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Abstract—Nonalcoholic Fatty Liver Disease (NAFLD) is
a major liver disease worldwide, and NAFLD diagnosis is
the clinical foundation before healthcare strategies. NAFLD
diagnosis predictive methods provide a promising way for
intelligent diagnosis. Previous diagnoses mainly relied on liver
biopsy and imaging, which are unsuitable for large-scale rapid
screening. However, the observed quantitative data are high-
dimensional and have missing values. To alleviate this issue, the
stacking multi-scaled convolutional neural network (SMCNN)
is proposed to predict NAFLD diagnosis. Firstly, the inputs
are normalized and transformed. Secondly, the inputs are
represented as multi-scaled feature maps. Finally, the scaled
feature maps are stacked to connect with outputs. Several
experiments have been done to validate twelve methods on
a real dataset. The proposed SMCNN outperforms eleven
methods in terms of five metrics.

Index Terms—Deep learning, High dimensionality, NAFLD,
Prediction, Smart diagnosis

I. INTRODUCTION

Nonalcoholic Fatty Liver Disease (NAFLD) is the most

common liver disease, which affects approximately one-

quarter of the population worldwide [1]. NAFLD encom-

passes a wide range of disease spectrum, which includes

nonalcoholic fatty liver (NAFL), nonalcoholic steatohepatitis

(NASH), cirrhosis, and hepatocellular carcinoma [2]. The

rising NAFLD prevalence increases the healthcare and eco-

nomic burdens for human beings.

Early diagnosis and treatment can greatly alleviate the sit-

uation. The current clinical NAFLD diagnosis mainly relies

on liver biopsy and imaging techniques, such as ultrasound

(US), transient elastography (TE), computed tomography
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of Fujian Province (CN) (nos. 2020J05146, 2021J01857, 2021J01859 and
2022J01335) and the Natural Science Foundation of China (no. 62006096).

(CT), magnetic resonance imaging (MRI) and their devel-

opments [3]. Recently, machine learning techniques have

been quickly developed and combined with the conventional

diagnosis methods [4]. For example, Convolutional neural

network (CNN) and its variations [5] have been widely

applied in the identification of pathological sections and

ultrasound images.

Liver biopsy is traumatic and expensive for screening

[6]. The imaging devices are costly and not suitable for

large-scale screening studies. Moreover, NAFLD is usually

diagnosed when patients suffer from the more severe disease

since the NAFLD has no obvious symptoms. Hence, a

promising way is to leverage universal and quantitative data

for diagnosis prediction, such as blood tests, urine tests and

laboratory data. Several studies have been proposed to utilize

these data to predict NAFLD diagnosis, such as NASH-

Scope [7].

The problem of NAFLD diagnosis prediction can be

commonly considered as a binary classification problem.

Several machine learning methods [8] have been proposed

to predict NAFLD diagnosis by leveraging routine examined

data. However, there are three challenges:

1) High-dimensionality. The inputs consist of hundreds

of clinical blood-examined items.

2) Data missing. Patients usually do not check all items,

which leads to the problem of missing data.

3) Data uncertainty. Different patients are sensitive or

insensitive to different items. The personalized char-

acters of patients degrade the prediction performance.

To address these issues, the stacked multi-scaled convo-

lutional neural network (SMCNN) is proposed to predict

NAFLD diagnoses. Firstly, the clinical examined data is
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extracted from clinical records. The inputs are normalized.

Secondly, a feature selection layer is employed to select the

strongly correlated data. Thirdly, a stacked multi-scaled con-

volutional layer is utilized to represent the inputs into multi-

scaled feature maps to learn the associations between high-

dimensional features. Finally, the convolutional representa-

tions are fed into full-connection and activation layers to

connect with outputs. Extensive experiments are conducted

to evaluate the effectiveness of the proposed SMCNN on

real NAFLD diagnosis dataset.

The major contributions of this paper are listed as follows:

1) A promising way for large-scale NAFLD screening is

tested.

2) The stacked multi-scaled convolutional neural network

(SMCNN) is proposed to predict NAFLD diagnoses

with better performance.

3) Some experiments have been done to validate the

prediction method.

The rest of this paper is organized as follows. Section

II reviews relevant studies on NAFLD diagnosis. Section

III displays the problem definition, method workflow and

describes the key details. Section IV gives the experimental

configurations. Section V shows the experimental results and

analyses. Finally, the conclusions are drawn in Section VI.

