
CTRL: Collaborative Temporal Representation Learning for Wind
Power Forecasting

Yue Hu
Chengyi College
Jimei University

Xiamen, Fujian, China
yuehu.xm@gmail.com

Senzhen Wu
Computer Engineering

Jimei University
Xiamen, Fujian, China
szwbyte@gmail.com

Yu Chen
Computer Engineering

Jimei University
Xiamen, Fujian, China
yychenpro@gmail.com

Xinhao He
Computer Engineering

Jimei University
Xiamen, Fujian, China
xhhdaxx@gmail.com

Zihao Xie
Computer Engineering

Jimei University
Xiamen, Fujian, China
zihaoxiech@gmail.com

Zhijin Wang
Computer Engineering

Jimei University
Xiamen, Fujian, China
zhijinecnu@gmail.com

Xiufeng Liu
Department of Technology,
Management and Economics

Technical University of Denmark
Lyngby, Denmark

xiuli@dtu.dk

Yonggang Fu∗
Computer Engineering

Jimei University
Xiamen, Fujian, China

yonggangfu@jmu.edu.cn

Abstract
Accurate wind power forecasting is crucial for grid stability and
renewable energy integration, but existing methods struggle to
capture complex temporal dependencies in wind data. This pa-
per introduces Collaborative Temporal Representation Learning
(CTRL), a novel deep learning model that leverages collaborative
representation learning to enhance forecasting accuracy and robust-
ness. CTRL integrates Reversible Instance Normalization (RevIN),
RNN-based hidden state learning, and a specialized collaborative
representation unit to capture multi-directional temporal dynamics
across different time scales and variables. Experimental results
on two real-world wind power datasets demonstrate that CTRL
significantly outperforms 20 existing methods, including state-of-
the-art deep learning approaches, achieving up to 9.67% and 10.42%
improvement in forecasting accuracy, respectively. These findings
highlight the potential of collaborative representation learning for
advancing wind power forecasting and facilitating the effective
integration of renewable energy resources.

CCS Concepts
• Applied computing → Operations research; Forecasting.
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1 Introduction
The increasing reliance onwind power as a renewable energy source
necessitates precise forecasting techniques to ensure grid stability
and optimize energy management. As of 2023, global wind power
capacity reached approximately 837 GW, underscoring its critical
role in reducing greenhouse gas emissions and diversifying energy
sources [1]. However, the inherent variability and intermittency of
wind energy, influenced by complex and nonlinear relationships
between weather variables such as wind speed and temperature
[2], present significant challenges for accurate forecasting. This ac-
curate forecasting is crucial for effective grid operations, including
grid dispatching, power market transactions, and management of
reserve power supplies [3], ultimately contributing to the stability
and safety of power systems. Moreover, accurate predictions aid in
planning and scheduling, mitigating risks associated with fluctua-
tions in power supply [4] and facilitating optimal sizing of energy
storage systems [1].

Wind power forecasting faces numerous challenges. The unpre-
dictable nature of wind itself, influenced by complex weather pat-
terns and geographical factors, makes accurate predictions difficult.
Traditional methods, such as numerical weather prediction (NWP)
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models, often struggle to capture the nuances of these factors, par-
ticularly localized changes that can significantly impact short-term
power generation [5]. For example, NWP models may have dif-
ficulty predicting sudden wind gusts or shifts in wind direction
that affect specific wind farms. Furthermore, existing forecasting
methods, including machine learning and deep learning techniques,
face limitations. Machine learning methods, such as support vector
machines, random forests, and gradient boosting, while capable of
learning complex patterns from historical data [6], often require ex-
tensive feature engineering and may not fully capture the intricate
temporal dependencies in wind data [7]. Deep learning methods,
including convolutional neural networks (CNNs), recurrent neural
networks (RNNs), graph neural networks (GNNs), and attention
mechanisms, offer significant potential due to their ability to auto-
matically learn hierarchical features and temporal dependencies [8].
However, these models, when applied to wind power forecasting,
can struggle with issues such as effectively capturing spatial corre-
lations between wind farms, handling long-term dependencies in
wind patterns, and adapting to non-stationary wind characteristics.
Moreover, they have not fully explored the benefits of collaborative
representation learning for capturing multi-directional temporal
dynamics in wind power data.

