
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:5420–5449
https://doi.org/10.1007/s11227-021-04074-y

1 3

Parallel XPath query based on cost optimization

Rongxin Chen1,2 · Zhijin Wang1 · Hang Su3 · Shutong Xie1 · Zongyue Wang1

Accepted: 4 September 2021 / Published online: 24 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
The performance of XPath query is the key factor to the capacity of XML process-
ing. It is an important way to improve the performance of XPath by making full
use of multi-threaded computing resources for parallel processing. However, in the
process of XPath parallelization, load imbalance and thread inefficiency often lead
to the decline of parallel performance. In this paper, we propose a cost optimiza-
tion-based parallel XPath query method named coPXQ. This method improves the
parallel processing effect of navigational XPath query through a series of optimiza-
tion measures. The main measures include as follows: first, by optimizing the stor-
age of XML node relation index, both storage and access efficiency of the index
are improved. Secondly, load balancing is realized by a new cost estimation method
according to the number of XML node relations to optimize parallel relation index
creation and parallel primitive execution. Thirdly, the strategy of determining the
number of worker threads based on parallel effectiveness estimation is utilized to
ensure the effective use of threads in query. Compared with the existing typical
methods, the experimental results show that our method can obtain better parallel
performance.

Keywords XPath query · Relation index · Cost estimation · Load balancing ·
Parallel effectiveness

1 Introduction

As a powerful semi-structured data [1] description tool, XML is suitable for describ-
ing complex web information and system integration information. As a general data
exchange and storage standard, XML has been widely used in various fields, and
the requirement for the performance of XML processing is increasing. XPath [2]
query is the key part of XML data processing, and its performance directly affects

 * Rongxin Chen
 ch2002star@163.com

Extended author information available on the last page of the article

http://orcid.org/0000-0002-9355-5608
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04074-y&domain=pdf

5421

1 3

Parallel XPath query based on cost optimization

the processing ability of XML. The common implementation methods of XPath
query include twig [3] method and navigational [4] method. Twig uses path pattern
matching to find structures that satisfy the conditions of XML node relationship and
has high query efficiency for branch paths described by predicates. However, twig
is not suitable for some operations, such as reverse axis and sibling axis; thus, it
is difficult to support complete XPath query semantics. The navigational process is
to evaluate each query step one by one according to the syntax of XPath and navi-
gate through the hierarchical structure of XML document tree until the final result is
obtained. The navigational method is simple and direct, and easy to implement the
rich semantics of XPath; thus, it is widely applied to the implementation of many
popular XML engines [5–7]. However, due to the iterative processing of the query
step in navigational method, the query efficiency is often low, and optimization is
essential to improve performance.

Recently, with the popularity of multi-threaded computing environment, making
full use of multi-threaded parallel computing to improve performance has become
a common optimization approach. Parallelization related work in XML processing,
including XML parsing parallelization [8, 9], XPath query parallelization [10–13]
and XQuery parallelization [14, 15]. The implementation technology of XPath par-
allelization includes automata method [16, 17], pipeline [18, 19], task parallelism
[20], and data parallelism [11, 12]. Kim et al. [16] presented a multi-query parallel
method for multi-core computing, which transforms multiple XPath expressions into
FSA-based query indexes, and then process XML streams in parallel. Jiang et al.
[17] proposed an XML grammar-aware parallelization method for XPath which lev-
erages the grammar of the semi-structured data to guide the design of paralleliza-
tion. Karsin et al. [18] gave a low latency pipelined XPath parallel query scheme.
Only simple XPath without predicate is tested in their work. Chen et al. [19] pro-
posed a pipelined XPath evaluation method based on cost optimization, which can
support more complete XPath semantics. Huang et al. [20] proposed a task parallel-
ism method for XPath query. The method determines the parallelizable parts by con-
structing task dependency graph and dynamically divides query tasks to balance the
load. Shnaiderman et al. [13] proposed XPath parallelization methods based on twig
pattern. Their basic idea is to perform twig evaluation on different subtrees of XML
document tree in parallel. In recent years, the ability of GPU in parallel computing
has attracted extensive attention. There have been some XPath parallelization work
for GPU processing. For example, Moussalli et al. [21] used GPU to accelerate the
XPath evaluation in multiple query scenarios, which improves the query through-
put. Kim et al. [22] presented an XML path filtering method for large collection of
XPath queries, which uses matrix-based XML stream to process queries on GPU
[21] and [22] only show simple path query cases, but still lack support for more
complex operations such as predicates. GPU can provide a large number of threads
for concurrent processing. However, XPath evaluation process is not a large-scale
numerical calculation suitable for GPU, and it processes complex semi-structured
XML data. GPU still has some limitations in processing XPath evaluation.

In the implementation of efficient parallel processing, data parallelism is a sim-
ple and efficient method, which usually uses barrier mechanism to synchronize
[23]. Load balancing can reduce the synchronization overhead and effectively

5422 R. Chen et al.

1 3

improve the parallelization effect. Therefore, it is an important factor to be con-
sidered in the process of parallel processing. There have been lots of researches
on load balancing in parallel processing for general computing [24, 25]. The load
balancing for XML parallelization needs to be combined with the specific sce-
narios of XML processing. For instance, Pan et al. [9] proposed a method of load
balancing by static task partition in the process of XML parsing; Zuo et al. [26]
gives a method of load balancing through query cost estimation in the process of
XML query to guide the selection of parallel query plan. Subramaniam et al. [27]
presented an XML query method which can adapt to distributed environment and
support the optimal processing of distributed load. As the input of XPath pro-
cessing is XML semi-structured data, XML encoding [28] is necessary to obtain
appropriate access mechanism, and the index is used to improve the access effi-
ciency [29]. Widemann et al. [30] applied the node relation information of XML
to the type checking of XPath query and XSLT transformation, which improved
the accuracy and flexibility of the type checking. The pM2 method proposed in
[12] transforms XPath query into XML node relation search by introducing node
relation matrix. Through the parallel construction of relation matrix and data par-
allel execution of query primitives, the query performance is improved in multi-
core computing environment. However, there are still some problems, such as the
high storage cost of relation matrix; the load imbalance is prone to occur when
the relation matrix is created and query primitives are executed in parallel; the
query primitives are often inefficient in parallelization. These problems greatly
affect the parallel effect.

In order to improve the parallel effect of navigational XPath query, in this
paper, we propose a cost optimization-based parallel XPath query method named
coPXQ. This method improves the parallel effect through a series of optimization
measures. Through the comparison test and analysis with the existing methods, it
shows that our method has better parallel performance. The main contributions of
this paper include as follows:

1. An optimized XML node relation index storage scheme is proposed, which has
better storage efficiency and access efficiency, and can support efficient query.

2. A cost estimation method based on the number of XML node relations is proposed
to realize the load balancing in both parallel index creation and parallel query
primitive execution.

3. A method of determining the number of worker threads based on parallel effec-
tiveness estimation is proposed to ensure the effective utilization of threads when
query primitives are executed in parallel.

The remainder of the paper is structured as follows. Section 2 introduces the
related work, focusing on the parallelization of navigational XPath evaluation and
the related cost estimation issues. Section 3 describes the method of coPXQ in
detail, including optimized relation index storage, parallel index creation and par-
allel query primitives. Section 4 presents comparative experiments and evaluation

5423

1 3

Parallel XPath query based on cost optimization

of relevant indicators. The last section draws the conclusion and proposes future
work.

2 Related work

This paper focuses on the parallelization of navigational XPath query. Typical
studies in this area include the work done by Bordawekar et al. [11, 31]. Later,
Sato et al. [32] carried out XPath parallelization research on the new XML query
platform BaseX [5] on the basis of Bordawekar et al.’s work. In the previous work
[12], we propose an efficient XPath evaluation method named pM2 based on
XML node relation matrix, which adopts data parallelism in processing. In addi-
tion, we recently proposed a pipeline-based XPath evaluation method called PXQ
[19] to support efficient query of XML data streams in parallel environment.

