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Abstract
The performance of XPath query is the key factor to the capacity of XML process-
ing. It is an important way to improve the performance of XPath by making full 
use of multi-threaded computing resources for parallel processing. However, in the 
process of XPath parallelization, load imbalance and thread inefficiency often lead 
to the decline of parallel performance. In this paper, we propose a cost optimiza-
tion-based parallel XPath query method named coPXQ. This method improves the 
parallel processing effect of navigational XPath query through a series of optimiza-
tion measures. The main measures include as follows: first, by optimizing the stor-
age of XML node relation index, both storage and access efficiency of the index 
are improved. Secondly, load balancing is realized by a new cost estimation method 
according to the number of XML node relations to optimize parallel relation index 
creation and parallel primitive execution. Thirdly, the strategy of determining the 
number of worker threads based on parallel effectiveness estimation is utilized to 
ensure the effective use of threads in query. Compared with the existing typical 
methods, the experimental results show that our method can obtain better parallel 
performance.

Keywords XPath query · Relation index · Cost estimation · Load balancing · 
Parallel effectiveness

1 Introduction

As a powerful semi-structured data [1] description tool, XML is suitable for describ-
ing complex web information and system integration information. As a general data 
exchange and storage standard, XML has been widely used in various fields, and 
the requirement for the performance of XML processing is increasing. XPath [2] 
query is the key part of XML data processing, and its performance directly affects 
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the processing ability of XML. The common implementation methods of XPath 
query include twig [3] method and navigational [4] method. Twig uses path pattern 
matching to find structures that satisfy the conditions of XML node relationship and 
has high query efficiency for branch paths described by predicates. However, twig 
is not suitable for some operations, such as reverse axis and sibling axis; thus, it 
is difficult to support complete XPath query semantics. The navigational process is 
to evaluate each query step one by one according to the syntax of XPath and navi-
gate through the hierarchical structure of XML document tree until the final result is 
obtained. The navigational method is simple and direct, and easy to implement the 
rich semantics of XPath; thus, it is widely applied to the implementation of many 
popular XML engines [5–7]. However, due to the iterative processing of the query 
step in navigational method, the query efficiency is often low, and optimization is 
essential to improve performance.

Recently, with the popularity of multi-threaded computing environment, making 
full use of multi-threaded parallel computing to improve performance has become 
a common optimization approach. Parallelization related work in XML processing, 
including XML parsing parallelization [8, 9], XPath query parallelization [10–13] 
and XQuery parallelization [14, 15]. The implementation technology of XPath par-
allelization includes automata method [16, 17], pipeline [18, 19], task parallelism 
[20], and data parallelism [11, 12]. Kim et al. [16] presented a multi-query parallel 
method for multi-core computing, which transforms multiple XPath expressions into 
FSA-based query indexes, and then process XML streams in parallel. Jiang et  al. 
[17] proposed an XML grammar-aware parallelization method for XPath which lev-
erages the grammar of the semi-structured data to guide the design of paralleliza-
tion. Karsin et al. [18] gave a low latency pipelined XPath parallel query scheme. 
Only simple XPath without predicate is tested in their work. Chen et al. [19] pro-
posed a pipelined XPath evaluation method based on cost optimization, which can 
support more complete XPath semantics. Huang et al. [20] proposed a task parallel-
ism method for XPath query. The method determines the parallelizable parts by con-
structing task dependency graph and dynamically divides query tasks to balance the 
load. Shnaiderman et al. [13] proposed XPath parallelization methods based on twig 
pattern. Their basic idea is to perform twig evaluation on different subtrees of XML 
document tree in parallel. In recent years, the ability of GPU in parallel computing 
has attracted extensive attention. There have been some XPath parallelization work 
for GPU processing. For example, Moussalli et al. [21] used GPU to accelerate the 
XPath evaluation in multiple query scenarios, which improves the query through-
put. Kim et al. [22] presented an XML path filtering method for large collection of 
XPath queries, which uses matrix-based XML stream to process queries on GPU 
[21] and [22] only show simple path query cases, but still lack support for more 
complex operations such as predicates. GPU can provide a large number of threads 
for concurrent processing. However, XPath evaluation process is not a large-scale 
numerical calculation suitable for GPU, and it processes complex semi-structured 
XML data. GPU still has some limitations in processing XPath evaluation.

In the implementation of efficient parallel processing, data parallelism is a sim-
ple and efficient method, which usually uses barrier mechanism to synchronize 
[23]. Load balancing can reduce the synchronization overhead and effectively 
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improve the parallelization effect. Therefore, it is an important factor to be con-
sidered in the process of parallel processing. There have been lots of researches 
on load balancing in parallel processing for general computing [24, 25]. The load 
balancing for XML parallelization needs to be combined with the specific sce-
narios of XML processing. For instance, Pan et al. [9] proposed a method of load 
balancing by static task partition in the process of XML parsing; Zuo et al. [26] 
gives a method of load balancing through query cost estimation in the process of 
XML query to guide the selection of parallel query plan. Subramaniam et al. [27] 
presented an XML query method which can adapt to distributed environment and 
support the optimal processing of distributed load. As the input of XPath pro-
cessing is XML semi-structured data, XML encoding [28] is necessary to obtain 
appropriate access mechanism, and the index is used to improve the access effi-
ciency [29]. Widemann et al. [30] applied the node relation information of XML 
to the type checking of XPath query and XSLT transformation, which improved 
the accuracy and flexibility of the type checking. The pM2 method proposed in 
[12] transforms XPath query into XML node relation search by introducing node 
relation matrix. Through the parallel construction of relation matrix and data par-
allel execution of query primitives, the query performance is improved in multi-
core computing environment. However, there are still some problems, such as the 
high storage cost of relation matrix; the load imbalance is prone to occur when 
the relation matrix is created and query primitives are executed in parallel; the 
query primitives are often inefficient in parallelization. These problems greatly 
affect the parallel effect.

In order to improve the parallel effect of navigational XPath query, in this 
paper, we propose a cost optimization-based parallel XPath query method named 
coPXQ. This method improves the parallel effect through a series of optimization 
measures. Through the comparison test and analysis with the existing methods, it 
shows that our method has better parallel performance. The main contributions of 
this paper include as follows:

1. An optimized XML node relation index storage scheme is proposed, which has 
better storage efficiency and access efficiency, and can support efficient query.

2. A cost estimation method based on the number of XML node relations is proposed 
to realize the load balancing in both parallel index creation and parallel query 
primitive execution.