To address these limitations, this paper introduces the Collabo-
rative Temporal Representation Learning (CTRL) model, a novel
approach designed to enhance wind power forecasting accuracy.
CTRL leverages the power of collaborative representation learning,
a concept that has shown promise in other domains but remains
largely unexplored for wind power forecasting. This approach
focuses on capturing multi-directional temporal dependencies-
dependencies that exist across different time scales and variables to
provide a more comprehensive understanding of wind power gen-
eration patterns. Specifically, the CTRL model integrates Reversible
Instance Normalization (RevIN) to normalize the input data and
denormalize the predictions, RNN-based hidden state learning to
capture long-term temporal dependencies, and a novel collabora-
tive representation learning component to extract and highlight
multi-directional temporal dynamics. These collaborative temporal
representations are then combined with the original data, similar to
residual connections, and processed through multi-layer mapping
to refine the predictions. Finally, RevIN is applied to denormalize
the output, yielding the final wind power forecast. This integrated
approach aims to address the limitations of existing methods by
effectively leveraging both collaborative and temporal aspects of
wind data, ultimately leading to more accurate and robust wind
power forecasts.

The main contributions of this paper are as follows:

• We propose the CTRLmodel, a novel wind power forecasting
model that integrates collaborative temporal representation
learning with Reversible Instance Normalization (RevIN) and
RNNs.

• We develop a specialized collaborative representation learn-
ing component that captures multi-directional temporal dy-
namics, thereby enhancing forecasting accuracy.

• We evaluate the proposed model on two datasets, demon-
strating its superior performance over thirty-one existing
methods in terms of forecasting accuracy and robustness.

The remainder of this paper is organized as follows: Section
2 reviews related work, Section 3 presents the proposed CTRL
model, Section 4 discusses the experimental results, and Section 5
concludes this paper and outlines some future research directions.

2 Related work
Wind power forecasting has undergone substantial advancements,
progressing throughmethodologies grounded in physical principles,
machine learning, and deep learning. Each approach offers unique
strengths and faces limitations in capturing the intricate dynamics
of wind power generation.

Physical forecasting methods, notably Numerical Weather Pre-
diction (NWP) models, rely on meteorological data and atmospheric
physics to predict wind power generation [9]. However, their de-
pendence on accurate meteorological inputs and their challenges
in capturing localized wind variations, especially concerning wind
ramp events and the complexities of offshore wind behavior, often
restrict their effectiveness. In contrast, the CTRL model in this
study does not rely on external meteorological data but instead
learns from historical wind power data, focusing on capturing both
temporal and spatial correlations to enhance accuracy for diverse
wind farm locations and conditions.

Machine learning methods, such as Support Vector Machines
(SVM), Extreme Learning Machines (ELM), Random Forests (RF),
and Gradient Boosting Machines (GBM), have proven their ability
to learn complex patterns from historical wind data [10, 11]. They
effectively model nonlinear relationships between input variables
and wind power output, proving valuable for short-term forecast-
ing. However, these methods frequently require extensive feature
engineering and may not fully leverage the temporal dependencies
inherent in wind power generation, as highlighted by studies fo-
cusing on RF models for short-term predictions [12]. CTRL, on the
other hand, utilizes collaborative temporal representation learning,
eliminating the need for manual feature engineering and effectively
capturing multi-directional temporal dependencies.