Bordawekar et al. [11] proposed three strategies for parallelizing XPath que-
ries: data partitioning, query partitioning and hybrid partitioning. The parallel
query plan was rewritten manually and tested on various test platforms. On the
basis of this work, a method of automatic parallelization of XPath queries using
cost model to guide parallel query plan optimization is proposed in [31]. It uses
XML statistics to estimate the relative efficiencies of different alternative plans
and find an optimal parallel XPath processing plan. This method is suitable for
automatic parallelization of navigational evaluation. However, an accurate cost
model is needed to implement. The experimental results in [11] and [31] show
that the parallel effects of different query plans are quite different, and the selec-
tion of query plans is cost sensitive. In addition, the cost model based on statistics
used in the method is closely related to the specific situation of XML data and
XPath expression, so it needs extra overheads to obtain statistical information.
Sato et al. [32] used Bordawekar’s idea of data partition to parallelize XPath que-
ries, and combined with the advantages of BaseX engine, experiments were car-
ried out on both the server side and the client side, respectively, but no automatic
parallelization approach was provided.

In [12], we proposed a parallel evaluation method pM2 for XPath based on
XML node relation matrix. The pM2 method consists of two data parallel execu-
tion phases: the construction of relation matrix and the evaluation of query primi-
tives. The query function is carried out by relation matrix search, and parallel
query primitives are selected for each query step to maximize the parallelizable
opportunities. The pM2 method performs data partition according to the number
of XML nodes. In the execution of query primitives, the length of input sequence
is used to estimate the cost of computation. However, this cost estimation method
is difficult to reflect the real load condition; therefore, it can easily lead to load
imbalance.

In the process of query parallelization, it is usually necessary to combine the
cost model to guide the generation of query plan. Hartmann et al. presented a
cost estimation method for XML query in [33]. By estimating the sizes of inter-
mediate results, the method is used to guide the vertical fragmentation of XML
data in distributed environment and improve the parallel processing performance.

5424 R. Chen et al.

1 3

Georgiadis et al. [34] designed the physical operators of XPath and the corre-
sponding cost model, which provides a basis for the optimization of XPath evalu-
ation. Hidaka et al. [35] proposed a relative cost model for XQuery, which is used
to optimize the XML query plan. The cost is calculated recursively according
to XQuery expression, involving the estimation of data sizes and probability of
selection. The relative cost is estimated at the level of logical query plan, and the
overhead related to parallel scheduling is not reflected. In [31], Bordawekar et al.
[19] used a statistical cost model to guide query and data partition in XPath paral-
lelization. The model considered the cardinality of the XPath query step and the
selection rate with predicates. However, this model mainly considers the compu-
tational cost and also does not consider the cost of parallel scheduling. In PXQ,
during the construction of pipeline, the query primitive sequence is divided and
merged according to the estimated cost, so as to form a pipeline with relatively
balanced load in each stage.

Since load balancing is an important factor to ensure the parallel performance, it
is usually concerned about in parallel processing [24, 26]. Consider that if all avail-
able threads are used for parallel processing when the computational cost is low, the
parallel efficiency may be reduced [36] due to the coordination overhead of threads.
Such parallel effectiveness problem should also be considered in the process of auto-
matic parallelization. The coPXQ method in this paper obtains the optimized paral-
lel effectiveness by setting the estimated number of worker threads. In PXQ method,
by merging low-cost query steps, the granularity of pipeline stage is improved,
which essentially limits the number of threads, so as to improve the efficiency of
pipeline. The main features of related works are summarized in Table 1.

3 Proposed method

3.1 The framework of coPXQ

The proposed method consists of three stages: XML parsing and statistics, index
creation and primitive evaluation, as shown in Fig. 1. On the one hand, according
to the input XML document, XML parsing and index creation are carried out to
provide the required data for query. On the other hand, the XPath query expression
is rewritten as a parallelized sequence of query primitives for query processing.
The first stage is preprocessing, which is in the process of XML document parsing.
The statistical information needed for cost estimation is collected in this stage. The
second stage is the creation of relation indexes. According to the estimated cost of
index creation, the input region encoding data is partitioned to achieve load balance
and improve the efficiency of parallel creation of index data. In the third stage, par-
allel primitive evaluation is carried out. According to the estimated cost of primi-
tive query, on the one hand, the parallel effectiveness is estimated to determine the
number of worker threads; on the other hand, the partition of input data is guided to
achieve load balancing during query. The cost model plays a key role in the whole
process of parallel optimization. According to the characteristics of relation index,
the cost model proposed in this paper is based on XML statistical information,

5425

1 3

Parallel XPath query based on cost optimization

Ta
bl

e
1

 C
om

pa
ris

on
 o

f m
ai

n
re

la
te

d
w

or
ks

Ev
al

ua
tio

n
m

et
ho

d
Pa

ra
lle

l m
et

ho
d

C
os

t e
sti

m
at

io
n

Pa
ra

lle
l e

ffe
ct

iv
en

es
s

PX
Q

 [1
9]

N
av

ig
at

io
na

l
Pi

pe
lin

e
C

os
t i

s e
sti

m
at

ed
 a

cc
or

di
ng

 to
 th

e
nu

m
be

r o
f X

M
L

no
de

s a
nd

 n
od

e
re

la
tio

ns
hi

ps
 to

 g
ui

de
 th

e
co

ns
tru

c-
tio

n
of

 p
ip

el
in

e
st

ag
e

M
er

ge
 lo

w
-c

os
t q

ue
ry

 st
ep

s,
an

d
ea

ch
 p

ip
el

in
e

st
ag

e
is

al

lo
ca

te
d

a
w

or
ke

r t
hr

ea
d

PT
S

[1
3]

Tw
ig

D
at

a
pa

ra
lle

lis
m

C
os

t i
s e

sti
m

at
ed

 a
cc

or
di

ng
 to

 th
e

si
ze

 o
f X

M
L

su
bt

re
e,

 a
nd

 p
ro

vi
de

 e
no

ug
h

su
bt

re
e

da
ta

 fo
r e

ac
h

th
re

ad

N
ot

 av
ai

la
bl

e

pN
av

 [1
1,

 3
1]

N
av

ig
at

io
na

l
D

at
a

pa
ra

lle
lis

m
C

al
cu

la
te

 c
ar

di
na

lit
y

an
d

se
le

ct
iv

ity
 a

cc
or

di
ng

 to
 th

e
st

at
ist

ic
al

 in
fo

rm
at

io
n

of
 X

M
L

no
de

s,
an

d
gu

id
e

th
e

da
ta

 a
nd

 q
ue

ry
 p

ar
tit

io
ni

ng

N
ot

 av
ai

la
bl

e

pM
2

[1
2]

N
av

ig
at

io
na

l
D

at
a

pa
ra

lle
lis

m
Ro

ug
hl

y
pa

rti
tio

n
w

or
kl

oa
d

ac
co

rd
in

g
to

 th
e

nu
m

be
r

of
 X

M
L

no
de

s
N

ot
 av

ai
la

bl
e

co
PX

Q
 (T

hi
s w

or
k)

N
av

ig
at

io
na

l
D

at
a

pa
ra

lle
lis

m
A

cc
ur

at
el

y
pa

rti
tio

n
w

or
kl

oa
d

ac
co

rd
in

g
to

 th
e

nu
m

be
r o

f X
M

L
no

de
 re

la
tio

ns
Fo

r t
he

 p
ar

al
le

l p
ro

ce
ss

in
g

of
 e

ac
h

qu
er

y
ste

p,
 th

e
nu

m
be

r o
f w

or
ke

r t
hr

ea
ds

 re
qu

ire
d

is
 e

sti
m

at
ed

5426 R. Chen et al.

1 3

which can reasonably estimate the computational cost and provide the possibility for
effective load balancing and optimizing the number of threads.

The symbols and their corresponding meanings in this paper are listed in Table 2.

3.2 Optimized node relation index storage

The region encoding of XML nodes is represented by 6-tuple in this paper. For
example, the region encoding of node u is <ID, nodeType, tagName, begin, end,
level> , where ID is the node ID. Since the node ID is unique, node u can be rep-
resented by the ID value. nodeType is XML node type. We consider the most

Output

Query result

XML document

XPath rewriting

Input

Query primitives

XML parsing and
statistics stage

XML parsing

Primitive evaluation
stage

Parallel primitive
evaluation

Cost estimation

Index creation stage

Parallel index
creation

Cost estimation

XPath query

Region
encoding
Statistical

info.
Relation
indexData partition Para-effectiveness

estimation

Data partition

XML statistics

Fig. 1 Processing framework of coPXQ

Table 2 Symbols and corresponding meanings

Symbol Meaning

E
u

The region encoding of an XML node u. u is represented by the node ID value
I
u

The relation index of a node u, see Definition 1
P
k

The block boundary of a block k, see Definition 2
NDS_CH
u

The total number of descendants (denoted as ’DS’ type) and children (denoted as ’CH’ type) in
the subtree with node u as its root

NAT
u

The number of attributes (denoted as ’AT’ type) of a node u

NTAT
u

The number of non-direct attributes (denoted as ’TAT ’ type) of a node u, that is, the number of
attribute nodes of u’s descendants

R
u

The number of XML node relations of a node u
Gp/s Parallel effectiveness of a primitive, see Definition 3
C The estimated cost, which is associated with execution time, comparable, and dimensionless.