3. A method of determining the number of worker threads based on parallel effec-
tiveness estimation is proposed to ensure the effective utilization of threads when 
query primitives are executed in parallel.

The remainder of the paper is structured as follows. Section 2 introduces the 
related work, focusing on the parallelization of navigational XPath evaluation and 
the related cost estimation issues. Section 3 describes the method of coPXQ in 
detail, including optimized relation index storage, parallel index creation and par-
allel query primitives. Section 4 presents comparative experiments and evaluation 
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of relevant indicators. The last section draws the conclusion and proposes future 
work.

2  Related work

This paper focuses on the parallelization of navigational XPath query. Typical 
studies in this area include the work done by Bordawekar et al. [11, 31]. Later, 
Sato et al. [32] carried out XPath parallelization research on the new XML query 
platform BaseX [5] on the basis of Bordawekar et al.’s work. In the previous work 
[12], we propose an efficient XPath evaluation method named pM2 based on 
XML node relation matrix, which adopts data parallelism in processing. In addi-
tion, we recently proposed a pipeline-based XPath evaluation method called PXQ 
[19] to support efficient query of XML data streams in parallel environment.

Bordawekar et  al. [11] proposed three strategies for parallelizing XPath que-
ries: data partitioning, query partitioning and hybrid partitioning. The parallel 
query plan was rewritten manually and tested on various test platforms. On the 
basis of this work, a method of automatic parallelization of XPath queries using 
cost model to guide parallel query plan optimization is proposed in [31]. It uses 
XML statistics to estimate the relative efficiencies of different alternative plans 
and find an optimal parallel XPath processing plan. This method is suitable for 
automatic parallelization of navigational evaluation. However, an accurate cost 
model is needed to implement. The experimental results in [11] and [31] show 
that the parallel effects of different query plans are quite different, and the selec-
tion of query plans is cost sensitive. In addition, the cost model based on statistics 
used in the method is closely related to the specific situation of XML data and 
XPath expression, so it needs extra overheads to obtain statistical information. 
Sato et al. [32] used Bordawekar’s idea of data partition to parallelize XPath que-
ries, and combined with the advantages of BaseX engine, experiments were car-
ried out on both the server side and the client side, respectively, but no automatic 
parallelization approach was provided.

In [12], we proposed a parallel evaluation method pM2 for XPath based on 
XML node relation matrix. The pM2 method consists of two data parallel execu-
tion phases: the construction of relation matrix and the evaluation of query primi-
tives. The query function is carried out by relation matrix search, and parallel 
query primitives are selected for each query step to maximize the parallelizable 
opportunities. The pM2 method performs data partition according to the number 
of XML nodes. In the execution of query primitives, the length of input sequence 
is used to estimate the cost of computation. However, this cost estimation method 
is difficult to reflect the real load condition; therefore, it can easily lead to load 
imbalance.

In the process of query parallelization, it is usually necessary to combine the 
cost model to guide the generation of query plan. Hartmann et  al. presented a 
cost estimation method for XML query in [33]. By estimating the sizes of inter-
mediate results, the method is used to guide the vertical fragmentation of XML 
data in distributed environment and improve the parallel processing performance. 



5424 R. Chen et al.

1 3

Georgiadis et  al. [34] designed the physical operators of XPath and the corre-
sponding cost model, which provides a basis for the optimization of XPath evalu-
ation. Hidaka et al. [35] proposed a relative cost model for XQuery, which is used 
to optimize the XML query plan. The cost is calculated recursively according 
to XQuery expression, involving the estimation of data sizes and probability of 
selection. The relative cost is estimated at the level of logical query plan, and the 
overhead related to parallel scheduling is not reflected. In [31], Bordawekar et al. 
[19] used a statistical cost model to guide query and data partition in XPath paral-
lelization. The model considered the cardinality of the XPath query step and the 
selection rate with predicates. However, this model mainly considers the compu-
tational cost and also does not consider the cost of parallel scheduling. In PXQ, 
during the construction of pipeline, the query primitive sequence is divided and 
merged according to the estimated cost, so as to form a pipeline with relatively 
balanced load in each stage.

Since load balancing is an important factor to ensure the parallel performance, it 
is usually concerned about in parallel processing [24, 26]. Consider that if all avail-
able threads are used for parallel processing when the computational cost is low, the 
parallel efficiency may be reduced [36] due to the coordination overhead of threads. 
Such parallel effectiveness problem should also be considered in the process of auto-
matic parallelization. The coPXQ method in this paper obtains the optimized paral-
lel effectiveness by setting the estimated number of worker threads. In PXQ method, 
by merging low-cost query steps, the granularity of pipeline stage is improved, 
which essentially limits the number of threads, so as to improve the efficiency of 
pipeline. The main features of related works are summarized in Table 1.

3  Proposed method

3.1  The framework of coPXQ

The proposed method consists of three stages: XML parsing and statistics, index 
creation and primitive evaluation, as shown in Fig. 1. On the one hand, according 
to the input XML document, XML parsing and index creation are carried out to 
provide the required data for query. On the other hand, the XPath query expression 
is rewritten as a parallelized sequence of query primitives for query processing. 
The first stage is preprocessing, which is in the process of XML document parsing. 
The statistical information needed for cost estimation is collected in this stage. The 
second stage is the creation of relation indexes. According to the estimated cost of 
index creation, the input region encoding data is partitioned to achieve load balance 
and improve the efficiency of parallel creation of index data. In the third stage, par-
allel primitive evaluation is carried out. According to the estimated cost of primi-
tive query, on the one hand, the parallel effectiveness is estimated to determine the 
number of worker threads; on the other hand, the partition of input data is guided to 
achieve load balancing during query. The cost model plays a key role in the whole 
process of parallel optimization. According to the characteristics of relation index, 
the cost model proposed in this paper is based on XML statistical information, 
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which can reasonably estimate the computational cost and provide the possibility for 
effective load balancing and optimizing the number of threads.

The symbols and their corresponding meanings in this paper are listed in Table 2.