Deep learning methods have emerged as a promising avenue,
demonstrating the ability to automatically learn hierarchical fea-
tures and temporal dependencies from data. Convolutional Neu-
ral Networks (CNNs) excel at capturing spatial patterns crucial
for understanding wind distribution across multiple turbines [11],
while Recurrent Neural Networks (RNNs), such as Long Short-Term
Memory (LSTM) networks and Gated Recurrent Units (GRUs), ef-
fectively model temporal dynamics for time-series forecasting tasks
[13]. Graph Neural Networks (GNNs) model spatial relationships
between wind farms, considering interdependencies for enhanced
accuracy [14], and attention mechanisms further improve the learn-
ing of long-range dependencies in wind patterns [15]. While these
methods represent significant progress, they often demand substan-
tial computational resources and extensive datasets for training,
which can hinder their widespread application. Moreover, exist-
ing deep learning models for wind power forecasting may not
fully utilize spatial and temporal correlations. Additionally, while
collaborative representations have shown improvements in other
forecasting fields, their application in wind power forecasting has
not been sufficiently explored.
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Figure 1: The graphical overview of the proposed Collaborative Temporal Representation Learning (CTRL) model. The entire
pipeline includes: data preprocessing, normalization, temporal representation (TR), collaborative representation unit (CRU),
concatenation, projection, and denormalization.

Hybrid approaches integrating physical models, machine learn-
ing, and deep learning techniques, such as combining artificial
neural networks (ANNs) with NWP data or employing ensemble
methods to aggregate predictions, have shown efficacy in improv-
ing wind power forecast accuracy and reliability [3, 10, 16]. These
hybrid models demonstrate the potential of integrating diverse
methodologies to mitigate individual weaknesses and enhance fore-
cast accuracy and reliability, which is crucial for grid stability and
energy market operations. Nevertheless, the potential of collabo-
rative temporal representation learning, as proposed in the CTRL
model, to capture and exploit shared information across multiple
datasets or tasks remains largely unexplored in wind power fore-
casting. This innovative approach offers the opportunity to learn
intricate temporal dependencies more effectively, leading to further
enhancements in prediction accuracy and model robustness.

In conclusion, while existing wind power forecasting methods
have seen remarkable progress, limitations remain in effectively cap-
turing complex spatiotemporal dynamics, fully leveraging temporal
correlations, and harnessing the potential of collaborative represen-
tation learning. The proposed CTRL model aims to address these
shortcomings by integrating collaborative representation learning
with deep learning techniques, focusing on multi-directional tem-
poral dependencies and exploiting the shared information across
various datasets.

3 The proposed CTRL
This section presents a formal definition of the wind power fore-
casting problem and details the architecture of the Collaborative
Temporal Representation Learning (CTRL) model, including its con-
stituent modules and mathematical formulations. Figure 1 provides
a graphical overview of the model.

3.1 Problem definition
Let - = [G1, G2, . . . , G# ] ∈ '#×� denote a multivariate time series
dataset, where# is the number of observations and� is the number
of variables (e.g., wind turbines). Each observation GC ∈ '� is a
vector of measurements at time C .

The goal of wind power forecasting is to learn a function 5 :
')×� → '�×� that maps a sequence of past observations -C =

[GC−)+1, . . . , GC ] ∈ ')×� to future values .C = [~C+1, . . . , ~C+� ] ∈
'�×� , where ) is the input window size and � is the prediction
horizon.

3.2 CTRL Model Architecture
The CTRL model comprises the following modules:

3.2.1 Data preprocessing. Raw wind power data is preprocessed
using a one-step-forward split technique [17] to transform it into
a supervised learning problem. This technique pairs each input
sequence with its subsequent value as the output target. The input
and output data are represented by - ∈ '�×)×� and . ∈ '�×1×� ,
respectively, where � is the batch size.

3.2.2 Normalization. Reversible Instance Normalization (RevIN)
[18] is applied to normalize the input data and later denormalize the
model’s predictions. RevIN addresses the issue of varying scales in
time series data, which can hinder model training by making gradi-
ents unstable. It learns a per-channel affine transformation, making
it more effective than simple normalization methods for complex
time series patterns. The normalization and denormalization steps
are defined as:

^
′

=
^ − `

f
, (1)

^ = ^
′

· f + `, (2)
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where ` and f represent the mean and standard deviation of the
input data, respectively.

3.2.3 Temporal Representation (TR).. This module utilizes a Gated
Recurrent Unit (GRU) [19] to capture long-term temporal dependen-
cies in the normalized input data. The GRU is particularly effective
in handling long sequences due to its gating mechanism that con-
trols the flow of information, allowing it to retain relevant past
information while mitigating vanishing gradient problems.

