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Abstract. Hand, foot and mouth disease (HFMD) is a common infec-
tious disease in global public health. In this paper, the time series decom-
position and heterogeneous data fusion (TDDF) method is proposed to
enhance features in the performance of HFMD outpatients prediction.
The TDDF first represents meteorological features and Baidu search
index features with the consideration of lags, then those features are fused
into decomposed historical HFMD cases to predict coming outpatient
cases. Experimental results and analyses on the real collected records
show the efficiency and effectiveness of TDDF on regression methods.

Keywords: HFMD prediction · Meteorological factor · Baidu search
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1 Introduction

Hand, foot and mouth disease (HFMD) is a common global infectious disease
[4]. This disease is easy to cause fever, oral ulcers, blisters and rashes on hands,
feet and buttocks, some serious and potentially fatal complications will lead
to serious sequelae and even death [11]. Millions of people, in particular for
children less than 5 years old, suffer from HFMD-related disease over the past
decade [7,8,16]. The control and prevention of HFMD is a public health issue
that receives attentions by government agencies, medical institutions and the
public [14]. It became the 38th legally notifiable disease in the China’s National
Notifiable Disease Reporting and Surveillance System [1,3] on May 2, 2008 [2].
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Auxiliary data are collected to alleviate the uncertainty of disease occurrences
and improve the prediction performance. Typically, meteorological factors have
been proved to be associated with the incidence of infectious diseases [9,15]. For
example, temperature and relative humidity are presented as continuous vari-
ables, and connected with HFMD cases using by using linear models. But other
weak correlated climate factors are usually ignored, such as dew point and atmo-
spheric pressure. Recently, as an important entry of the Internet, search engines
are adopted to track infectious disease epidemics in countries and provinces [6].
These methods commonly use “ ” as query keyword, and search engine
returns the search indices.

This motivate us to leverage both meteorological factors and search indices
to provide predictions for short-term HFMD outpatient visits with respect to
feature construction and representation. The challenges of constructing features
are: (1) Weak correlated feature discovery. Many factors affect infectious disease
propagation, and weak correlated factors are usually ignored. (2) Time con-
cerned feature representation. There exists a time interval between factors and
disease outbreaks. The time interval consists of incubation period and diagnosing
duration. Usually, the incubation period is 2–5 days, and it takes another 1–2
days to be diagnosed. In total, it spans 2–7 days from infection time to report
time. Hence, the time interval should be taking into consideration for feature
representation.

To address the above challenges, the time series decomposition and hetero-
geneous data fusion (TDDF) method is proposed to enhance the features for a
better prediction performance. The TDDF first represent meteorological factor
features and Baidu search index features with the consideration of lags, then
those features are fused into decomposed historical HFMD cases to predict com-
ing outpatient cases. In the first stage, the related data are collected, organized
and count variables in weeks. The correlation between variables and outpatients
was analyzed based on bivariate correlation analysis. We try time difference
analysis on two observing variables to figure out the connections between cur-
rent outpatients and the outpatients of several days before. In the second stage,
we consolidate a feature matrix based on previous analyses and figures. Thus,
outpatients predictions are provided via well trained regression models.

2 Study Area and Auxiliary Data

2.1 Study Area

Xiamen is located in the southeast part of China, and is also an important special
economic zone in China. It covers a land area of 1,699.39 km2and a sea area of
over 390 km2 until 2017. Xiamen has a monsoonal humid subtropical climate,
characterised by long, hot and humid summers (but moderate compared to much
of the rest of the province) and short, mild and dry winters, the annual mean
is 20.7 ◦C (69.3 ◦F) [5]. There are 4.01 million permanent residents as of 2018.
As the sample of Xiamen’s total population is relatively stable between 2012
and 2016, with an annual growth rate between 1.3% and 2.1%, the trend of
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morbidity during this period can be stipulated by the trend of the number of
disease cases. Therefore, the number of HFMD outpatient visits is helpful for
monitoring disease status of a city within a period.

2.2 Data Source

HFMD Outpatient Visits. The temporal variation of weekly outpatient cases
from January 1, 2012 to December 31, 2016 is collected. It contains 261 weeks
data pairs with mean value 113, and ranges from 2 to 435 cases. The cases were
all clinical or laboratory-confirmed cases of HFMD and reported by hospital
diagnostic.