Its specific semantics are distinguished according to the subscript and the superscript

5427

1 3

Parallel XPath query based on cost optimization

frequently used XML node types: element and attribute, so nodeType ∈ { ELE-
MENT, ATTRIBUTE}. tagName is the label name of node; begin is the start position
of the node in document; end is the end position of node; level is the hierarchical
value of node.

There are various relation between any two XML nodes u and v. According to
the query semantics of XPath [2], these relations include parent (denoted as ’PA’),
child (denoted as ’CH’), ancestor (denoted as ’AN’), descendant (denoted as ’DS’),
attribute (denoted as ’AT’), preceding-sibling (denoted as ’PS’), following-sibling
(denoted as ’FS’), preceding (denoted as ’PP’), following (denoted as ’FF’), etc. The
relation between two nodes is bi-directional, and the two directions are semantically
relative. Therefore, the relation type of one direction can be deduced from the one
of the other direction. When discussing the relation between two nodes u and v, this
paper refers to the relation from node u to node v. We specify that the node u is
prior to node v in the document order, that is, the ID value of u is less than that of
v, so that only one-direction relation need to be generated. The relation type values
in this paper are limited to DS, CH, AT, TAT and NN, which represent descendant,
children, attributes, indirect attribute relation and unrelated relation, respectively.
Among them, the TAT and NN type are used for auxiliary purpose. In this paper,
coPXQ utilizes the relation indexing infrastructure, which provides an efficient way
to deal with navigational evaluation.

Definition 1 (Relation index) Refers to a storage structure that records the effective
relation between XML nodes. An index is represented by a tuple as < u, v, ru→v > ,
which indicates the unique relation type of node u and node v is r, r ∈ {DS, CH,
AT}. The relation of a node u refers to the relation index set of node u and all its
subsequent nodes v in the document order that have effective relation (DS, CH or
AT). In order to save the storage space and facilitate access, the node ID is used to
represent the node, and the relation index is simplified as < idv, ru→v > , then the
relation index Iu for node u is a tuple set of all nodes v which are relative with node
u. Iu is described as Iu =

⋃

j {< idvj, ru→vj >} . For an entire XML document with N
nodes, the index space is expressed as I =

⋃

i∈N Iui =
⋃

i∈N

{
⋃

j∈N {< idvj, rui→vj >}} . For a given
node list E , the index space is expressed as IE =

⋃

ui∈E Iui =
⋃

ui∈E {
⋃

j {< idvj, rui→vj >}}.

Compared with pM2, the index of coPXQ only stores {DS, CH, AT} types; thus,
the storage space and index scan time can be saved effectively. Queries involving
other relation are processed by query rewriting transformation. The XML document
in Fig. 2a has 14 nodes, including 12 element nodes and 2 attribute nodes. The doc-
ument tree with simplified region encoding is shown in Fig. 2b. The tag name of
each node is marked in the circle, and different nodes with the same tag name are
distinguished by numbers. The string beside the circle is a simplified region encod-
ing, which contains the node ID value, the document start position of the node, the
document end position of the node and the hierarchical information of DOM. For
example, the code "5 [51,61,2]" of node C2 indicates that the ID value of the node
is 5. The position starts from the 51st byte to the end of the 61st byte in the XML
document and is at the level 2 of the XML document tree. The corresponding node

5428 R. Chen et al.

1 3

relation index structure is shown in Fig. 2c. The nodes with index are only limited to
non-leaf nodes, and the index item is <node ID, relation type>.

Proposition 1 Suppose that the root node of a subtree of an XML document tree is
u, then the number of relations corresponding to u is the sum of the number of DS
or CH type nodes in the subtree and AT type nodes in the root node u. We have the
following equation.

(1)Ru = NDS_CH
u

+ NAT
u

(a) (b)

(c)

Fig. 2 XML encoding and relation index

5429

1 3

Parallel XPath query based on cost optimization

Proof Let a node u be the root node of the subtree. If u has no descendant node,
then Ru = 0. When u has 1 descendant node, which must be a child or attribute node
of u, then Ru = 1. When there are more than one descendant node under u, there
are two ways to connect to u, either to the u itself or to a descendant of u. When
connected to u itself, if it is an element node, a child node is added, and NDS_CH

u

increases by 1; if it is an attribute node, NAT
u

 increases by 1. All of these increase Ru
by 1. For the node connected to the descendant node of u, if it is an element node, a
DS type node is added to u, that is, NDS_CH

u
 increases by 1, thus Ru increases by 1;

if it is an attribute node, no nodes of any type are added to u, while NDS_CH
u

 and NAT
u

are unchanged.

In the process of XML parsing, the statistical information of each XML node
u, including NDS_CH

u
 , NAT

u
 and NTAT

u
 , will be collected. The process of parsing and

obtaining statistical information is described by Algorithm 1. XML document is
parsed in sequential style. When parsing a start tag, a new node u is created with a
new ID in document order, and the current level value is recorded (line4–5). When
parsing an end tag, statistics is made and the current node u information is updated
(line6–11).

For the XML case in Fig. 2a, the XML statistics obtained are the number of rela-
tions { R0 = 11; R1 = 4; R3 = 1; R6 = 6; R7 = 4; R9 = 1} and non-direct attributes of
each node { NTAT

0
 = 2; NTAT

6
 = 1}, where the numerical subscript is the node ID value.

The number of relations reflects the storage complexity of relation index. Figure 3

Fig. 3 Distribution of nodes in
the XML tree: a the case with
the minimum number of rela-
tions; b the general case; c the
case with the maximum number
of relations

(a) (b) (c)

5430 R. Chen et al.

1 3

shows the distribution of nodes in the XML tree. It can be found that the lower level
the nodes are distributed, the more times they are included by other nodes, so the
total number of relations is also increased. For an XML document with N nodes,
generally, the tree depth of XML is fixed to H. Figure 3c indicates that in addition
to the H nodes required to form the depth H of the tree, the maximum number of
total relations can be obtained if a node is added to the position of H-1 level. The
number of all relations is R = H(H−1)/2 + (N–H)*(H–1). In Fig. 3a, the minimum
number of relations is obtained. Except for the H nodes required to form the tree
depth H, all the other nodes are the children of the root node, and its relation number
is R = H(H−1)/2 + (N–H). Figure 3b shows a situation in between. Therefore, the
maximum storage complexity of relation index in coPXQ is measured by the rela-
tion number in Fig. 3c. H is regarded as a constant, except for the case of very small
XML files, generally H < < N, so there is O(R) = O(N).

3.3 Load‑balanced parallel index creation

3.3.1 Node relation calculation

Calculating the relation between XML nodes is the basic step of creating index.
Considering the directivity and semantic correspondence of the relations between
XML nodes, by specifying the order of nodes to be calculated, we can avoid repeti-
tive calculation and obtain one-direction relation. Algorithm 2 describes the process
of calculating the relation between the two nodes.

Since only one relation is stored for two nodes, while the descendant relation con-
tains child relation semantically, the constraint Eu.level ≠ Ev.level-1 is added to line 2
in Algorithm 2. For the case of query descendant node, the child node condition is
included in the query primitive design. The purpose of line 4 is to identify the non-
direct attribute nodes of node u for optimization. The process of creating relation
index is to call Algorithm 2 to calculate and store the relation value between any two
nodes.

5431

1 3

Parallel XPath query based on cost optimization

Proposition 2 Consider all possible relation values {DS, CH, AT, TAT, NN}, in the
process of creating the relation index of node u, when calculating the relationship
between u and its subsequent nodes v in document order, if the first relation value is
NN, the relation value with subsequent nodes in document order must be NN.