Zg = GRU
(
^

′
)
, (3)

where Zg ∈ '�×)×� is the GRU output obtained by concatenating
the hidden states ht ∈ '�×� from all time steps. � denotes the
hidden size of the GRU. A linear projection layer then transforms
Zg into the required input dimension:

Zl =]lZg + bl , (4)

where]l and bl are the weight matrix and bias vector of the linear
transformation, resulting in Zl ∈ '�×)×� .

3.2.4 Collaborative Representation Unit (CRU).. The CRU module,
a key innovation of the CTRL model, transforms and highlights
temporal patterns within the data to enhance the model’s ability
to learn multi-directional temporal dependencies. By extracting
information not only from the temporal dimension but also across
different batches and variables, the CRU leads to a more holistic
understanding of the underlying data patterns. The CRU consists
of two steps:

• Transformation: This step modifies the temporal represen-
tation ); using a learnable weight matrix,2 :

I = Zl ·]c , (5)

where � ∈ '�×)×� is the transformed data and,2 ∈ '�×) learns
the weights for each time step and variable.

• Highlighting: This step employs a softmax layer to high-
light the differences within the transformed data � along
different dimensions (3 =0, 1, 2 representing batch, sequence,
and variate dimensions respectively):

Id =
exp

(
Ib,t,i

)∑�
1=1 exp

(
Ib,t,i

) , 3 = 0, (6)

Id =
exp

(
Ib,t,i

)∑)
C=1 exp

(
Ib,t,i

) , 3 = 1, (7)

Id =
exp

(
Ib,t,i

)∑�
8=1 exp

(
Ib,t,i

) , 3 = 2. (8)

This process focuses the model’s attention on the most relevant
data aspects.

3.2.5 Concatenation and Projection. The outputs from the three
CRUs are concatenated with the temporal representation ); :

Vc =
[
I0; I1; I2;Zl

]
, (9)

yielding Vc ∈ '�×)×4� . This concatenated tensor is then processed
by a projection module consisting of an autoregression layer and a
Multilayer Perceptron (MLP) to transform the data and generate
predictions.

• Autoregression:

Va =

)∑
8=C

]a × Vc:,i,: + ba, (10)

where Va ∈ '�×1×4� , ]a ∈ ')×4� and ba are the weights and
bias respectively.

• MLP: The MLP refines the predictions using multiple linear
layers:

Vm =]3 (]2 (]1Va + b1) + b2) + b3, (11)

resulting in the final prediction Vm ∈ '�×1×� .

3.2.6 Denormalization. Finally, RevIN is applied to denormalize
Vm , producing the final wind power forecast _ .

3.3 Theoretical Analysis
This section provides a rigorous mathematical analysis of the Col-
laborative Temporal Representation Learning (CTRL) model, val-
idating its effectiveness in capturing multi-directional temporal
dependencies for wind power forecasting. We begin by defining
key concepts and then establish theoretical results that support the
model’s design and performance.

Wind power data exhibit complex dependencies that span multi-
ple dimensions, which we formalize as follows:

Definition 3.1 (Multi-Directional Temporal Dependencies). Given
a multivariate time series ^ ∈ '#×� , multi-directional temporal
dependencies refer to relationships that exist:

(1) Along the Temporal Dimension: Dependencies between ob-
servations at different time steps for each variable, i.e., between G3C
and G3

C−: for : > 0 and 3 ∈ {1, . . . , �}.
(2) Across Variables: Dependencies between different variables

at the same time step, i.e., between G8C and G 9C for 8 ≠ 9 and 8, 9 ∈
{1, . . . , �}.

(3) Across Samples (Batch Dimension): Dependencies across
different samples or observations, capturing common patterns or
trends present in the dataset.

These dependencies reflect the intricate interactions in wind
power generation, where the output of one turbine can influence or
be influenced by others over time and across different conditions.
The CTRL model’s architecture, comprising a Gated Recurrent Unit
(GRU), a Collaborative Representation Unit (CRU), and Reversible
Instance Normalization (RevIN), is designed to capture these multi-
directional dependencies.