Meteorological Factor (MF). MF information is provide in days, such as
daily average temperature (◦C), and daily average dew point (◦C). Therefore,
we calculate 261 weekly MF pairs by the downloaded daily records, and their
correlations with the variable of HFMD cases can be figured out based on these
data pairs.

Baidu Search Index (BSI). The key concern is to find proper query words,
to make sure that provided indices are connected to the number of HFMD cases.
The commonly used key word “ ” is choosed in this work. BSI engine
returns daily counts of a given keyword under a given region (e.g., city, province
or countrywide) and a given platform (e.g., mobile, PC, or total). Therefore,
weekly data pairs are calculated by the returned 6 groups of daily indices.

2.3 Time Difference Analysis

We focus on discovering the autocorrelation of Chfmd and correlations between
observation variables (i.e., MF and BSI) and Chfmd. The Pearson Correlation
Coefficient (PCC) is adopted to measure degrees of relevance among these con-
tinuous variables. All statistical analyses are two-sided and p-value < 0.05 is
considered statistically correlated.

Results of statistical analysis are carried out and listed at Table 1. The first 17
rows (from 1st row to the 2nd last row) give time difference correlations between
auxiliary variables and HFMD outpatients variable under d lagged weeks. The
last row gives the autocorrelation of HFMD outpatients variable under d lagged
weeks. These analyses reveal that the lagging period is short, and commonly less
than 1 weeks. Technically, weather conditions change 1 week before the disease
happen, and people use search engines when disease is occurring or close to it.
Possible reasons are: HFMD is quickly onset and its incubation period is short
usually 3–5 days. These analyses give suggests of time difference settings to data
decomposition and data fusion as well.
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Table 1. The results of time difference relevance between variables in auxiliary data
and the variable of HFMD cases. The most significant correlated value of each row is
in bold type. Symbol “d” denotes the number of weeks of time difference. *: 0.01 <
p-value < 0.05, correlation. **: p-value < 0.01, significant correlation.

Symbols d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

Tmax 0.4563** 0.4506** 0.4252** 0.3819** 0.3414** 0.2969** 0.234**

Tmin 0.4566** 0.4389** 0.3879** 0.3308** 0.2796** 0.2204** 0.1551*

Tavg 0.4694** 0.4559** 0.4060** 0.3512** 0.3051** 0.2508** 0.1853**

Dmax 0.4937** 0.5181** 0.4847** 0.4414** 0.4000** 0.3498** 0.2955**

Dmin 0.4531** 0.4564** 0.3963** 0.3390** 0.2927** 0.2247** 0.1895**

Davg 0.5064** 0.5222** 0.4708** 0.4144** 0.3688** 0.3067** 0.2555**

Hmin 0.3384** 0.3880** 0.3142** 0.2641** 0.2279** 0.1434* 0.1492*

Havg 0.2968** 0.3942** 0.3715** 0.3485** 0.3371** 0.3022** 0.3233**

Amax −0.4078** −0.4126** −0.3905** −0.3494** −0.3131** −0.2670** −0.2190**

Amin −0.2927** −0.3201** −0.2964** −0.2724** −0.2825** −0.2719** −0.2816**

Aavg −0.3862** −0.3969** −0.3740** −0.3331** −0.3097** −0.2728** −0.2386**

Bpc 0.5015** 0.4654** 0.4116** 0.3370** 0.2620** 0.1756** 0.0836

Bmo 0.7524** 0.7095** 0.6406** 0.5537** 0.4578** 0.3653** 0.2686**

Btotal 0.7551** 0.7105** 0.6396** 0.5488** 0.4501** 0.3519** 0.2489**

B1
pc 0.6326** 0.5818** 0.5055** 0.4287** 0.3380** 0.2306** 0.1218

B1
mo 0.7080** 0.6607** 0.5831** 0.5057** 0.4252** 0.3451** 0.2638**

B1
total 0.7935** 0.7401** 0.6531** 0.5633** 0.4674** 0.3712** 0.2730**

Chfmd − 0.9120** 0.7807** 0.6516** 0.5242** 0.4006** 0.2785**

The calculations of these relevant values are formulate as follows.
Let Ωm = {Tmax, Tmin, Tavg,Dmax,Dmin,Davg,Hmin,Havg, Amax, Amin, Aavg}
denote variables of MF, Ωb = {Bpc, Bmo, Btotal, B

