (a) SH_Children, (b) SH_Adult, (c) BJ, (d) GD.
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Fig. 6. Average RMSE of the fusion predictors on four datasets with different
smoothing factor.

Table 3
Values of smoothing factors provide the average cross-
validation errors in the different datasets in developing
fusion GRNN predictors.

Dataset SF

SH_Children 0.02
SH_Adult 0.01
BJ 0.02
GD 0.01
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the Mean Absolute Percentage Error (MAPE) and are defined as
follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1
ðyi � ŷiÞ2

r
ð9Þ
MAPE ¼ 1
N

XN
n¼1

yi � ŷij j
yi

� 100% ð10Þ
where yi is the actual observation value for a time period i; ŷi is the
prediction value for the same period and N is the number of obser-
vation in the hold-out sample. RMSE and MAPE were used to mea-
sure the correctness of a prediction in terms of levels and the
deviation between the actual and predicted values. The smaller
the values of RMSE and MAPE, the closer are the predicted time ser-
ies values to the actual values. Note that the error measures are
computed after rolling back of the preprocessing step performed,
such as deseasonalization and detrending.
5. Experimental results and discussion

5.1. Parameter analysis and selection

In this subsection, we investigate the effect of the smoothing
factor parameter on the proposed algorithm for all datasets. From



Table 4
Fivefold cross-validation error comparison results of different models for testing dataset. Bold values indicate the error of a data set.

Models SH_Children SH_Adult BJ GD

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

SARIMA 3302.05 5.19 1340.09 4.86 710.83 29.97 2010.39 11.23
GRNN 1335.79 4.51 1078.59 4.14 436.54 22.81 1041.20 9.65
Wavelet-GRNN 1201.21 3.86 908.62 3.31 311.87 20.63 864.96 8.14
EEMD–GRNN 1151.68 3.40 853.39 3.06 255.66 21.64 786.28 7.86
EEMDAN–GRNN 1060.41 2.23 768.35 2.24 143.29 16.26 567.28 5.61

Table 5
ANOVA results for hold-out ample.

Data Measure ANOVA test

Statistics F p-value

SH_Children ARE 7.72 0.000⁄

SH_Adult ARE 47.3 0.000⁄

BJ ARE 36.8 0.000⁄

GD ARE 13.6 0.000⁄

⁄ Indicates the difference among the five models is significant at the 0.05 level.
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the analysis in Section 2.2, a good prediction performance for the
GRNN model depends on the smoothing/spread factor. For all data
sets, firstly PACF was used to determine the numbers of input lag
for the local GRNN predictors for each IMF. The input lags of each
IFM are given in Table 2. Figs. 5 and 6 show the average RMSE
when the values of smoothing factor varies from 0.01 to 1.0 (in
steps of 0.01) for local predictors and fusion predictors, where
RMSE is obtained by 5-fold cross-validation.
Table 6
Wilcoxon signed-rank tests results between the five models.

Data Measure Ranks of models

1 2

SH_Children RMSE EEMDAN <⁄ EEMD
MAPE EEMDAN <⁄ EEMD

SH_Adult RMSE EEMDAN <⁄ EEMD
MAPE EEMDAN <⁄ EEMD

BJ RMSE EEMDAN <⁄ EEMD
MAPE EEMDAN <⁄ EEMD

GD RMSE EEMDAN <⁄ EEMD
MAPE EEMDAN <⁄ EEMD

EEMDAN corresponds to the EEMDAN–GRNN model, EEMD corresponds to the EEMD–G
⁄ Indicates the mean difference between the two adjacent models is significant at the 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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w

Fig. 7. Schematic illustration of the sliding win
Figs. 5 and 6 indicate that different behaviors when smoothing
factor assumes different values. That is, for the all four datasets,
local GRNN predictors and fusion GRNN predictors performs well
when smoothing factor assumes small values (<0.1). This range
was chosen in pilot tests that indicated that, for all the IFMs, the
accuracies tends to become quite stable when smoothing factor
is greater than 0.1 (see Figs. 5 and 6). However, GD dataset reveals
a slightly different behavior at 7 local predictors. It can be seen
from Fig. 5(d) that different local predictors show quite different
behavior with different smoothing factor values. This can be due
to the different datasets complexities. Table 2 summarizes the val-
ues of smoothing factor providing the average cross-validation
errors in the testing datasets for different IFM of four datasets.
Table 3 report the values of smoothing factor based on the average
cross-validation errors in the testing datasets for fusion predictors.

5.2. Models comparison

To evaluate the performance of the proposed approach, the
EEMDAN–GRNN model was compared with the EEMD–GRNN,
3 4 5

< Wavelet <⁄ GRNN <⁄ ARIMA
< Wavelet <⁄ GRNN <⁄ ARIMA

< Wavelet <⁄ GRNN <⁄ ARIMA
< Wavelet <⁄ GRNN <⁄ ARIMA

< Wavelet <⁄ GRNN <⁄ ARIMA
< Wavelet <⁄ GRNN <⁄ ARIMA

< Wavelet <⁄ GRNN <⁄ ARIMA
< Wavelet <⁄ GRNN <⁄ ARIMA

RNN model and Wavelet corresponds to the Wavelet-GRNN model.
% significance level.

72 73 74 75 76 77 78 79 80 81 82 83 84

72 73 74 75 76 77 78 79 80 81 82 83 84

72 73 74 75 76 77 78 79 80 81 82 83 84

72 73 74 75 76 77 78 79 80 81 82 83 84

Testing dataset

dow (w denotes the size of the window).