We now establish key theoretical properties of the CTRL model,
demonstrating its capacity to capture multi-directional temporal
dependencies and its effectiveness for wind power forecasting.

THEOREM 3.2 (UNIVERSAL APPROXIMATION PROPERTY
OF CTRL). Let � (')×� , '�×� ) denote the space of continuous
functions mapping from RT×D to RH×D. The CTRL model, with
sufficient capacity and appropriate activation functions, is a uni-
versal approximator on C(RT×D, RH×D). That is, for any function
f ∈ C(RT×D, RH×D) and any n > 0, there exists a set of parameters
\ such that:

sup
Xt∈K

|f (Xt) −MCTRL (Xt;\ ) | < n,
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where K ⊂ RT×D is a compact set, and MCTRL represents the
CTRL model’s function.

PROOF. The proof leverages the universal approximation theo-
rem for neural networks. The GRU component can approximate
anymeasurable sequence-to-sequencemapping given sufficient hid-
den units [20]. The CRU, consisting of linear transformations and
softmax activations, can model interactions across variables and
samples. By combining these components, the CTRL model forms
a deep neural network capable of approximating any continuous
function on compact subsets of ')×� .

This theorem ensures that the CTRL model has the capacity to
represent the complex functions needed to capturemulti-directional
temporal dependencies in wind power data. Next, we analyze the
convergence properties of the CTRL model during training using
optimization algorithms like stochastic gradient descent (SGD).

THEOREM 3.3 (CONVERGENCE OF TRAINING ALGORITHM).
Assume that the loss function L(\ ) is bounded below, differentiable,
and has Lipschitz continuous gradients with constant L > 0. If we
use SGD with a learning rate [t = [0/

√
t, where [0 > 0, then the

sequence of parameters {\t} generated by SGD satisfies:

lim
T→∞

1
T

T∑
t=1

E
[
|∇L (\t) |2

]
= 0.

This implies that the gradients converge to zero in the mean,
indicating convergence to a critical point.

PROOF. Under the given assumptions, standard results from
stochastic optimization theory apply [21]. The Lipschitz continuity
of the gradient ensures that the loss function does not change
abruptly, and the diminishing learning rate satisfies the Robbins-
Monro conditions. Therefore, the expected squared norm of the
gradient approaches zero over time, indicating convergence to a
stationary point of the loss function.

This convergence analysis guarantees that, under appropriate
conditions, the training algorithm will find a model that is at least
locally optimal. Finally, we provide a generalization bound for the
CTRL model, demonstrating its ability to perform well on unseen
data.

THEOREM 3.4 (GENERALIZATION BOUND). Let H be the hy-
pothesis space represented by the CTRL model, and suppose that
the model has parameters bounded in norm by B. Let R\ (H) de-
note the Rademacher complexity of H . Then, with probability at
least 1 - X , the generalization error R(f) of any f ∈ H satisfies:

R (f) ≤ R̂ (f) + 2R\ (H) + 3B

√
log (2/X)

2n
,

where R̂(f) is the empirical risk, and n is the number of training
samples.

PROOF. The proof follows from standard generalization bounds
using Rademacher complexity [22]. The Rademacher complexity
measures the richness of the function class H . Since the CTRL
model has a finite capacity determined by its architecture and
bounded parameters, the Rademacher complexity is finite. Ap-
plying concentration inequalities yields the generalization bound.

This generalization bound provides confidence that the model
will perform well on unseen data, given sufficient training samples
and appropriate regularization. Together, these theoretical results

validate the correctness of the CTRL model’s architecture and its
suitability for wind power forecasting, demonstrating its capacity
to capture multi-directional temporal dependencies while ensuring
convergence and generalization properties.

4 Experiments
4.1 Experimental Setup
4.1.1 Data Collections. We utilize two publicly available datasets
in this study:

• TurkeyWind Power Forecasting (TurkeyWPF) Dataset
[23]: This dataset contains wind power generation data col-
lected from a single Goldwind GW87/1500 wind turbine with
a rated capacity of 1500 kW, located in Turkey. It spans one
year, from January 1, 2018, to December 31, 2018, with a
10-minute sampling interval. We preprocessed the data to
remove missing values and aggregated it into daily totals.