1
pc, B

1
mo, B

1
total} denote vari-

ables of BSI, and Ω = {Ωm, Ωb} denote all auxiliary variables. We use Ω(1 : t)
to present t data pairs in Ω, N to denote the number of all data pairs. The
correlations are formulated as:

Corr(Ω, Chfmd, d) = PCC(Ω(1 : N − d), Chfmd(1 + d : N)), s.t., d >= 0;

Corr(Chfmd, Chfmd, d) = PCC(Chfmd(1 : N − d), Chfmd(1 + d : N)), s.t., d >= 1.

(1)

3 TDDF and the Development for Prediction

3.1 Time Series Decomposition and Heterogenous Data Fusion
(TDDF)

TDDF consists of time difference analysis, time series decomposition, and feature
consolidation. For easy presentation, symbol Ct = {ct}Nt=1 ∈ R

N×1 is used to
denote the time series of HFMD cases, symbol Mt = {mt}Nt=1 ∈ R

N×11 is
adopted to describe 11 time series of MF, and symbol Bt = {bt}Nt=1 ∈ R

N×6 is
employed to describe 6 time series of BSI.
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Time Difference Analysis. The degree of time difference relevance is calcu-
lated according to Eq. 1, which measures the relevance between variable(s) with
d weeks’ lagging. The statistical analyses of variables are listed at Table 1.

Time Series Decomposition. Historical infectious disease outbreaks will
affect the current status of these diseases. Based on this assumption, the next
weeks’ cases is formulate as:

ct+1 ← (ct−d1 , ct−d1+1, · · · , ct) s.t., d1 ≥ 1. (2)

We use symbol ct−d1 = {ci}ti=t−d1
∈ R

d1×1 to present historical HFMD cases
of previous d1 weeks. Thus, Eq. 2 is presented as:

ct+1 ← ct−d1 s.t., d1 ≥ 1. (3)

There are many signal processing methods, which decompose a time-series to
extract (or represent) features. Such as, empirical mode decomposition (EMD)
[13], wavelets [10], spline methods [6], and ARIMA [12]. In this study, in order to
investigate advantages of the auxiliary data in improving prediction performance,
we use linear transformation to process ct, t ∈ [1, N ] and use the mean value of
Ct to fill missing values.

Feature Consolidation. Moreover, let mt−d2 ∈ R
11×1 stand for climate factors

of the t − d2 period, and let bt−d3 ∈ R
6×1 stand for search indices of the t − d3

period. The auxiliary factors are fused and formulated as:

ct+1 ← (ct−d1 ,mt−d2) s.t., d1 ≥ 1 and d2 ≥ 0, (4)

ct+1 ← (ct−d1 ,bt−d3) s.t., d1 ≥ 1 and d3 ≥ 0, (5)

ct+1 ← (ct−d1 ,mt−d2 ,bt−d3) s.t., d1 ≥ 1, and d2, d3 ≥ 0. (6)

Symbol f1, · · · , f4 stand for the bridge between features and their target.
Thus, we get:

ct+1 ← f4(f1(ct−d1), f2(mt−d2), f3(bt−d3)) s.t., d1 ≥ 1 and d2, d3 ≥ 0. (7)

According to Eq. 7, abundant of models can be developed for training and
prediction. The models include but not limited to neural networks, Adaboost.
For better investigation of data-driven improvements and significant correlations
of those variables (see Table 1), we adopt linear transformation to carry out
f1, · · · , f4.



HFMD Outpatients Prediction in Xiamen, China 663

3.2 Performance Evaluation Criteria (PEC)

To date, a variety of performance evaluation criteria (PEC) have been proposed
for evaluation and intercomparision of different models, but no single evaluation
index is recognized as a universal standard. Therefore, we need to evaluate pre-
diction performance based on multiple PEC and analyze the prediction accuracy
performance of different prediction models under multiple metrics.

The disease dataset was divided into two subsets: the first part, from the
1st week of 2012 to the 52nd week of 2015, was used for model training and
construction, and the subsequent part, from the 1st to the 52nd week of 2016,
for external validity assessment.