Proof Suppose the first document order successor node with the relation value of
NN with node u is v0, if there is a node v1, which is the successor node of v0, and
the relation value with u is not NN, then the discussion is as follows. According
to the document order, there is " Eu.begin < Ev0.begin < Ev1.begin" (Condition 1).
According to Algorithm 2, the condition that the relation value is not NN is "¬((Eu.
begin < Ev.begin) ⋀ (Ev.begin < Eu.end))", that is, equivalent condition "(Eu.begin >
Ev.begin) ⋁ (Ev.begin > Eu.end)". For u and v0, the condition "(Eu.begin > Ev0.begin)
⋁ (Ev0.begin > Eu.end)" (Condition 2) must be satisfied. According to the Condition
1, it can be deduced that the left part of Condition 2 is not true, so " Ev0.begin > Eu
.end" (Condition 3) must be satisfied. For u and v1, according to Algorithm 2, it
can be deduced that "(Eu.begin < Ev1.begin) ⋀ (Ev1.begin < Eu.end)" (Condition 4)
should be satisfied. Combined with Condition 3 and the right part of Condition 4, it
can be deduced that " Ev1.begin < Ev0.begin" (Condition 5) is satisfied. According to
the contradiction between Condition 5 and Condition 1, the relation value between u
and v1 can only be NN.

According to Proposition 2, when a NN relation is obtained, the coPXQ
method does not need to continue to calculate the relation value with the subse-
quent nodes. Through the optimized design, the index construction can skip a lot
of calculation with the result value of NN, thus greatly saving time. Obviously,
for non-NN relation calculation, all relation values except TAT type need to be
stored in relation index. This also relates the computational cost of index creation
to the number of relations. In the process of index creation, Algorithm 2 needs
to be called Ru + NTAT

u
 times for each node u. In addition, it needs to calculate

until the result of the first NN relationship is obtained; thus, an additional call is
required. Since the calculation cost here is only used to guide data partition, the
calculation cost of calling Algorithm 2 has been normalized to a measure with a
value of 1. Therefore, the number of calls to Algorithm 2 can be used to estimate
the total computational cost of index creation. The estimation formula is

Corollary 1 If the node ID value of node u is k, then the node ID values of node v
corresponding to all non-NN type relation of u are sequential sequences starting
from k + 1.

Proof According to Proposition 2, when the first NN type relationship appears, the
calculation of relation will be terminated. Therefore, the results of the previous cal-
culation are all non-NN type. In the process of calculating the relation for node u,

(2)Cindex =
∑N−1

u=0

(

Ru + NTAT
u

+ 1
)

≈
∑N−1

u=0

(

Ru + NTAT
u

)

5432 R. Chen et al.

1 3

the subsequent nodes v are calculated with node u one by one according to the docu-
ment order, so the non-NN type relation result is a continuous sequence according
to the node ID sequence. Since the first node is next to u, its node ID value is k + 1.

Corollary 2 The node relation storage Iu corresponding to node u is a continuous
sequence in the order of node ID.

Proof According to Corollary 1, during getting the relation index of node u, the
node v of non-NN type relation obtained is a continuous sequence according to the
node ID order. These non-NN type relations are added into the relation index Iu one
by one, so the index information of nodes v in Iu must be a continuous sequence in
the order of node ID.

3.3.2 Parallel index creation

In the process of index creation, we need to get the relation value between every
two nodes, so the cost of index creation is reflected in the number of calls of Algo-
rithm 2. In the process of parallel index creation, firstly, the data to be processed
should be partitioned into blocks, and then multi-threads are used to process the
blocks in data parallelism. Data partition is the key factor affecting load balancing.
Obviously, the number of relations contained by each node is generally quite differ-
ent. From the perspective of subtree, the node with lower level contains more nodes,
so it generally has more relations; while the number of relations owned by leaf node
is 0. As discussed in Sect. 3.3.1, the cost of index creation is related to the number
of relations. Therefore, this paper proposes a load balancing method based on rela-
tion number. The idea is to partition the input data into data blocks according to the
cost estimation, while the cost estimation is based on the relation number rather than
the number of nodes. Suppose the load is evenly partitioned into m blocks, accord-
ing to Eq. (2), the computational cost of each block is

The advantage of this method is that the load can be partitioned in fine granular-
ity according to the number of node relations, which is conducive to load balancing,
and the estimated computational cost can better reflect the real load.

Definition 2 (Block boundary) Refers to the partition location information of a given
space. It contains two components, i and j, which record the position of node u and
node v, respectively. If the boundary of block k is represented by Pk , then the two
components are Pk .i and Pk.j. In the index creation stage, the given space refers to
the region encoding information of the entire XML document; in the query primitive
evaluation stage, the given space refers to the index information of the input nodes.

The whole process of parallel index creation includes two stages: block bound-
ary extraction and data parallel processing, as described in Algorithm 3. Line 1–5

(3)Cm = Cindex∕m =
∑N−1

u=0

(

Ru + NTAT
u

)

∕m

5433

1 3

Parallel XPath query based on cost optimization

are used to estimate the computational cost and then calculate the block bound-
ary. In line 6–29, according to the block boundary, the threads are allocated to cre-
ate indexes for each block in data parallelism. The XML data stored in the form
of region encoding are partitioned, and the boundary information of partition is
recorded by Pk . The value of Pk .i records the position of node u. Because the ID of
all nodes is continuous in the whole XML document, the node ID value of node u is
used as the boundary value. The value of Pk .j records the position of node v. From
Proposition 2, the nodes corresponding to node u are equivalent to all nodes in the
subtree with node u as the root. According to Corollary 1, the node IDs of nodes v
which have non-NN type relation are continuous sequence starting from node ID
+ 1 of node u, obviously, the offset of node v’s node ID value can be reflected by
the relation number. Line 5 is used to calculate the node ID value of node v, which
is taken as the boundary value. Line 12–16 are used to process the first node of the
block; line 17–22 are used to process the intermediate nodes of the block; and line
23–26 are used to process the last node of the block. Line 16 and 22 are used to
realize optimization processing according to Proposition 2. The index creation in
coPXQ only needs to calculate the relation value of non-NN type, and the number
of non-NN types is the number of index relations. Since the spatial complexity of
relation index is O(N) (see Sect. 3.2, N denotes the number of XML nodes), the time
complexity of index creation can achieve the effect of O(N).

5434 R. Chen et al.

1 3

3.4 Effectiveness‑based parallel query primitives

3.4.1 XPath query rewriting

Query primitives represent the basic steps of XPath query, and various powerful
XPath expressions are rewritten into execution sequences composed of multiple
query primitives. In coPXQ, the primitives have been parallelized, which sup-
port the execution in data parallelism; while the query process is to return the

5435

1 3

Parallel XPath query based on cost optimization

query result through looking up the relation index. coPXQ includes two types of
primitives: non-filter primitives and filter primitives. Non-filter primitives are the
implementation of axis operations corresponding to XPath, such as the primitive
ParaGetDescendant for descendant axis, ParaGetChild for child axis, etc. Filter
primitives are the implementation of predicate operations in XPath, including the
basic filter primitive ParaFilterInput1byInput2, and several variants, such as fil-
ter primitive with AND condition, filter primitive with OR condition, and filter
primitive with NOT condition. The XPath query expression needs to be translated
into a query step composed of multiple parallel query primitives. The translation
function is defined as T[PExp]E = Exp, where PExp is an XPath expression, Exp
is an expression organized by parallel query primitives, and E is the input node
sequence in current context. The main translation rules are as follows, where e in
the rules denotes XPath expression.