3.2  Optimized node relation index storage

The region encoding of XML nodes is represented by 6-tuple in this paper. For 
example, the region encoding of node u is <ID, nodeType, tagName, begin, end, 
level> , where ID is the node ID. Since the node ID is unique, node u can be rep-
resented by the ID value. nodeType is XML node type. We consider the most 

Output

Query result

XML document

XPath rewriting

Input

Query primitives

XML parsing and
statistics stage

XML parsing

Primitive evaluation
stage

Parallel primitive
evaluation

Cost estimation

Index creation stage

Parallel index
creation

Cost estimation

XPath query

Region
encoding
Statistical

info.
Relation
indexData partition Para-effectiveness

estimation

Data partition

XML statistics

Fig. 1  Processing framework of coPXQ

Table 2  Symbols and corresponding meanings

Symbol Meaning

E
u

The region encoding of an XML node u. u is represented by the node ID value
I
u

The relation index of a node u, see Definition 1
P
k

The block boundary of a block k, see Definition 2
NDS_CH
u

The total number of descendants (denoted as ’DS’ type) and children (denoted as ’CH’ type) in 
the subtree with node u as its root

NAT
u

The number of attributes (denoted as ’AT’ type) of a node u

NTAT
u

The number of non-direct attributes (denoted as ’TAT ’ type) of a node u, that is, the number of 
attribute nodes of u’s descendants

R
u

The number of XML node relations of a node u
Gp/s Parallel effectiveness of a primitive, see Definition 3
C The estimated cost, which is associated with execution time, comparable, and dimensionless. 

Its specific semantics are distinguished according to the subscript and the superscript
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frequently used XML node types: element and attribute, so nodeType ∈ { ELE-
MENT, ATTRIBUTE}. tagName is the label name of node; begin is the start position 
of the node in document; end is the end position of node; level is the hierarchical 
value of node.

There are various relation between any two XML nodes u and v. According to 
the query semantics of XPath [2], these relations include parent (denoted as ’PA’), 
child (denoted as ’CH’), ancestor (denoted as ’AN’), descendant (denoted as ’DS’), 
attribute (denoted as ’AT’), preceding-sibling (denoted as ’PS’), following-sibling 
(denoted as ’FS’), preceding (denoted as ’PP’), following (denoted as ’FF’), etc. The 
relation between two nodes is bi-directional, and the two directions are semantically 
relative. Therefore, the relation type of one direction can be deduced from the one 
of the other direction. When discussing the relation between two nodes u and v, this 
paper refers to the relation from node u to node v. We specify that the node u is 
prior to node v in the document order, that is, the ID value of u is less than that of 
v, so that only one-direction relation need to be generated. The relation type values 
in this paper are limited to DS, CH, AT, TAT and NN, which represent descendant, 
children, attributes, indirect attribute relation and unrelated relation, respectively. 
Among them, the TAT and NN type are used for auxiliary purpose. In this paper, 
coPXQ utilizes the relation indexing infrastructure, which provides an efficient way 
to deal with navigational evaluation.

Definition 1 (Relation index) Refers to a storage structure that records the effective 
relation between XML nodes. An index is represented by a tuple as < u, v, ru→v > , 
which indicates the unique relation type of node u and node v is r, r ∈ {DS, CH, 
AT}. The relation of a node u refers to the relation index set of node u and all its 
subsequent nodes v in the document order that have effective relation (DS, CH or 
AT). In order to save the storage space and facilitate access, the node ID is used to 
represent the node, and the relation index is simplified as < idv, ru→v > , then the 
relation index Iu for node u is a tuple set of all nodes v which are relative with node 
u. Iu is described as Iu =

⋃

j {< idvj, ru→vj >} . For an entire XML document with N 
nodes, the index space is expressed as I =

⋃

i∈N Iui =
⋃

i∈N

{
⋃

j∈N {< idvj, rui→vj >}} . For a given 
node list E , the index space is expressed as IE =

⋃

ui∈E Iui =
⋃

ui∈E {
⋃

j {< idvj, rui→vj >}}.

Compared with pM2, the index of coPXQ only stores {DS, CH, AT} types; thus, 
the storage space and index scan time can be saved effectively. Queries involving 
other relation are processed by query rewriting transformation. The XML document 
in Fig. 2a has 14 nodes, including 12 element nodes and 2 attribute nodes. The doc-
ument tree with simplified region encoding is shown in Fig. 2b. The tag name of 
each node is marked in the circle, and different nodes with the same tag name are 
distinguished by numbers. The string beside the circle is a simplified region encod-
ing, which contains the node ID value, the document start position of the node, the 
document end position of the node and the hierarchical information of DOM. For 
example, the code "5 [51,61,2]" of node C2 indicates that the ID value of the node 
is 5. The position starts from the 51st byte to the end of the 61st byte in the XML 
document and is at the level 2 of the XML document tree. The corresponding node 
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relation index structure is shown in Fig. 2c. The nodes with index are only limited to 
non-leaf nodes, and the index item is <node ID, relation type>.

Proposition 1 Suppose that the root node of a subtree of an XML document tree is 
u, then the number of relations corresponding to u is the sum of the number of DS 
or CH type nodes in the subtree and AT type nodes in the root node u. We have the 
following equation.

(1)Ru = NDS_CH
u

+ NAT
u

(a) (b)

(c)

Fig. 2  XML encoding and relation index
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Proof Let a node u be the root node of the subtree. If u has no descendant node, 
then Ru = 0. When u has 1 descendant node, which must be a child or attribute node 
of u, then Ru = 1. When there are more than one descendant node under u, there 
are two ways to connect to u, either to the u itself or to a descendant of u. When 
connected to u itself, if it is an element node, a child node is added, and NDS_CH

u
 

increases by 1; if it is an attribute node, NAT
u

 increases by 1. All of these increase Ru 
by 1. For the node connected to the descendant node of u, if it is an element node, a 
DS type node is added to u, that is, NDS_CH

u
 increases by 1, thus Ru increases by 1; 

if it is an attribute node, no nodes of any type are added to u, while NDS_CH
u

 and NAT
u

 
are unchanged.

In the process of XML parsing, the statistical information of each XML node 
u, including NDS_CH

u
 , NAT

u
 and NTAT

u
 , will be collected. The process of parsing and 

obtaining statistical information is described by Algorithm  1. XML document is 
parsed in sequential style. When parsing a start tag, a new node u is created with a 
new ID in document order, and the current level value is recorded (line4–5). When 
parsing an end tag, statistics is made and the current node u information is updated 
(line6–11).

For the XML case in Fig. 2a, the XML statistics obtained are the number of rela-
tions { R0 = 11; R1 = 4; R3 = 1; R6 = 6; R7 = 4; R9 = 1} and non-direct attributes of 
each node { NTAT

0
 = 2; NTAT

6
 = 1}, where the numerical subscript is the node ID value. 