Fig. 8. The EEMDAN–GRNN algorithm behaves in different time frames. (a) SH_Children, (b) SH_Adult, (c) BJ, (d) GD.
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Wavelet-GRNN, GRNN, and SARIMA approaches.4 The average gen-
eralization errors (RMSE and MAPE) are calculated through 5-fold
cross-validation procedure and the average results based on 5 runs
for each data set are depicted in Table 4.

As comparison results presented in Table 4, one can deduce the
following observation: (1) the based on time series decomposition
prediction models (these are Wavelet-GRNN, EEMD–GRNN and
proposed EEMDAN–GRNN) outperform the single global prediction
model without time series decomposition methods (that is SARIMA
and GRNN) without exception. The main reason could be that the
decomposition strategy does effectively improve prediction
performance. The Wavelet-GRNN, EEMD–GRNN and proposed
EEMDAN–GRNN model adequately makes use of the advantages
of the decomposition methods and GRNN algorithm and integrates
them well. (2) The proposed EEMDAN–GRNN outperforms the
EEMD–GRNN and Wavelet-GRNN. The reason for this may be
related to the fact that the decomposition method of EEMDAN is
superior to EEMD and Wavelet in terms of contribution to the
prediction accuracy. Because EEMDAN effectively overcome the
shortcomings existed in EEMD and EEMDAN is more suitable for
nonlinear and non-stationary time series analysis. (3) As far as
the comparison between the two single prediction models, the
SARIMA model mostly ranks the last, while the GRNN can produce
far better results. The possible reason is that SARIMA is a typical
linear model not suitable for capturing nonlinear patterns hiding
4 It should be noted that all models are applied to the same datasets with the same
portion of training and test data and the error measures are computed after rolling
back of the preprocessing step performed, such as deseasonalization and detrending.
in the diarrhoea outpatient visits dataset. In summary it can be
concluded that EEMDAN–GRNN has provided more accurate
results for both the diarrhoea outpatient visits dataset compared
to EEMD–GRNN, Wavelet-GRNN, GRNN and SARIMA models.

5.3. Significance test

In order to further evaluate whether the proposed EEMDAN–
GRNN algorithm is superior to the EEMD–GRNN, Wavelet-GRNN,
GRNN, and SARIMA algorithms in all four diarrhoea outpatient vis-
its datasets prediction, the Analysis of Variance (ANOVA) proce-
dure is applied for absolute residual errors (ARE) in hold-out
sample. Table 5 shows the results of ANOVA test, from which we
can see that the all the ANOVA results are significant at the 0.05
significance level, suggesting that there are significant differences
among the five models.

To further identify the significant difference between any two
models, the Wilcoxon signed-rank test [53] is used to compare
all pairwise differences simultaneously here. the Wilcoxon
signed-rank test has been widely used to evaluate the predictive
capabilities of two different models to determine whether they
are significantly different [37,54]. For the details of the Wilcoxon
signed rank test, please refer to Zhang et al. [47] and Sudheer
et al. [51]. Table 6 shows the results of these multiple comparison
tests at 0.05 significance level. For each accuracy measure, we rank
order the models from 1 (the best) to 5 (the worst). Table 5 shows
that the proposed EEMDAN–GRNN model was significantly differ-
ent (p-value < 0.05) from the other four models. Because the pro-
posed method can be used to generate the smallest error in the
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four datasets, we concluded that proposed method is significantly
better for predicting four diarrhoea outpatient visits datasets
relative to the other four models.

5.4. Algorithm behaves in different time frames

In order to see the generalization performance of the proposed
algorithm in different time frames, a sliding window technology
was used in this study. The implementation of the sliding window
was carried out by splitting the original time series into continuous
subsequences. The sliding window size w is set to 12 in this exper-
iment. The dates in window as testing set were utilized to check
the performance of the models. The schematic illustration of the
sliding window is shown in Fig. 7.

The experiment results are detailed in Fig. 8. In Fig. 8, it can be
observed that proposed EEMDAN–GRNN algorithm have better and
stable performance in different time frames. This implies that the
performance of proposed EEMDAN–GRNN algorithm doesn’t
depend on specific time frames. The high RMSE values in some
time frames are due to the peak values of the datasets.
6. Conclusion

It can be realized from both theoretical and empirical findings
that the prediction models based on decomposition-and-
ensemble principle are the effective and efficient way to improve
prediction performance. This paper proposed an EEMD-based time
series decompositionmodeling framework for diarrhoea outpatient
visits prediction by adding adaptive noise at each stage of the
decomposition along with employing data pre-processing and
post-processing concepts as reinforcement technologies. Large
scale experimental evidences are provided for the purpose of
justification. The following are the main conclusions drawn in this
paper: (1) Further validate the conclusion that prediction models
based on decomposition-and-ensemble principle superior to single
global predictors in prediction performances in the diarrhoea out-
patient visits prediction problem. The proposed model adequately
makes use of the advantages of the time series decomposition
methods and muti-local predictor fusion. (2) The GRNN model is
potentially a good candidate as predictor for diarrhoea outpatient
visits, thanks to several of its unique properties (e.g., single design
parameter). (3) The decomposition method of EEMDAN is superior
to EEMD and Wavelet-based decomposition methods in terms of
contribution to the prediction accuracy for diarrhoea outpatient vis-
its prediction. Therefore EEMDAN–GRNN can be used as a suitable
prediction tool for diarrhoea outpatient visits prediction problems.

Our study has the some limitations that need further research.
Future studies may aim at exploring the utility of EEMDAN–GRNN
in predicting the diarrhoea outpatient visits for other geographical
regions and also for multiple-step-ahead prediction and also
selecting other prediction models as local predictor such as sup-
port vector regression or extreme learning machines.
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