• (R1) T[∕∕e]E0 = T[etail]E1 where E1 ← ParaGetDescendant(E0,ehead,…)
• (R2) T[∕e]E0 = T[etail]E1 where E1 ← ParaGetChild (E0,ehead,…)
• (R3) T[[e]]E0 = ParaFilterInput1byInput2(E 0, E 1) where E1 ← T[e]E0
• (R4) T[e1 and e2]E0 = ParaFilterInput1byInput2_AND(E0,E1,E 2, …) where

{E1 ← T[e1]E0 , E2 ← T[e2]E0}
• (R5) T[e1 or e2]E0 = ParaFilterInput1byInput2_OR(E0,E1,E 2, …) where

{E1 ← T[e1]E0 , E2 ← T[e2]E0}
• (R6) T[not(e)]E0 = ParaFilterInput1byInput2_NOT(E0,E 1) where E1 ← T[e]E0
• In rules (R1) and (R2), ehead denotes the beginning of expression e, corre-

sponding to a tag name; etail denotes the remaining part of expression e after
ehead is removed. For example, the XPath expression "//A[/B or //C]" is trans-
lated into the following result through T[∕∕A[∕Bor∕∕C]]E0,

E4 ← ParaFilterInput1byInput2_OR(E1,E2,E 3, …)
 where{ E2 ← ParaGetChild(E 1, B, …), E3 ← ParaGetDescendant(E 1, C, …)}
 where E1 ← ParaGetDescendant(E 0, A, …)

3.4.2 Parallel effectiveness estimation

In XPath query, the workload of some query steps may be very small. If this light-
weight load is partitioned according to the number of available threads and all avail-
able threads are used for parallel processing, the overall parallel performance may be
degraded due to the overhead of thread coordination. Therefore, when parallelizing
query primitives, we need to consider not only load balancing but also parallel effec-
tiveness. coPXQ introduces parallel effectiveness calculation as the basis for deter-
mining the number of worker threads. For each query step, the preferred number of
worker threads is obtained through parallel effectiveness calculation, and then, the
data are partitioned according to the number of threads for parallel processing. Since
the parallel effectiveness of current query primitive is calculated based on the execu-
tion results of the previous query primitive, it is essentially a dynamic scheduling
strategy.

5436 R. Chen et al.

1 3

Definition 3 (Parallel effectiveness) It is used to reflect the parallelization effect of
query primitives under the constraint of the number of worker threads. Its formula is
Gp/s = Cparallel∕Cserial , where Cparallel is the estimated parallel cost of the query primi-
tive and Cserial is the estimated serial computational cost of the query primitive.

Considering the impact of the real parallel environment on the computational
cost, the unit time of execution is normalized to facilitate the comparison and
processing. The following four parameters are introduced: Cinital-thread initializa-
tion cost. The thread pool manages the working threads and allocates the threads
once for each data block in each query step. Cbarrier-the average communication
cost of synchronization in block computing. Using barrier approach, each block
has similar overhead. Ccheck_f -the cost of a node filter condition check in a fil-
ter primitive. Ccheck_nf -the cost of a node relation check in a non-filter primitive.
Actually, the four parameters used in the following equations only need to know
their relative values.

Under the condition of T parallel working threads, the estimated cost of parallel
computing for a query primitive is as follows:

where Ct
part

 denotes the overhead of block calculation under T threads. Considering
that the load balancing processing has been combined, there is
max

t∈[0,T−1]
(Ct

part
) ≈ Cserial∕T , where Cserial is the serial computational cost of the query

primitive. According to Definition 3, the parallel effectiveness estimation of query
primitive can be simplified as follows:

If Gp/s ≥ 1 , it means that serial processing is more reasonable, that is, T = 1. The
number of worker threads required is calculated by solving the following optimiza-
tion problem:

In other words, under the constraint of the number of available threads Tavailable ,
Gp/s should be minimized to calculate the required number of worker threads T. To
explain the problem intuitively, Eq. (5) is simplified to obtain the formula of G value
as follows:

The cc value is used to represent the ratio of barrier cost to serial computing cost,
i.e., cc = Cbarrier∕Cserial . Figure 4 shows the calculating curve of G value under dif-
ferent cc values. It can be intuitively found in the figure that the number of threads
corresponding to the lowest point of G value in each curve is the required number of
worker threads. When the cc values are 0.01, 0.02, 0.1, 0.3 and 0.5, respectively, the
corresponding number of threads is 10, 7, 3, 2 and 1.

(4)Cparallel = Cinital + max
t∈[0,T−1]

(Ct
part

) +
∑T−1

t=0
Ct
barrier

,

(5)Gp/s = Cparallel∕Cserial ≈ 1∕T + (Cinital + T × Cbarrier)∕Cserial

(6)min(Gp/s) s.t. Gp/s < 1, 1 < T ≤ Tavailable

(7)G = 1∕T + T × (Cbarrier∕Cserial)

5437

1 3

Parallel XPath query based on cost optimization

Fig. 4 Example of parallel
effectiveness estimation

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10
G

va
lu

e
Number of Threads

cc_0.01
cc_0.02
cc_0.1
cc_0.3
cc_0.5

5438 R. Chen et al.

1 3

3.4.3 Non‑filter primitives

There are two aspects that affect the performance of parallel query primitives: one is
the load balancing, and the data blocks for data parallelism need to be well balanced
to avoid too much synchronization waiting; the other is the parallel effectiveness.
When the computational cost is relatively small, more worker threads mean more
synchronization overhead, which results in low efficiency. In the process of paral-
lel primitives, the number of worker threads required is obtained through the paral-
lel effectiveness calculation, then the input data are partitioned into blocks accord-
ing to the number of threads to realize the load balancing, and finally the blocks
is processed in data parallelism. During the evaluation of non-filter primitives, the
relation between nodes is checked according to the relation index, and the computa-
tional cost is related to the number of relations per node. The computational cost of
each node is estimated as Cu = Ru × Ccheck_nf . The serial computational cost of each
primitive is the sum of all input nodes, so the cost estimation equation is as follows,
where input is the sequence of input XML nodes.

Since only the relative cost values of blocks is needed to be known when data
are partitioned in the same primitive, Ccheck_nf can be ignored and the cost value
is directly represented by the number of node relations. So Eq. (8) is simplified as
follows:

Getting descendant nodes is a typical case of non-filter primitives. The process
is shown in Algorithm 4. Similar to Algorithm 3, Algorithm 4 also consists of two
stages. Firstly, the data are partitioned into blocks according to cost estimation (line
1–6), and then the blocks are processed in data parallelism to get the result (line
7–27). Line 1 uses Eq. (6) to calculate the number of required worker threads Tcalc ,
where Cserial is the Cnon_filter in Eq. (8). Line 2 uses Eq. (9) to estimate the compu-
tational cost, and partition the total relations of all input nodes as the load of each
thread. Line 5–6 are used to calculate the block boundary, Pk is used to record the
boundary information of block k, and its i component records the position of the
node u in the input node sequence Ein , and its j component records the position of
the node u in the index Iu . According to Corollary 2, the node relation storage is a
continuous sequence in the order of node ID; therefore, the corresponding node ID
of nodes on the boundary can be deduced when partitioning by the cumulative num-
ber of relations. Similar to Algorithm 3, the nodes in different positions of the block
need to be processed differently. Line 15–17 are used to process the first node of the
block; line 18–21 are used to process the intermediate nodes of the block; and line
22–24 are used to process the last node of the block.

(8)Cnon_filter =
∑

u∈ input

Cu

(9)Cnon_filter_s =
∑

u∈ input

Ru

5439

1 3

Parallel XPath query based on cost optimization

3.4.4 Filter primitives

The parallelization algorithm of filter primitives has the similar process as filter
primitives, which includes two stages: partitioning input data into blocks accord-
ing to cost estimation and parallel processing of blocks. In the stage of data parti-
tion, the number of worker threads is obtained by parallel effectiveness calculation,
and then each block boundary is calculated according to the number of threads. In
the evaluation stage, all the nodes in the second input node sequence that can meet
the conditions are filtered out according to all the relation indexes of the first input
node sequence. The second sequence is sorted by the node ID, and the binary search
method is used for fast positioning, so the scanning complexity is log2(Ninput2) ,
where Ninput2 is the number of input nodes. In this way, the computational cost of
each input node is

where Ru is the relation number of a node u in the first sequence. For the
sequence input1, the serial computational cost of filter primitives is
Cfilter =

∑

u∈ input1

Cu . Similar to non-filter primitives, Ccheck_f can be ignored when esti-

mating the cost for data partitioning, thus Cfilter is simplified to

The function prototype of basic parallel filter primitive is ParaFilterInput1byIn-
put2(Ein1,Ein2,R,I), where the input parameters include as follows: Ein1-the first input
node sequence, Ein2-the second input node sequence, R-the relation number list of
each node; I-the relation index of each node; the return result is node sequence Eout .
The description of the algorithm is omitted.