The number of relations reflects the storage complexity of relation index. Figure 3 

Fig. 3  Distribution of nodes in 
the XML tree: a the case with 
the minimum number of rela-
tions; b the general case; c the 
case with the maximum number 
of relations

(a) (b) (c)
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shows the distribution of nodes in the XML tree. It can be found that the lower level 
the nodes are distributed, the more times they are included by other nodes, so the 
total number of relations is also increased. For an XML document with N nodes, 
generally, the tree depth of XML is fixed to H. Figure 3c indicates that in addition 
to the H nodes required to form the depth H of the tree, the maximum number of 
total relations can be obtained if a node is added to the position of H-1 level. The 
number of all relations is R = H(H−1)/2 + (N–H)*(H–1). In Fig. 3a, the minimum 
number of relations is obtained. Except for the H nodes required to form the tree 
depth H, all the other nodes are the children of the root node, and its relation number 
is R = H(H−1)/2 + (N–H). Figure  3b shows a situation in between. Therefore, the 
maximum storage complexity of relation index in coPXQ is measured by the rela-
tion number in Fig. 3c. H is regarded as a constant, except for the case of very small 
XML files, generally H <  < N, so there is O(R) = O(N).

3.3  Load‑balanced parallel index creation

3.3.1  Node relation calculation

Calculating the relation between XML nodes is the basic step of creating index. 
Considering the directivity and semantic correspondence of the relations between 
XML nodes, by specifying the order of nodes to be calculated, we can avoid repeti-
tive calculation and obtain one-direction relation. Algorithm 2 describes the process 
of calculating the relation between the two nodes.

Since only one relation is stored for two nodes, while the descendant relation con-
tains child relation semantically, the constraint Eu.level ≠ Ev.level-1 is added to line 2 
in Algorithm 2. For the case of query descendant node, the child node condition is 
included in the query primitive design. The purpose of line 4 is to identify the non-
direct attribute nodes of node u for optimization. The process of creating relation 
index is to call Algorithm 2 to calculate and store the relation value between any two 
nodes.
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Proposition 2 Consider all possible relation values {DS, CH, AT, TAT, NN}, in the 
process of creating the relation index of node u, when calculating the relationship 
between u and its subsequent nodes v in document order, if the first relation value is 
NN, the relation value with subsequent nodes in document order must be NN.

Proof Suppose the first document order successor node with the relation value of 
NN with node u is v0, if there is a node v1, which is the successor node of v0, and 
the relation value with u is not NN, then the discussion is as follows. According 
to the document order, there is " Eu.begin < Ev0.begin < Ev1.begin" (Condition 1). 
According to Algorithm 2, the condition that the relation value is not NN is "¬((Eu.
begin < Ev.begin) ⋀ ( Ev.begin < Eu.end))", that is, equivalent condition "(Eu.begin > 
Ev.begin) ⋁ ( Ev.begin > Eu.end)". For u and v0, the condition "(Eu.begin > Ev0.begin) 
⋁ ( Ev0.begin > Eu.end)" (Condition 2) must be satisfied. According to the Condition 
1, it can be deduced that the left part of Condition 2 is not true, so " Ev0.begin > Eu
.end" (Condition 3) must be satisfied. For u and v1, according to Algorithm  2, it 
can be deduced that "(Eu.begin < Ev1.begin) ⋀ ( Ev1.begin < Eu.end)" (Condition 4) 
should be satisfied. Combined with Condition 3 and the right part of Condition 4, it 
can be deduced that " Ev1.begin < Ev0.begin" (Condition 5) is satisfied. According to 
the contradiction between Condition 5 and Condition 1, the relation value between u 
and v1 can only be NN.

According to Proposition 2, when a NN relation is obtained, the coPXQ 
method does not need to continue to calculate the relation value with the subse-
quent nodes. Through the optimized design, the index construction can skip a lot 
of calculation with the result value of NN, thus greatly saving time. Obviously, 
for non-NN relation calculation, all relation values except TAT type need to be 
stored in relation index. This also relates the computational cost of index creation 
to the number of relations. In the process of index creation, Algorithm 2 needs 
to be called Ru + NTAT

u
 times for each node u. In addition, it needs to calculate 

until the result of the first NN relationship is obtained; thus, an additional call is 
required. Since the calculation cost here is only used to guide data partition, the 
calculation cost of calling Algorithm 2 has been normalized to a measure with a 
value of 1. Therefore, the number of calls to Algorithm 2 can be used to estimate 
the total computational cost of index creation. The estimation formula is

Corollary 1 If the node ID value of node u is k, then the node ID values of node v 
corresponding to all non-NN type relation of u are sequential sequences starting 
from k + 1.

Proof According to Proposition 2, when the first NN type relationship appears, the 
calculation of relation will be terminated. Therefore, the results of the previous cal-
culation are all non-NN type. In the process of calculating the relation for node u, 

(2)Cindex =
∑N−1

u=0

(

Ru + NTAT
u

+ 1
)

≈
∑N−1

u=0

(

Ru + NTAT
u

)
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the subsequent nodes v are calculated with node u one by one according to the docu-
ment order, so the non-NN type relation result is a continuous sequence according 
to the node ID sequence. Since the first node is next to u, its node ID value is k + 1.

Corollary 2 The node relation storage Iu corresponding to node u is a continuous 
sequence in the order of node ID.

Proof According to Corollary 1, during getting the relation index of node u, the 
node v of non-NN type relation obtained is a continuous sequence according to the 
node ID order. These non-NN type relations are added into the relation index Iu one 
by one, so the index information of nodes v in Iu must be a continuous sequence in 
the order of node ID.

3.3.2  Parallel index creation

In the process of index creation, we need to get the relation value between every 
two nodes, so the cost of index creation is reflected in the number of calls of Algo-
rithm 2. In the process of parallel index creation, firstly, the data to be processed 
should be partitioned into blocks, and then multi-threads are used to process the 
blocks in data parallelism. Data partition is the key factor affecting load balancing. 
Obviously, the number of relations contained by each node is generally quite differ-
ent. From the perspective of subtree, the node with lower level contains more nodes, 
so it generally has more relations; while the number of relations owned by leaf node 
is 0. As discussed in Sect. 3.3.1, the cost of index creation is related to the number 
of relations. Therefore, this paper proposes a load balancing method based on rela-
tion number. The idea is to partition the input data into data blocks according to the 
cost estimation, while the cost estimation is based on the relation number rather than 
the number of nodes. Suppose the load is evenly partitioned into m blocks, accord-
ing to Eq. (2), the computational cost of each block is

The advantage of this method is that the load can be partitioned in fine granular-
ity according to the number of node relations, which is conducive to load balancing, 
and the estimated computational cost can better reflect the real load.