• Greece Wind Power Forecasting (Greece WPF) Dataset
[24]: This dataset comprises hourly wind power generation
data from 18 geographically dispersed locations in Greece,
covering the period from January 1, 2017, to December 31,
2020. The dataset represents wind farms with an aggregate
installed capacity of 6792.7 MW, constituting a significant
portion of Greece’s total wind power generation. We aggre-
gated this data into daily totals.

4.1.2 EvaluationMetrics. We employ three commonly usedmetrics
in wind power forecasting to evaluate model performance:

• Mean Squared Error (MSE):Measures the average squared
difference between predicted and actual values. MSE heav-
ily penalizes large prediction errors, making it particularly
relevant to energy dispatch decisions where significant devi-
ations can lead to grid instability or financial losses.

• Mean Absolute Error (MAE): Calculates the average abso-
lute difference between predictions and actual values, pro-
viding insight into the typical magnitude of forecast errors.

• Coefficient of Variation of Root Mean Square Error
(CV-RMSE): This metric normalizes the RMSE by the mean,
allowing for a scale-invariant comparison across different
datasets with varying power generation levels. Lower CV-
RMSE values indicate a higher degree of prediction consis-
tency relative to the average power output.

These metrics are commonly employed in wind power forecast-
ing as they assess different aspects of prediction accuracy. Minimiz-
ing these metrics translates to more accurate predictions, which
in turn contribute to enhanced grid stability and energy market
efficiency.

4.1.3 Model Configurations and Training Settings. To ensure fair
comparisons, all models undergo the same preprocessing steps [25].
We divide the data into training and testing sets using an 80/20
split. An input window length of 10 days is used for all models,
representing a history of 10 days of daily power generation data.
The models predict the wind power output one day ahead (day-
ahead forecasting).

For CTRL and all baselines, we preprocessed data using min-max
normalization applied to the entire time series. We implemented
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Table 1: Hyperparameters for CTRL and Baseline Models

Model Hyperparameter Values
Search Space Optimized

Dlinear [29] Decomposition kernel size 3-9 (2 per step) 7
CNN1D CNN out channels 16-128 (16 per step) 32

CNN kernel size 3-9 (2 per step) 9
TCN [30] TCN Layers [8], [8, 16], [8, 16, 32] [8, 16, 32]
LSTM [31] Hidden size 16-128 (16 per step) 32
GRU [32] Layers 1-3 (1 per step) 2
EncoderDecoder [33] Bidirectional True, False TRUE
Transformer [34] The label length 1-9 (1 per step) 5

Dropout Rate 0.00-0.30 (0.05 per step) 0.1
Informer [35] Encoder layers 1-3 (1 per step) 2

Decoder layers 1-3 (1 per step) 11
Autoformer [36] The numbers of heads 1, 2, 4, 8, 16 4

The dimension of the model 16-128 (16 per step) 48
PatchTST [37] The patch length 1–10 (1 per step) 5

The patch stride 1–10 (1 per step) 1
LSTNet [38] CNN out channels 16-128 (16 per step) 16

CNN kernel size 3-9 (2 per step) 9
Skip window size 1-5 (1 per step) 5
Skip GRU hidden size 16-128 (16 per step) 32
Skip GRU hidden size 1-3 (1 per step) 1

TPA-LSTM [39] CNN out channels 16-128 (16 per step) 64
CNN kernel size 3-9 (2 per step) 9
GRU hidden size 16-128 (16 per step) 64
GRU layers 1-3 (1 per step) 2
Residual window size 1-10 (1 per step) 5

NHiTS [40] NHiTS hidden size 16-128 (16 per step) 128
NHiTS pooling size 1, 2, 4, 8, 16 8

GAIN [25] GAT hidden size 16-128 (16 per step) 64
The number of heads of GAT 1, 2, 4, 8, 16 2

AGCRN [41] AGCRN hidden size 16-128 (16 per step) 32
AGCRN embedding Dimension 1-5 (1 per step) 3