4 Experiments

4.1 Experimental settings

We use cases from different test platforms to conduct experiments. The test data of
the first part are from the Treebank project [37], which provides an XML document
of about 82 MB. The document is a deep recursive XML data set. The maximum
depth of the document tree is 36, and the average depth is 7.8. Four typical test cases
covering common query semantics of XPath are used in Table 3. Among them, T1
is a simple path query; T2 is a query with juxtaposed predicates and an axis opera-
tion with wildcards; T3 is a query with nested predicates, and the predicate contains
more than one query step; T4 has a logical expression inside the predicate.

The test data of the second part are from XMark [38], which is a general test
platform, and can generate XML documents of any size. For comparison, we use

(10)Cu = Ru × log2(Ninput2) × Ccheck_f,

(11)Cfilter_s =
∑

u∈ input1

Ru × log2(Ninput 2).

5440 R. Chen et al.

1 3

the tools provided by XMark to generate an XML document about 82 MB in size to
Treebank for testing the four typical XPath queries in Table 3. X1 is a simple path
query; X2 query has a predicate; X3 has a logical expression inside the predicate;
X4 query contains nested predicates with an attribute axis operation.

The evaluation indicators are the execution time of each method under different
query cases and different thread conditions, and the speedups [39] are calculated
according to the following formula:

where Ts represents the serial execution time under the condition of single thread; Tp
represents the parallel execution time when the number of threads is p. The experi-
ment is carried out on a PC equipped with AMD fx-8320 eight core CPU (3.5 GHz)
and 8 GB physical memory. The software environment is JDK1.8 and Windows 7
(SP1) operating system.

4.2 Comparative experiments

We use our method to compare with the classical parallelization method of naviga-
tional XPath query [11, 32] named pNav, the pM2 method proposed in [12], as well
as the PXQ method proposed in [19]. In addition, in order to expand the scope of
investigation, we also choose a typical parallel twig evaluation method named PTS
[13] for comparison. For the convenience of comparison, all the methods involved
in the comparison use the region encoding of XML parsing results. Considering the
differences of the implementation of each method, the execution time test is limited
to the specific evaluation steps of each method and does not include the common
time-consuming part of XML parsing. For pNav, pM2, PXQ and coPXQ methods,
both index creation time and query execution time are included. In particular, the
execution time of coPXQ includes the time required for obtaining XML statistics.
The execution time of PTS method includes the overhead of specific operations,

(12)Sp =
Ts

Tp
,

Table 3 XPath query cases

Case XPath expression Number of results

T1 //S//NP/PP/NN 15
T2 //S[./VBP][.//NP/VP]//PP[.//IN]/*//VBN 174
T3 //EMPTY[.//VP/PP//NNP][.//S[.//PP//JJ]//VBN]//PP/ NP//_

NONE_
1589

T4 //EMPTY[./_PERIOD_ or./S[./VBP]//TO] 37,320
X1 //open_auctions/open_auction//time 42,915
X2 //regions/asia/item[./payment]//name 1440
X3 //people/person[.//emailaddress and.//creditcard] 9179
X4 //categories[./category[./name]/@id]//description 720

5441

1 3

Parallel XPath query based on cost optimization

such as the time of constructing pattern tree and label stream, and the time of sub-
tree partition in the process of parallelization.

When pNav method is tested, three partition strategies [31] are integrated and
the best parallel plan is manually selected for testing. Because the overhead of auto-
matic cost estimation and selection of parallel plan is not included, the low bound of
pNav execution time is obtained. For example, the data partition strategy is applied
to case T2, the results obtained after the serial execution of "//S" are partitioned,
and the remaining queries are performed in data parallelism. The query parti-
tion strategy is applied to case T4, the sub-query "//EMPTY./_PERIOD_" and "//
EMPTY/S[./VBP]//TO" are evaluated in parallel, and then the predicate operation
of OR is performed. For case X1, first execute "//open_auctions/open_auction" seri-
ally, then the result is partitioned into blocks, and then "//time" is processed in paral-
lel on each block. Case X3 uses a hybrid partition strategy. First, "//people/person"
is executed serially, and then the result is partitioned into blocks. The sub-query "//
emailaddress" and "//creditcard" is executed, respectively, on each block in parallel.
Finally, the results are merged.

The idea of PTS method is to evaluate each XML subtree in parallel using twig
method. According to the basic idea of PTS, the XML tree is partitioned and load
balanced manually, and the final tree is constructed for each partition. Then, twig
pattern evaluation is performed in parallel on each final tree, and the results are
merged finally. Since the operation of automatic partition is omitted, the execution
time of low bound is obtained. Since the twig method cannot directly support predi-
cates with logical operations, case T4 is decomposed into sub-queries like pNav;
while case X3 is rewritten as "//people/person[.//emailaddress] [.//creditcard]".

PXQ method uses pipeline to process XML data stream. At present, it does not
support OR logic operation, so it cannot be used to test case T4.

The results of comparative experiments on Treebank are shown in Figs. 5 and 6.
Figure 5 shows the execution time obtained by the test; Fig. 6 shows the speedup
obtained by calculation. As shown in Fig. 5, in the case of single thread, PTS has
the most execution time, while the execution time of the other methods is rela-
tively close. The reason is that except PTS, the navigational methods utilize relation
indexing facility. Due to the optimized index, coPXQ can reduce the scanning of
index during query, so it is more efficient; however, due to the extra cost of acquir-
ing XML statistics, the time-saving effect is offset to some extent. Under the condi-
tion of multithreading, the execution time of coPXQ is less than that of the other
methods, and with the increase of threads, the advantage of coPXQ is more obvi-
ous. For example, for the more complicated case T3, coPXQ is 38%, 13%, 10% and
7% faster than PTS, pNav, pM2 and PXQ on 2 threads; 43%, 18%, 14% and 13%
faster on 4 threads; and 44%, 19%, 18% and 15% faster on 8 threads, respectively. In
terms of speedup, the speedup of coPXQ is 3%, 11%, 10% and 8% higher than PTS,
pNav, pM2 and PXQ on 2 threads; 6%, 16%, 14% and 14% on 4 threads and 7%,
17%, 17% and 16% on 8 threads, respectively. From Fig. 6, it is found that in each
query, with the increase of threads, the speedup of coPXQ increases, while pNav
and pM2 sometimes decrease when there are more threads. For example, in case T2,
the speedup of pM2 on 8 threads is lower than that on 4 threads; similarly, in case
T4, the speedup of pNav on 8 threads is lower than that on 4 threads. The reason is

5442 R. Chen et al.

1 3

that the two methods do not consider parallel effectiveness. The increase of worker
threads brings more synchronization overhead, which offsets the time-saving effect
obtained by parallelism.

The experimental results on XMark platform are shown in Figs. 7 and 8. As
can be seen from Fig. 7, under the condition of multithreading, the execution time
of coPXQ is less than that of the other methods, which is similar to Fig. 5, which
shows that the method has the speed advantage in parallel environment. In terms of
speedup, the speedup of coPXQ increases with the increase of threads. However, the
speedup on 8-threads is not significantly higher than that on 4 threads. The reason
is that the query cost of XMark is relatively low; thus, the parallel effect of query
primitives is not significant.

In general, the efficiency of PTS is relatively low, mainly because the opti-
mization measures of relation index are not suitable for twig algorithm. Among
the navigational evaluation methods, pNav is relatively inefficient, because input
data in pNav are partitioned according to the number of XML nodes, which is
easy to cause load imbalance. Moreover, the partitioned data are often processed

 Case T1 Case T2

 Case T3 Case T4

800

1000

1200

1400

1600

1800

2000

1 2 4 8

Ex
ec

u�
on

 �
m

e
(m

s)

Number of threads

PXQ
PTS
pNav
pM2
coPXQ

800

1000

1200

1400

1600

1800

2000

2200

1 2 4 8

Ex
ec

u�
on

 �
m

e
(m

s)

Number of threads

PXQ
PTS
pNav
pM2
coPXQ

800

1000

1200

1400

1600

1800

2000

2200

1 2 4 8

Ex
ec

u�
on

 �
m

e
(m

s)

Number of threads

PXQ
PTS
pNav
pM2
coPXQ

800

1000

1200

1400

1600

1800

1 2 4 8

Ex
ec

u�
on

 �
m

e
(m

s)

Number of threads

PTS
pNav
pM2
coPXQ

(a)

(d)

(b)

(c)

Fig. 5 Execution time comparison on Treebank

5443

1 3

Parallel XPath query based on cost optimization

by multiple query steps. If the input is unbalanced, the subsequent load imbal-
ance will be more obvious. pM2 is similar to pNav in that the data are partitioned
according to the number of XML nodes. The difference is that pM2 can perform
parallel processing for each query step, in addition to having more opportunities
for parallelization, the possibility of load imbalance caused by small step calcula-
tion is lower than that of pNav. The cost estimation of coPXQ method is based on
the relation number, which makes the estimation result more accurate. The load
balancing method based on the estimation can better overcome the imbalance of
load; moreover, the number of worker threads is obtained by parallel effective-
ness estimation, which further avoids the inefficient parallelism. The efficiency
of PXQ is close to that of coPXQ. However, since coPXQ adopts data parallelism
and optimizes index processing, the performance of coPXQ is superior on the
whole. In addition, PXQ does not support OR logic operation, and the construc-
tion of pipeline phase is complicated under complex query conditions, which is
easy to cause performance degradation.