Definition 2 (Block boundary) Refers to the partition location information of a given 
space. It contains two components, i and j, which record the position of node u and 
node v, respectively. If the boundary of block k is represented by Pk , then the two 
components are Pk .i and Pk.j. In the index creation stage, the given space refers to 
the region encoding information of the entire XML document; in the query primitive 
evaluation stage, the given space refers to the index information of the input nodes.

The whole process of parallel index creation includes two stages: block bound-
ary extraction and data parallel processing, as described in Algorithm 3. Line 1–5 

(3)Cm = Cindex∕m =
∑N−1

u=0

(

Ru + NTAT
u

)

∕m
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are used to estimate the computational cost and then calculate the block bound-
ary. In line 6–29, according to the block boundary, the threads are allocated to cre-
ate indexes for each block in data parallelism. The XML data stored in the form 
of region encoding are partitioned, and the boundary information of partition is 
recorded by Pk . The value of Pk .i records the position of node u. Because the ID of 
all nodes is continuous in the whole XML document, the node ID value of node u is 
used as the boundary value. The value of Pk .j records the position of node v. From 
Proposition 2, the nodes corresponding to node u are equivalent to all nodes in the 
subtree with node u as the root. According to Corollary 1, the node IDs of nodes v 
which have non-NN type relation are continuous sequence starting from node ID 
+ 1 of node u, obviously, the offset of node v’s node ID value can be reflected by 
the relation number. Line 5 is used to calculate the node ID value of node v, which 
is taken as the boundary value. Line 12–16 are used to process the first node of the 
block; line 17–22 are used to process the intermediate nodes of the block; and line 
23–26 are used to process the last node of the block. Line 16 and 22 are used to 
realize optimization processing according to Proposition 2. The index creation in 
coPXQ only needs to calculate the relation value of non-NN type, and the number 
of non-NN types is the number of index relations. Since the spatial complexity of 
relation index is O(N) (see Sect. 3.2, N denotes the number of XML nodes), the time 
complexity of index creation can achieve the effect of O(N).
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3.4  Effectiveness‑based parallel query primitives

3.4.1  XPath query rewriting

Query primitives represent the basic steps of XPath query, and various powerful 
XPath expressions are rewritten into execution sequences composed of multiple 
query primitives. In coPXQ, the primitives have been parallelized, which sup-
port the execution in data parallelism; while the query process is to return the 



5435

1 3

Parallel XPath query based on cost optimization  

query result through looking up the relation index. coPXQ includes two types of 
primitives: non-filter primitives and filter primitives. Non-filter primitives are the 
implementation of axis operations corresponding to XPath, such as the primitive 
ParaGetDescendant for descendant axis, ParaGetChild for child axis, etc. Filter 
primitives are the implementation of predicate operations in XPath, including the 
basic filter primitive ParaFilterInput1byInput2, and several variants, such as fil-
ter primitive with AND condition, filter primitive with OR condition, and filter 
primitive with NOT condition. The XPath query expression needs to be translated 
into a query step composed of multiple parallel query primitives. The translation 
function is defined as T[PExp]E = Exp, where PExp is an XPath expression, Exp 
is an expression organized by parallel query primitives, and E is the input node 
sequence in current context. The main translation rules are as follows, where e in 
the rules denotes XPath expression.

• (R1) T[∕∕e]E0 = T[etail]E1 where E1 ← ParaGetDescendant(E0,ehead,…)
• (R2) T[∕e]E0 = T[etail]E1 where E1 ← ParaGetChild ( E0,ehead,…)
• (R3) T[[e]]E0 = ParaFilterInput1byInput2(E 0, E 1) where E1 ← T[e]E0
• (R4) T[e1 and e2]E0 = ParaFilterInput1byInput2_AND(E0,E1,E 2, …) where 

{E1 ← T[e1]E0 , E2 ← T[e2]E0}
• (R5) T[e1 or e2]E0 = ParaFilterInput1byInput2_OR(E0,E1,E 2, …) where 

{E1 ← T[e1]E0 , E2 ← T[e2]E0}
• (R6) T[not(e)]E0 = ParaFilterInput1byInput2_NOT(E0,E 1) where E1 ← T[e]E0
• In rules (R1) and (R2), ehead denotes the beginning of expression e, corre-

sponding to a tag name; etail denotes the remaining part of expression e after 
ehead is removed. For example, the XPath expression "//A[/B or //C]" is trans-
lated into the following result through T[∕∕A[∕Bor∕∕C]]E0,

E4 ← ParaFilterInput1byInput2_OR(E1,E2,E 3, …)
    where{ E2 ← ParaGetChild(E 1, B, …), E3 ← ParaGetDescendant(E 1, C, …)}
    where E1 ← ParaGetDescendant(E 0, A, …)

3.4.2  Parallel effectiveness estimation

In XPath query, the workload of some query steps may be very small. If this light-
weight load is partitioned according to the number of available threads and all avail-
able threads are used for parallel processing, the overall parallel performance may be 
degraded due to the overhead of thread coordination. Therefore, when parallelizing 
query primitives, we need to consider not only load balancing but also parallel effec-
tiveness. coPXQ introduces parallel effectiveness calculation as the basis for deter-
mining the number of worker threads. For each query step, the preferred number of 
worker threads is obtained through parallel effectiveness calculation, and then, the 
data are partitioned according to the number of threads for parallel processing. Since 
the parallel effectiveness of current query primitive is calculated based on the execu-
tion results of the previous query primitive, it is essentially a dynamic scheduling 
strategy.
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Definition 3 (Parallel effectiveness) It is used to reflect the parallelization effect of 
query primitives under the constraint of the number of worker threads. Its formula is 
Gp/s = Cparallel∕Cserial , where Cparallel is the estimated parallel cost of the query primi-
tive and Cserial is the estimated serial computational cost of the query primitive.

Considering the impact of the real parallel environment on the computational 
cost, the unit time of execution is normalized to facilitate the comparison and 
processing. The following four parameters are introduced: Cinital-thread initializa-
tion cost. The thread pool manages the working threads and allocates the threads 
once for each data block in each query step. Cbarrier-the average communication 
cost of synchronization in block computing. Using barrier approach, each block 
has similar overhead. Ccheck_f -the cost of a node filter condition check in a fil-
ter primitive. Ccheck_nf -the cost of a node relation check in a non-filter primitive. 
Actually, the four parameters used in the following equations only need to know 
their relative values.