4 Experimental Results

4.1 Predictions on the Basis of Historical Cases
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Fig. 1. The performance on historical cases in terms of MAE and RMSE.

Results of predictions on the basis of historical cases (see Eq. 3) in terms of MAE
and RMSE are shown in Fig. 1. To observe time-series decomposition parameter
d1 in affecting prediction, we change d1 from 1 to 12 to measure the performance
of regression algorithms. As the results shows, the predicting performance of the
4 algorithms are very unstable, which suggests that predictions on the basis of
historical cases are not robust, and have potentials to be improved. When d1 = 1
and d1 = 2, the optimal values of MAE and RMSE are found.

4.2 Predictions Based on Historical Cases and MF

Results of predictions based on historical cases and MF (see Eq. 4) in terms
of MAE and RMSE are shown in Fig. 2. To observe time-series decomposition
parameter d1 in affecting prediction, we change d1 from 1 to 12 while holding
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The number of laged weeks
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Fig. 2. The performance on historical cases and MF in terms of MAE and RMSE.

d2 = 1, to measure the performance of regression algorithms. As the results
shows, the predicting performance of the 4 algorithms gradually become stable
with respect to RMSE in Fig. 2(b), which means the training is well convergent.
But the MAE is very unstable in Fig. 2(a). When d1 = 2, 3, and 10, the optimal
values of MAE and RMSE are found.

4.3 Predictions Based on Historical Cases and BSI
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Fig. 3. The performance on historical cases and BSI in terms of MAE and RMSE.

Results of predictions based on historical cases and BSI (see Eq. 5) in terms
of MAE and RMSE are shown in Fig. 3. To observe time-series decomposition
parameter d1 in affecting prediction, we change d1 from 1 to 12, while holding
d3 = 0, to measure the performance of regression algorithms. As displayed in
Fig. 3(a) and (b), predictions performance become stable, GBR and RFR run
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better results than other two regressors. When d1 = 2, 3 and 4, the optimal val-
ues of MAE and RMSE are found. It should be noted that, SVR’s performance
becomes worse when compared performance on previous 2 data groups. A pos-
sible reason is that few samples can not train a SVR well, either over-fitting or
under-fitting.

4.4 Predictions Based on Historical Cases, BSI, and MF
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Fig. 4. The performance on historical cases, MF and BSI in terms of MAE and RMSE.
(Color figure online)

Results of predictions based on historical cases, MF and BSI (see Eq. 6) in terms
of MAE and RMSE are shown in Fig. 4. We change d1 from 1 to 12, while holding
d2 = 1 and d3 = 0, to measure the performance of regression algorithms. As
illustrated in Fig. 4(a) and (b), the performance is very stable for all regressors.
There are obviously different on regressors: GBR has best predictions (the red
line with cross sign), while SVR (the aqua line with plus sign) is worst.

Given that the number of lagged weeks is set to 2, we compare the perfor-
mance of regressors over the 4 data groups in Fig. 5. The R2 value in Fig. 5(c)
validate the confidence of experimental results. The TDDF (Cases + MF + BSI)
outperforms predictions based on other data groups, which shows the effective-
ness of our method in heterogenous data fusion for HFMD prediction. Compare
Cases with Cases + MF or Cases + BSI, it can be found that MLR, RFR, and
GBR benefit from auxiliary data (MF or BSI), but SVR is slightly enhanced. A
possible reason is that SVR stacks in few sample training and multiple distribu-
tion data, while decision tree based methods perform well at these occasions.
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Fig. 5. Comparisons of 4 algorithms on 4 data groups in terms of MAE, RMSE, R2.

5 Conclusion

This paper contributes to the next week HFMD outpatient visits prediction in
Xiamen, China. The time difference relevance analysis technique is leveraged to
determine the number of lagged weeks for each related factors in meteorological
data and Baidu search indices. The statistical model TDDF is proposed to fuse
3 data sources for training and predicting under general regression methods.
Extensive experiments of 4 regression algorithms on 4 data groups show the
effectiveness of 6 kinds of BSI data, 11 kinds of MF data in decreasing predictive
errors, and TDDF in representing these auxiliary data.

The TDDF is a coarse-grained framework, and need to be further studied.
One of our future work is windowed time series decomposition using signal pro-
cessing methods for feature extraction, another is to develop model for windows
features in order to better make prediction.
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