(a) (b)

(c) (d)

Fig. 6 Speedup comparison on Treebank

5444 R. Chen et al.

1 3

4.3 Evaluation of cost estimation and parallel effectiveness

4.3.1 Evaluation of cost estimation

In order to explore the improvement effect of load balancing brought by the cost
estimation method based on relation number proposed in this paper, we carry out
an experimental comparison with the estimation method based on node number. We
first obtain the processing time of each block in the parallel index creation process
of Treebank and XMark data sets, and then complete the imbalance calculation. The
results are shown in Table 4.

The experimental condition is to partition the data set into 8 data blocks for paral-
lel processing under the condition of 8 worker threads. The processing time of data
block reflects the computational cost. The imbalance �P [40] in Table 4 is calculated
according to the following formula:

 Case X1 Case X2

400

450

500

550

600

650

700

750

800

850

1 2 4 8

Ex
ec

u�
on

 �
m

e
(m

s)

Number of threads

PXQ
PTS
pNav
pM2
coPXQ

400
450
500
550
600
650
700
750
800
850
900

1 2 4 8

Ex
ec

u�
on

 �
m

e
(m

s)

Number of threads

PXQ
PTS
pNav
pM2
coPXQ

 Case X3 Case X4

400

500

600

700

800

900

1000

1 2 4 8

Ex
ec

u�
on

 �
m

e
(m

s)

Number of threads

PXQ
PTS
pNav
pM2
coPXQ

400
450
500
550
600
650
700
750
800
850
900

1 2 4 8

Ex
ec

u�
on

 �
m

e
(m

s)

Number of threads

PXQ
PTS
pNav
pM2
coPXQ

(a) (b)

(c) (d)

Fig. 7 Execution time comparison on XMark

5445

1 3

Parallel XPath query based on cost optimization

The average processing time of each block is Tavg = (
P
∑

i=1

Ti)∕P , where P denotes

the number of blocks, and Ti denotes the processing time of each block. The
smaller the imbalance value, the more balanced the load. Comparing the imbal-
ance values, it can be seen that the cost estimation method based on relation num-
ber can obtain better balance effect. In addition, the effect of the new cost estima-
tion method is also reflected in the improvement of the efficiency of index parallel
creation. For Treebank data, load balancing is guided by the old cost estimation
method and the new cost estimation method, respectively. As a result, the total
processing time of parallel index creation is 720 ms and 608 ms, respectively. For
XMark data, it is 422 ms and 340 ms, respectively.

(13)�P =
1

Tavg

√

√

√

√
1

P

P
∑

i=1

(Ti − Tavg)
2

(a) (b)

(c) (d)

Fig. 8 Speedup comparison on XMark

5446 R. Chen et al.

1 3

4.3.2 Evaluation of parallel effectiveness

In the parallel process of coPXQ query primitive, a reasonable number of worker
threads is configured to ensure the parallel effectiveness. In order to investigate
the effect of introducing parallel effectiveness estimation, we set two experi-
mental conditions to obtain the query execution time comparison of each case in
Table 3 before and after parallel effectiveness processing. The purpose of select-
ing query execution time for comparison is to eliminate other influencing factors
and focus on the effect of parallel effectiveness processing. Condition 1: parallel
effectiveness estimation is not introduced, and each query step is processed in
parallel according to all available threads. Condition 2: each query step is pro-
cessed in parallel according to the number of threads obtained from the parallel
effectiveness estimation. We set the number of available worker threads in the test
environment to 8. The comparison of results under the two conditions is shown
in Fig. 9. It can be found that the query speed has been improved after parallel
effectiveness processing.

Now give some examples to illustrate the results of parallel effectiveness pro-
cessing. For case T2, there are 11 query steps. The number of threads required for
the first four query steps obtained by calculation is 4, 8, 4 and 2, respectively. The
number of threads required for the other query steps is 1 due to the low cost. For
case X2, there are 6 query steps. The number of threads required for the first two
query steps is 6 and 4, respectively, while that in the other steps is 1.

5 Conclusion and future work

Parallel XPath query technology for multi-core computing provides powerful sup-
port for high-performance XML data processing. However, due to the semi-struc-
tured characteristics of XML data and the complexity of XPath query, it is often

Table 4 Imbalance under different cost estimation methods

Block Id TreeBank XMark

Nodes number-based
(ms)

Relations number-
based (ms)

Nodes number-based
(ms)

Relations
number-based
(ms)

1 675 593 401 316
2 468 546 218 301
3 593 468 234 203
4 593 531 186 265
5 639 515 265 218
6 561 452 202 211
7 561 484 202 206
8 531 515 234 220
�P 0.103 0.083 0.264 0.174

5447

1 3

Parallel XPath query based on cost optimization

difficult to obtain desired parallelization effect. The existing problems include load
imbalance and thread inefficiency, which limit the performance of parallelization.
The coPXQ method proposed in this paper is a parallel navigational XPath query
method based on cost optimization. In order to avoid load imbalance caused by inac-
curate cost estimation, coPXQ utilizes a new cost estimation method based on rela-
tion number to balance the load and optimize the parallel creation of relation index
and the parallel execution of primitives. In order to avoid the situation that the syn-
chronization overhead exceeds the parallel benefit caused by the abuse of threads,
coPXQ ensures the effective use of threads in query through the strategy of deter-
mining the number of worker threads based on parallel effectiveness estimation. In
addition, coPXQ optimizes the storage of relation index to further improve the over-
all performance of XPath query. Compared with the existing typical methods, the
test results show that coPXQ can achieve better parallel performance.

The future work is to explore the complete XPath semantic support, such as
reverse axis, sibling axis and complex predicate evaluation, optimize the design of
various query primitives, and improve the navigational evaluation performance for
multi-core computing environment. Furthermore, we will consider the combination
with XQuery [41] and integrate parallel XPath evaluation into general XML query
application through path extraction and automatic parallelization technology.

Acknowledgements This research was supported by the Natural Science Foundation of Fujian Province
of China (2018J01538, 2020J01697), the Science Foundation of Jimei University (ZQ2014003), and
Open Fund of Digital Fujian Big Data Modeling and Intelligent Computing Institute.

References

 1. Buneman P (1997) Semistructured data. In: Proceedings of the sixteenth ACM SIGACT-SIGMOD-
SIGART symposium on principles of database systems. ACM, pp 117–121

 2. Robie J, Dyck M, Spiegel J (2017) XML path language (XPath). https:// www. w3. org/ TR/ xpath/
 3. Bruno N, Koudas N, Srivastava D (2002) Holistic twig joins: optimal XML pattern matching. In:

the 2002 ACM SIGMOD International Conference on Management of Data, Wisconsin, USA,
2002. ACM, pp 310–321

Fig. 9 Comparison of query
time before and after parallel
effectiveness processing

0

100

200

300

400

500

600

T1 T2 T3 T4 X1 X2 X3 X4

Ex
ec

u�
on

 �
m

e
(m

s)

Case

Condi�on 1

Condi�on 2

https://www.w3.org/TR/xpath/

5448 R. Chen et al.

1 3

 4. Cate BT, Marx M (2007) Navigational XPath: calculus and algebra. ACM SIGMOD Rec
36(2):19–26

 5. Grün C, Worteler L, Kircher L, Shadura R (2018) BaseX: the XML framework https:// basex. org/
 6. Meier W (2019) EXist-db Project https:// github. com/ exist- db/ exist
 7. Franc X (2019) Qizxopen http:// www. axyana. com/ qizxo pen
 8. Shah B, Rao P, Moon B, Rajagopalan M (2009) A data parallel algorithm for XML DOM parsing.