Under the condition of T parallel working threads, the estimated cost of parallel 
computing for a query primitive is as follows:

where Ct
part

 denotes the overhead of block calculation under T threads. Considering 
that the load balancing processing has been combined, there is 
max

t∈[0,T−1]
(Ct

part
) ≈ Cserial∕T  , where Cserial is the serial computational cost of the query 

primitive. According to Definition 3, the parallel effectiveness estimation of query 
primitive can be simplified as follows:

If Gp/s ≥ 1 , it means that serial processing is more reasonable, that is, T = 1. The 
number of worker threads required is calculated by solving the following optimiza-
tion problem:

In other words, under the constraint of the number of available threads Tavailable , 
Gp/s should be minimized to calculate the required number of worker threads T. To 
explain the problem intuitively, Eq. (5) is simplified to obtain the formula of G value 
as follows:

The cc value is used to represent the ratio of barrier cost to serial computing cost, 
i.e., cc = Cbarrier∕Cserial . Figure 4 shows the calculating curve of G value under dif-
ferent cc values. It can be intuitively found in the figure that the number of threads 
corresponding to the lowest point of G value in each curve is the required number of 
worker threads. When the cc values are 0.01, 0.02, 0.1, 0.3 and 0.5, respectively, the 
corresponding number of threads is 10, 7, 3, 2 and 1.

(4)Cparallel = Cinital + max
t∈[0,T−1]

(Ct
part

) +
∑T−1

t=0
Ct
barrier

,

(5)Gp/s = Cparallel∕Cserial ≈ 1∕T + (Cinital + T × Cbarrier)∕Cserial

(6)min(Gp/s) s.t. Gp/s < 1, 1 < T ≤ Tavailable

(7)G = 1∕T + T × (Cbarrier∕Cserial)
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Fig. 4  Example of parallel 
effectiveness estimation
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3.4.3  Non‑filter primitives

There are two aspects that affect the performance of parallel query primitives: one is 
the load balancing, and the data blocks for data parallelism need to be well balanced 
to avoid too much synchronization waiting; the other is the parallel effectiveness. 
When the computational cost is relatively small, more worker threads mean more 
synchronization overhead, which results in low efficiency. In the process of paral-
lel primitives, the number of worker threads required is obtained through the paral-
lel effectiveness calculation, then the input data are partitioned into blocks accord-
ing to the number of threads to realize the load balancing, and finally the blocks 
is processed in data parallelism. During the evaluation of non-filter primitives, the 
relation between nodes is checked according to the relation index, and the computa-
tional cost is related to the number of relations per node. The computational cost of 
each node is estimated as Cu = Ru × Ccheck_nf . The serial computational cost of each 
primitive is the sum of all input nodes, so the cost estimation equation is as follows, 
where input is the sequence of input XML nodes.

Since only the relative cost values of blocks is needed to be known when data 
are partitioned in the same primitive, Ccheck_nf can be ignored and the cost value 
is directly represented by the number of node relations. So Eq. (8) is simplified as 
follows:

Getting descendant nodes is a typical case of non-filter primitives. The process 
is shown in Algorithm 4. Similar to Algorithm 3, Algorithm 4 also consists of two 
stages. Firstly, the data are partitioned into blocks according to cost estimation (line 
1–6), and then the blocks are processed in data parallelism to get the result (line 
7–27). Line 1 uses Eq. (6) to calculate the number of required worker threads Tcalc , 
where Cserial is the Cnon_filter in Eq. (8). Line 2 uses Eq. (9) to estimate the compu-
tational cost, and partition the total relations of all input nodes as the load of each 
thread. Line 5–6 are used to calculate the block boundary, Pk is used to record the 
boundary information of block k, and its i component records the position of the 
node u in the input node sequence Ein , and its j component records the position of 
the node u in the index Iu . According to Corollary 2, the node relation storage is a 
continuous sequence in the order of node ID; therefore, the corresponding node ID 
of nodes on the boundary can be deduced when partitioning by the cumulative num-
ber of relations. Similar to Algorithm 3, the nodes in different positions of the block 
need to be processed differently. Line 15–17 are used to process the first node of the 
block; line 18–21 are used to process the intermediate nodes of the block; and line 
22–24 are used to process the last node of the block.

(8)Cnon_filter =
∑

u∈ input

Cu

(9)Cnon_filter_s =
∑

u∈ input

Ru
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3.4.4  Filter primitives

The parallelization algorithm of filter primitives has the similar process as filter 
primitives, which includes two stages: partitioning input data into blocks accord-
ing to cost estimation and parallel processing of blocks. In the stage of data parti-
tion, the number of worker threads is obtained by parallel effectiveness calculation, 
and then each block boundary is calculated according to the number of threads. In 
the evaluation stage, all the nodes in the second input node sequence that can meet 
the conditions are filtered out according to all the relation indexes of the first input 
node sequence. The second sequence is sorted by the node ID, and the binary search 
method is used for fast positioning, so the scanning complexity is log2(Ninput2) , 
where Ninput2 is the number of input nodes. In this way, the computational cost of 
each input node is

where Ru is the relation number of a node u in the first sequence. For the 
sequence input1, the serial computational cost of filter primitives is 
Cfilter =

∑

u∈ input1

Cu . Similar to non-filter primitives, Ccheck_f  can be ignored when esti-

mating the cost for data partitioning, thus Cfilter is simplified to

The function prototype of basic parallel filter primitive is ParaFilterInput1byIn-
put2(Ein1,Ein2,R,I  ), where the input parameters include as follows: Ein1-the first input 
node sequence, Ein2-the second input node sequence, R-the relation number list of 
each node; I-the relation index of each node; the return result is node sequence Eout . 
The description of the algorithm is omitted.

4  Experiments

4.1  Experimental settings

We use cases from different test platforms to conduct experiments. The test data of 
the first part are from the Treebank project [37], which provides an XML document 
of about 82 MB. The document is a deep recursive XML data set. The maximum 
depth of the document tree is 36, and the average depth is 7.8. Four typical test cases 
covering common query semantics of XPath are used in Table 3. Among them, T1 
is a simple path query; T2 is a query with juxtaposed predicates and an axis opera-
tion with wildcards; T3 is a query with nested predicates, and the predicate contains 
more than one query step; T4 has a logical expression inside the predicate.