MSL [17] shapelet size 2-10 (2 per step) 2
TCOAT [42] GRU hidden size 16-128 (16 per step) 32

GRU layers 1-3 (1 per step) 2
GRU bidirectional True, False TRUE
Residual window size 1-10 (1 per step) 3

CoDR [43] Hidden size 16-128 (16 per step) 32
CTRL GRU hidden size 16-128 (16 per step) 32

GRU layers 1, 2, 3 2

all models in PyTorch v2.3.1. We used the Adam optimizer [26]
with Mean Squared Error (MSE) as the loss function to train all
models. We optimized hyperparameters using a grid search. Table
1 summarizes the optimal hyperparameters used for CTRL and
the most relevant baseline models, along with the search space
considered during grid search.

We conducted training using a server with an Intel®Xeon®Gold
5218R CPU (2.10 GHz), 256 GB of memory, and four Tesla V100-
PCIE-16 GB GPUs.

4.2 Comparative Results and Analysis
Table 2 presents the performance comparison between CTRL and 20
existing forecasting methods on the Turkey WPF and Greece WPF
datasets, measured using MSE, MAE, and CV-RMSE. CTRL consis-
tently outperforms all baseline models across all three metrics and
on both datasets, achieving a maximum performance improvement
of 10.42% in MSE compared to the best-performing baseline model
(LSTM) on the Greece WPF dataset. On the Turkey WPF dataset,
CTRL achieves a 9.67% improvement in MSE over the best baseline
(MSL). These results strongly indicate the effectiveness of CTRL’s
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Table 2: Comparison of CTRL with 20 Forecasting Methods

Model Turkey WPF Greece WPF
MSE MAE CV-RMSE MSE MAE CV-RMSE

GAR [27] 162.797150 10.604651 0.617701 107.678520 8.160718 0.512205
AR [28] 162.691498 10.607114 0.617500 108.077423 8.184706 0.513153
DLinear [29] 162.961243 10.611975 0.618012 106.377663 8.098560 0.509102
CNN1D 163.851562 10.713211 0.619698 105.228844 8.065003 0.506345
TCN [30] 169.090134 10.752358 0.629526 108.374596 8.311706 0.513858
LSTM [31] 157.044418 10.103687 0.606689 97.204147 7.754950 0.486655
GRU [32] 160.838882 10.339690 0.613975 101.228256 8.102424 0.496627
EncoderDecoder [33] 161.547363 10.676886 0.615325 101.541145 8.146605 0.497394
Transformer [34] 163.935318 10.651772 0.619856 106.000389 8.329231 0.508198
Informer [35] 158.295029 10.678200 0.609100 100.119843 8.157362 0.493900
Autoformer [36] 179.489853 11.100290 0.648597 108.551010 8.205036 0.514276
PatchTST [37] 166.279922 10.716121 0.624273 107.465233 8.039746 0.511697
LSTNet [38] 160.043625 10.409985 0.612455 101.634254 7.945269 0.497622
TPA [39] 159.243408 10.562973 0.610922 104.613098 8.245862 0.504861
NHiTS [40] 158.400986 10.380313 0.609304 100.570366 7.870064 0.495010
GAIN [25] 163.103210 10.446630 0.618281 102.940331 7.971294 0.500809
AGCRN [41] 162.386444 10.648910 0.616921 102.682831 8.152772 0.500182
MSL [17] 154.822159 10.305735 0.602381 104.388702 8.156321 0.504320
TCOAT [42] 164.905319 10.782366 0.621688 100.375717 7.872735 0.494531
CoDR [43] 162.285614 10.620929 0.616730 99.564186 7.886658 0.492528
CTRL (Ours) 139.854446 9.175537 0.572523 87.077072 6.723298 0.460608

novel collaborative representation learning approach for capturing
the complex dynamics of wind power generation.

Breaking down the results by model category, we observe that:
• Linear Models (AR, GAR, DLinear): CTRL significantly

outperforms all linear models on both datasets, demonstrat-
ing its superior capability in capturing nonlinear dependen-
cies in wind power data.