In: Database and XML technologies, pp 75–90
 9. Pan Y, Lu W, Zhang Y, Chili K (2007) A static load-balancing scheme for parallel XML parsing

on multicore CPUs. In: Seventh IEEE international symposium on cluster computing and the grid
(CCGRID 2007). IEEE, pp 351–362

 10. Machdi I, Amagasa T, Kitagawa H (2010) Parallel holistic twig joins on a multi-core system. Int J
Web Inf Syst 6(2):149–177

 11. Bordawekar R, Lim L, Shmueli O (2009) Parallelization of XPath queries using multi-core proces-
sors. In: International Conference on Extending Database Technology: Advances in Database Tech-
nology (EDBT2009), pp 180–191

 12. Chen R, Liao H, Wang Z (2013) Parallel XPath evaluation based on node relation matrix. J Comput
Inf Syst 9(19):7583–7592

 13. Shnaiderman L, Shmueli O (2015) Multi-core processing of XML twig patterns. iEEE Trans Knowl
Data Eng 27(4):1057–1070

 14. Chen R, Liao H, Wang Z, Su H (2016) Automatic parallelization of XQuery programs on multi-core
systems. J Supercomput 72(4):1517–1548

 15. Miao H, Nie T, Yue D, Zhang T, Liu J (2012) Algebra for parallel XQuery processing. Web Age Inf
Manag 2012:1–10

 16. Kim SH, Lee KH, Lee YJ (2016) Multi-query processing of XML data streams on multicore. J
Supercomput 73(6):1–30

 17. Jiang L, Zhao Z (2017) Grammar-aware parallelization for scalable XPath querying. In: the 22nd
ACM SIGPLAN symposium on principles and practice of parallel programming (PPoPP ’17),2017.
ACM, pp 371–383

 18. Karsin B, Casanova H, Lim L (2017) Low-latency XPath query evaluation on multi-core processors.
In: Hawaii International Conference on System Sciences, 2017, pp 6222–6231

 19. Chen R, Wang Z, Hong Y (2021) Hong Y (2021) Pipelined XPath query based on cost optimization.
Sci Program 19:1–16

 20. Huang X, Si X, Yuan X, Wang C (2014) A dynamic load-balancing scheme for XPath queries paral-
lelization in shared memory multi-core systems. J Comput 9:6

 21. Moussalli R, Halstead R, Salloum M, Najjar WA, Tsotras VJ (2011) Efficient XML path filtering
using GPUs. In: International workshop on accelerating data management systems using modern
processor and storage architectures (ADMS 2011), Seattle, WA, USA

 22. Kim S, Lee Y, Lee JJ (2015) Matrix-based XML stream processing using a GPU. In: IEEE interna-
tional congress on big data

 23. Sampson J, Gonzalez R (2006) Exploiting fine-grained data parallelism with chip multiprocessors
and fast barriers. In: The 39th annual IEEE/ACM international symposium on microarchitecture,
Orlando, USA, 2006. pp 235–246

 24. Willebeek-Lemair MH, Reeves AP (1993) Strategies for dynamic load balancing on highly parallel
computers. IEEE Trans Parallel Distrib Syst 4(9):979–993

 25. Weissman JB (2002) Predicting the cost and benefit of adapting data parallel applications in clus-
ters. J Parallel Distrib Comput 62(8):1248–1271

 26. Zuo W, Chen Y, He F, Chen K (2011) Load balancing parallelizing XML query processing based on
shared cache chip multi-processor (CMP). Sci Res Essays 6(18):3914–3926

 27. Subramaniam S, Haw SC, Soon LK (2021) Improved centralized XML query processing using dis-
tributed query workload. IEEE Access 9:29127–29142

 28. Zhang C, Naughton J, DeWitt D, Luo Q, Lohman G (2001) On supporting containment queries
in relational database management systems. In: ACM SIGMOD record, 2001, vol 2. ACM, pp
425–436

 29. Sestakova E, Janousek J (2018) Automata approach to XML data indexing. Information 9(1):12
 30. Widemann BT, Lepper M (2019) Simple and effective relation-based approaches to XPath and

XSLT type checking. Technical Report, Bad Honnef (2015)

https://basex.org/
https://github.com/exist-db/exist
http://www.axyana.com/qizxopen

5449

1 3

Parallel XPath query based on cost optimization

 31. Bordawekar R, Lim L, Kementsietsidis A (2010) Statistics-based parallelization of XPath queries in
shared memory. In: The 13th International Conference on Extending Database Technology (EDBT),
2010. ACM

 32. Sato S, Hao W, Matsuzaki K (2018) Parallelization of XPath queries using modern XQuery proces-
sors. In: New Trends in Databases and Information Systems. ADBIS 2018

 33. Hartmann S, Ma H, Schewe KD (2007) Cost-based vertical fragmentation for XML. In: al. KCCe
(ed) APWeb/WAIM 2007. Springer, Berlin, Heidelberg, pp 12–24

 34. Georgiadis H, Charalambides M, Vassalos V (2010) Efficient physical operators for cost-based
XPath execution. In: Paper presented at the EDBT 2010

 35. Hidaka S, Kato H, Yoshikawa M (2007) A relative cost model for XQuery. In: Proceedings of the
2007 ACM symposium on Applied computing, 2007. ACM, pp 1332–1333

 36. Herlihy M, Shavit N (2008) The art of multiprocessor programming. Morgan Kaufmann, New York
 37. University of Pennsylvania Treebank Project (2002) http:// aiweb. cs. washi ngton. edu/ resea rch/ proje

cts/ xmltk/ xmlda ta/ data/ reeba nk/ treeb ank_e. xml
 38. Schmidt A, Waas F, Kersten M, Carey MJ, Manolescu I, Busse R (2002) XMark: a benchmark for

XML data management. In: Proceedings of the 28th International Conference on Very Large Data
Bases, 2002. VLDB Endowment, pp 974–985

 39. Wilkinson B, Allen M (2005) Parallel programming: techniques and applications using networked
workstations and parallel computers. 2nd edn, Pearson Education

 40. Linford JC, Hermanns M-A, Geimer M, Boehme D, Wolf F (2008) Detecting load imbalance in
massively parallel applications. Technical Report FZJ-JSC-IB-2008–09. Forschungszentrum Julich

 41. Robie J, Dyck M, Spiegel J (2017) XQuery 3.1: an XML query language. https:// www. w3. org/ TR/
xquery

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Rongxin Chen1,2 · Zhijin Wang1 · Hang Su3 · Shutong Xie1 · Zongyue Wang1

 Zhijin Wang
 zhijin@jmu.edu.cn

 Hang Su
 suhang@bjut.edu.cn

 Shutong Xie
 15186307@qq.com

 Zongyue Wang
 wangzongyue@jmu.edu.cn

1 Computer Engineering College, Jimei University, Xiamen, China
2 Digital Fujian Big Data Modeling and Intelligent Computing Institute, Xiamen, China
3 College of Computer Science, Beijing University of Technology, Beijing, China

http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/data/reebank/treebank_e.xml
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/data/reebank/treebank_e.xml
https://www.w3.org/TR/xquery
https://www.w3.org/TR/xquery
http://orcid.org/0000-0002-9355-5608

	Parallel XPath query based on cost optimization
	Abstract
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 The framework of coPXQ
	3.2 Optimized node relation index storage
	3.3 Load-balanced parallel index creation
	3.3.1 Node relation calculation
	3.3.2 Parallel index creation

	3.4 Effectiveness-based parallel query primitives
	3.4.1 XPath query rewriting
	3.4.2 Parallel effectiveness estimation
	3.4.3 Non-filter primitives
	3.4.4 Filter primitives

	4 Experiments
	4.1 Experimental settings
	4.2 Comparative experiments
	4.3 Evaluation of cost estimation and parallel effectiveness
	4.3.1 Evaluation of cost estimation
	4.3.2 Evaluation of parallel effectiveness

	5 Conclusion and future work
	Acknowledgements
	References