The test data of the second part are from XMark [38], which is a general test 
platform, and can generate XML documents of any size. For comparison, we use 

(10)Cu = Ru × log2(Ninput2) × Ccheck_f,

(11)Cfilter_s =
∑

u∈ input1

Ru × log2(Ninput 2).
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the tools provided by XMark to generate an XML document about 82 MB in size to 
Treebank for testing the four typical XPath queries in Table 3. X1 is a simple path 
query; X2 query has a predicate; X3 has a logical expression inside the predicate; 
X4 query contains nested predicates with an attribute axis operation.

The evaluation indicators are the execution time of each method under different 
query cases and different thread conditions, and the speedups [39] are calculated 
according to the following formula:

where Ts represents the serial execution time under the condition of single thread; Tp 
represents the parallel execution time when the number of threads is p. The experi-
ment is carried out on a PC equipped with AMD fx-8320 eight core CPU (3.5 GHz) 
and 8 GB physical memory. The software environment is JDK1.8 and Windows 7 
(SP1) operating system.

4.2  Comparative experiments

We use our method to compare with the classical parallelization method of naviga-
tional XPath query [11, 32] named pNav, the pM2 method proposed in [12], as well 
as the PXQ method proposed in [19]. In addition, in order to expand the scope of 
investigation, we also choose a typical parallel twig evaluation method named PTS 
[13] for comparison. For the convenience of comparison, all the methods involved 
in the comparison use the region encoding of XML parsing results. Considering the 
differences of the implementation of each method, the execution time test is limited 
to the specific evaluation steps of each method and does not include the common 
time-consuming part of XML parsing. For pNav, pM2, PXQ and coPXQ methods, 
both index creation time and query execution time are included. In particular, the 
execution time of coPXQ includes the time required for obtaining XML statistics. 
The execution time of PTS method includes the overhead of specific operations, 

(12)Sp =
Ts

Tp
,

Table 3  XPath query cases

Case XPath expression Number of results

T1 //S//NP/PP/NN 15
T2 //S[./VBP][.//NP/VP]//PP[.//IN]/*//VBN 174
T3 //EMPTY[.//VP/PP//NNP][.//S[.//PP//JJ]//VBN]//PP/ NP//_

NONE_
1589

T4 //EMPTY[./_PERIOD_ or./S[./VBP]//TO] 37,320
X1 //open_auctions/open_auction//time 42,915
X2 //regions/asia/item[./payment]//name 1440
X3 //people/person[.//emailaddress and.//creditcard] 9179
X4 //categories[./category[./name]/@id]//description 720
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such as the time of constructing pattern tree and label stream, and the time of sub-
tree partition in the process of parallelization.

When pNav method is tested, three partition strategies [31] are integrated and 
the best parallel plan is manually selected for testing. Because the overhead of auto-
matic cost estimation and selection of parallel plan is not included, the low bound of 
pNav execution time is obtained. For example, the data partition strategy is applied 
to case T2, the results obtained after the serial execution of "//S" are partitioned, 
and the remaining queries are performed in data parallelism. The query parti-
tion strategy is applied to case T4, the sub-query "//EMPTY./_PERIOD_" and "//
EMPTY/S[./VBP]//TO" are evaluated in parallel, and then the predicate operation 
of OR is performed. For case X1, first execute "//open_auctions/open_auction" seri-
ally, then the result is partitioned into blocks, and then "//time" is processed in paral-
lel on each block. Case X3 uses a hybrid partition strategy. First, "//people/person" 
is executed serially, and then the result is partitioned into blocks. The sub-query "//
emailaddress" and "//creditcard" is executed, respectively, on each block in parallel. 
Finally, the results are merged.

The idea of PTS method is to evaluate each XML subtree in parallel using twig 
method. According to the basic idea of PTS, the XML tree is partitioned and load 
balanced manually, and the final tree is constructed for each partition. Then, twig 
pattern evaluation is performed in parallel on each final tree, and the results are 
merged finally. Since the operation of automatic partition is omitted, the execution 
time of low bound is obtained. Since the twig method cannot directly support predi-
cates with logical operations, case T4 is decomposed into sub-queries like pNav; 
while case X3 is rewritten as "//people/person[.//emailaddress] [.//creditcard]".

PXQ method uses pipeline to process XML data stream. At present, it does not 
support OR logic operation, so it cannot be used to test case T4.

The results of comparative experiments on Treebank are shown in Figs. 5 and 6. 
Figure 5 shows the execution time obtained by the test; Fig. 6 shows the speedup 
obtained by calculation. As shown in Fig. 5, in the case of single thread, PTS has 
the most execution time, while the execution time of the other methods is rela-
tively close. The reason is that except PTS, the navigational methods utilize relation 
indexing facility. Due to the optimized index, coPXQ can reduce the scanning of 
index during query, so it is more efficient; however, due to the extra cost of acquir-
ing XML statistics, the time-saving effect is offset to some extent. Under the condi-
tion of multithreading, the execution time of coPXQ is less than that of the other 
methods, and with the increase of threads, the advantage of coPXQ is more obvi-
ous. For example, for the more complicated case T3, coPXQ is 38%, 13%, 10% and 
7% faster than PTS, pNav, pM2 and PXQ on 2 threads; 43%, 18%, 14% and 13% 
faster on 4 threads; and 44%, 19%, 18% and 15% faster on 8 threads, respectively. In 
terms of speedup, the speedup of coPXQ is 3%, 11%, 10% and 8% higher than PTS, 
pNav, pM2 and PXQ on 2 threads; 6%, 16%, 14% and 14% on 4 threads and 7%, 
17%, 17% and 16% on 8 threads, respectively. From Fig. 6, it is found that in each 
query, with the increase of threads, the speedup of coPXQ increases, while pNav 
and pM2 sometimes decrease when there are more threads. For example, in case T2, 
the speedup of pM2 on 8 threads is lower than that on 4 threads; similarly, in case 
T4, the speedup of pNav on 8 threads is lower than that on 4 threads. The reason is 
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that the two methods do not consider parallel effectiveness. The increase of worker 
threads brings more synchronization overhead, which offsets the time-saving effect 
obtained by parallelism.

The experimental results on XMark platform are shown in Figs.  7 and 8. As 
can be seen from Fig. 7, under the condition of multithreading, the execution time 
of coPXQ is less than that of the other methods, which is similar to Fig. 5, which 
shows that the method has the speed advantage in parallel environment. In terms of 
speedup, the speedup of coPXQ increases with the increase of threads. However, the 
speedup on 8-threads is not significantly higher than that on 4 threads. The reason 
is that the query cost of XMark is relatively low; thus, the parallel effect of query 
primitives is not significant.