• Deep Learning Models (LSTM, GRU, Transformer, etc.):
Even against advanced deep learning models, CTRL exhibits
a consistent performance advantage. This highlights the ben-
efits of the multi-directional temporal learning mechanism
incorporated in CTRL’s CRU module.

• HybridModels: CTRL also outperforms hybrid models that
combine different architectural elements, such as MSL and
NHiTS. This indicates that the unique benefits of collabora-
tive representation learning in CTRL lead to more accurate
and robust forecasts, even when compared to sophisticated
hybrid architectures.

• Recent State-of-the-Art Models: CTRL demonstrates sub-
stantial improvements over recent state-of-the-art models
like CoDR and TCOAT, further validating its effectiveness
in wind power forecasting.

The consistent improvement across different metrics (MSE, MAE,
and CV-RMSE) and datasets underscores CTRL’s robustness and
potential to advance wind power forecasting. Paired t-tests confirm
that these improvements are statistically significant (p-value < 0.05)
compared to all baseline models, further validating CTRL’s collabo-
rative representation learning approach as a promising direction for
enhancing forecasting accuracy in renewable energy applications.

4.3 Visualized Predictions and Interpretation
Figure 2 presents a visual comparison of the actual and predicted
wind power outputs on segments of the Turkey WPF and Greece
WPF datasets for CTRL, MSL, LSTM, CoDR, and Autoformer. On
both datasets, the predicted wind power output by CTRL closely
aligns with the actual values, particularly in capturing sharp peaks
and dips in power generation.

In contrast, MSL, LSTM and CoDR struggle to capture extreme
variations, indicating limitations in their ability to adapt to rapid
changes in wind patterns. Specifically, on the Turkey WPF dataset,
MSL and LSTM underestimate peaks observed around day 38, 48,
and 64, while overestimating power generation around day 52, and
70. These deviations highlight the challenges of relying solely on
single-directional temporal dynamics for capturing rapid changes
in wind power output. Furthermore, Autoformer consistently ex-
hibits poor performance on both datasets, reflecting its inability
to effectively capture the inherent complexity of wind power gen-
eration data. Its predictions are largely insensitive to fluctuations
in the actual power output, resulting in consistently higher error
rates compared to other models.

The experimental results unequivocally demonstrate CTRL’s
superior capabilities in day-ahead wind power forecasting. By con-
sistently outperforming a diverse array of baseline models across
multiple datasets and evaluation metrics, CTRL establishes itself as
a robust and versatile forecasting tool. The model’s collaborative
temporal representation learning approach enables it to effectively
capture multi-directional dependencies in wind power data, result-
ing in more precise predictions across diverse wind conditions. This
enhanced forecasting accuracy has significant implications for grid
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Figure 2: Comparison of Actual and Predicted Wind Power Output. The shaded gray areas represent the real wind power
generation, while the colored lines denote the predictions from different models.

stability, energy market efficiency, and the broader integration of
wind power into sustainable energy systems.

5 Conclusion and Future Work
This paper presents Collaborative Temporal Representation Learn-
ing (CTRL), a novel deep learning model for enhancing the ac-
curacy and robustness of wind power forecasting. CTRL lever-
ages the power of collaborative representation learning to capture
multi-directional temporal dependencies in wind power data, ef-
fectively addressing limitations of existing forecasting methods.
The model’s unique integration of Reversible Instance Normaliza-
tion (RevIN), RNN-based hidden state learning, and a specialized
collaborative representation unit enables it to effectively learn com-
plex temporal patterns and correlations. Experimental evaluations
on two real-world wind power datasets demonstrate that CTRL
significantly outperforms 20 state-of-the-art forecasting methods,
including physical models, machine learning techniques, and other
deep learning approaches, achieving substantial improvements in
prediction accuracy.

Future work will focus on three key directions. First, a more
detailed ablation study will analyze the individual contributions
of CTRL’s components. Second, we will investigate CTRL’s trans-
ferability to other renewable energy sources, such as solar and
hydropower, broadening its potential impact on sustainable energy
management. Finally, we plan to integrate additional data sources,
like numerical weather predictions, to explore further performance
gains.
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