In general, the efficiency of PTS is relatively low, mainly because the opti-
mization measures of relation index are not suitable for twig algorithm. Among 
the navigational evaluation methods, pNav is relatively inefficient, because input 
data in pNav are partitioned according to the number of XML nodes, which is 
easy to cause load imbalance. Moreover, the partitioned data are often processed 
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Fig. 5  Execution time comparison on Treebank
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by multiple query steps. If the input is unbalanced, the subsequent load imbal-
ance will be more obvious. pM2 is similar to pNav in that the data are partitioned 
according to the number of XML nodes. The difference is that pM2 can perform 
parallel processing for each query step, in addition to having more opportunities 
for parallelization, the possibility of load imbalance caused by small step calcula-
tion is lower than that of pNav. The cost estimation of coPXQ method is based on 
the relation number, which makes the estimation result more accurate. The load 
balancing method based on the estimation can better overcome the imbalance of 
load; moreover, the number of worker threads is obtained by parallel effective-
ness estimation, which further avoids the inefficient parallelism. The efficiency 
of PXQ is close to that of coPXQ. However, since coPXQ adopts data parallelism 
and optimizes index processing, the performance of coPXQ is superior on the 
whole. In addition, PXQ does not support OR logic operation, and the construc-
tion of pipeline phase is complicated under complex query conditions, which is 
easy to cause performance degradation.

(a) (b)

(c) (d)

Fig. 6  Speedup comparison on Treebank
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4.3  Evaluation of cost estimation and parallel effectiveness

4.3.1  Evaluation of cost estimation

In order to explore the improvement effect of load balancing brought by the cost 
estimation method based on relation number proposed in this paper, we carry out 
an experimental comparison with the estimation method based on node number. We 
first obtain the processing time of each block in the parallel index creation process 
of Treebank and XMark data sets, and then complete the imbalance calculation. The 
results are shown in Table 4.

The experimental condition is to partition the data set into 8 data blocks for paral-
lel processing under the condition of 8 worker threads. The processing time of data 
block reflects the computational cost. The imbalance �P [40] in Table 4 is calculated 
according to the following formula:
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Fig. 7  Execution time comparison on XMark
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The average processing time of each block is Tavg = (
P
∑

i=1

Ti)∕P , where P denotes 

the number of blocks, and Ti denotes the processing time of each block. The 
smaller the imbalance value, the more balanced the load. Comparing the imbal-
ance values, it can be seen that the cost estimation method based on relation num-
ber can obtain better balance effect. In addition, the effect of the new cost estima-
tion method is also reflected in the improvement of the efficiency of index parallel 
creation. For Treebank data, load balancing is guided by the old cost estimation 
method and the new cost estimation method, respectively. As a result, the total 
processing time of parallel index creation is 720 ms and 608 ms, respectively. For 
XMark data, it is 422 ms and 340 ms, respectively.

(13)�P =
1

Tavg

√

√

√

√
1

P

P
∑

i=1

(Ti − Tavg)
2

(a) (b)
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Fig. 8  Speedup comparison on XMark
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4.3.2  Evaluation of parallel effectiveness

In the parallel process of coPXQ query primitive, a reasonable number of worker 
threads is configured to ensure the parallel effectiveness. In order to investigate 
the effect of introducing parallel effectiveness estimation, we set two experi-
mental conditions to obtain the query execution time comparison of each case in 
Table 3 before and after parallel effectiveness processing. The purpose of select-
ing query execution time for comparison is to eliminate other influencing factors 
and focus on the effect of parallel effectiveness processing. Condition 1: parallel 
effectiveness estimation is not introduced, and each query step is processed in 
parallel according to all available threads. Condition 2: each query step is pro-
cessed in parallel according to the number of threads obtained from the parallel 
effectiveness estimation. We set the number of available worker threads in the test 
environment to 8. The comparison of results under the two conditions is shown 
in Fig. 9. It can be found that the query speed has been improved after parallel 
effectiveness processing.

Now give some examples to illustrate the results of parallel effectiveness pro-
cessing. For case T2, there are 11 query steps. The number of threads required for 
the first four query steps obtained by calculation is 4, 8, 4 and 2, respectively. The 
number of threads required for the other query steps is 1 due to the low cost. For 
case X2, there are 6 query steps. The number of threads required for the first two 
query steps is 6 and 4, respectively, while that in the other steps is 1.

5  Conclusion and future work

Parallel XPath query technology for multi-core computing provides powerful sup-
port for high-performance XML data processing. However, due to the semi-struc-
tured characteristics of XML data and the complexity of XPath query, it is often 

Table 4  Imbalance under different cost estimation methods

Block Id TreeBank XMark

Nodes number-based 
(ms)

Relations number-
based (ms)

Nodes number-based 
(ms)

Relations 
number-based 
(ms)

1 675 593 401 316
2 468 546 218 301
3 593 468 234 203
4 593 531 186 265
5 639 515 265 218
6 561 452 202 211
7 561 484 202 206
8 531 515 234 220
�P 0.103 0.083 0.264 0.174



5447

1 3

Parallel XPath query based on cost optimization  

difficult to obtain desired parallelization effect. The existing problems include load 
imbalance and thread inefficiency, which limit the performance of parallelization. 
The coPXQ method proposed in this paper is a parallel navigational XPath query 
method based on cost optimization. In order to avoid load imbalance caused by inac-
curate cost estimation, coPXQ utilizes a new cost estimation method based on rela-
tion number to balance the load and optimize the parallel creation of relation index 
and the parallel execution of primitives. In order to avoid the situation that the syn-
chronization overhead exceeds the parallel benefit caused by the abuse of threads, 
coPXQ ensures the effective use of threads in query through the strategy of deter-
mining the number of worker threads based on parallel effectiveness estimation. In 
addition, coPXQ optimizes the storage of relation index to further improve the over-
all performance of XPath query. Compared with the existing typical methods, the 
test results show that coPXQ can achieve better parallel performance.

The future work is to explore the complete XPath semantic support, such as 
reverse axis, sibling axis and complex predicate evaluation, optimize the design of 
various query primitives, and improve the navigational evaluation performance for 
multi-core computing environment. Furthermore, we will consider the combination 
with XQuery [41] and integrate parallel XPath evaluation into general XML query 
application through path extraction and automatic parallelization technology.
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