II. RELATED WORK

The relevant studies are introduced with respect to the

clinical NAFLD diagnosis methods and the research on the

NAFLD diagnosis prediction.

A. Clinical NAFLD Diagnosis

The clinical NAFLD diagnosis methods can be catego-

rized into two classes according to the invasiveness.

The invasive method refers to the liver biopsy, which

is the gold standard for diagnosing liver diseases [9]. The

doctors diagnose the NAFLD via combining observations

of pathological sections and clinical records. However, liver

biopsy has several limitations, such as invasiveness, sam-

pling error, only moderate intraobserver, and interobserver

reproducibility [10]. Therefore, non-invasive methods like

imaging have rapidly developed and replaced liver biopsy

in some specific cases. Non-invasive methods mainly rely

on two different approaches the biological approach and

the physical approach. The biological methods diagnose

NAFLD according to the quantification of biomarkers in

serum samples [11]. These methods generate NAFLD di-

agnosis by combining the biomarkers into mathematical

algorithms, such as fatty liver index (FLI), NAFLD fibrosis

score, and BARD score [12]. The accuracy is the major

limitation of these methods. Conventional imaging meth-

ods, like US, CT, and MRI, have been well-established.

Moreover, these methods have several limitations, such as

subjectivity and examiner-dependent interpretation [13]. In

the past decade, updated imaging methods have the ability to

quantify liver diseases using both ultrasonography and MRI-

based methods, such as ultrasound elastography, quantitative

ultrasound techniques, magnetic resonance elastography, and

magnetic resonance-based fat quantitation techniques [14].

These methods combine the imaging and quantitative index

to diagnose NAFLD, which provides a more objective and

interpretable way for medical intervention. (NAFLD fibrosis

score, Fib-4 score, BARD score, and others)

However, all of these methods are not suitable for large-

scale screening since these methods are still relied on

the examiner’s interpretation, huge time consuming, and

expensive cost.

B. Computer-aid NAFLD Diagnosis

The current computer-aid methods on the NAFLD diag-

nosis prediction can be categorized into image-based and

quantitative methods.

The image-based methods mainly focus on employing

computer vision techniques to recognize the disease signa-

tures from pathological section or liver imaging for diagnosis

prediction [15]. For instance, CNN and its variations [5]

have been widely employed in extracting and identifying

the histological features from pathological section images.

The major limitation of these methods in practical scenarios

is the invasiveness of the patients. CNN [5] have also

been employed to extract disease signatures from ultrasound

images. These methods all are the combinations of clinical

diagnosis and machine learning techniques, which show

high accuracy in NAFLD diagnosis prediction. However,

these methods are not suitable for large-scale screening for

NAFLD.

The quantitative methods aim to build a mapping between

quantitative inputs and the diagnosis target via represen-

tations [16]. Traditional machine learning methods obtain

the diagnosis predictions according to some feature repre-

sentations by utilizing quantitative data, such as Random

forest (RF), Support vector machine (SVM), and XGBoost

(XGB) [17]. These methods have simple logic and low

complexity but are sensitive to the missing values. Since the

ability to capture non-linear relationships, Artificial neural

network (ANN) [7] have been employed to diagnose the

NAFLD. These methods represented the routine laboratory

or physical examination data into high-dimensional vector

representations to generate diagnosis predictions according

to the learned feature associations. These methods provide

a potential way for mass screening.

However, they did not consider the effects of data im-

balance and sparsity caused by the high dimensionality and

data uncertainty.

III. THE PROPOSED SMCNN

A. Problem Formulation

The NAFLD diagnosis is the process that determines

whether the outpatients have it or not. Therefore it can be

commonly regarded as a binary classification problem. Let

195

Authorized licensed use limited to: East China Normal University. Downloaded on July 30,2023 at 09:25:48 UTC from IEEE Xplore.  Restrictions apply. 



symbol X ∈ R
N×M represent the cleaned metrics matrix,

where N is the number of inpatients, and M is the number of

cleaned metrics. The binary classification can be formulated

as follows:

Y ← F (X), (1)

where Y ∈ R
N is the label matrix, F (·) is a learned

mapping.

The scheme illustrations of the proposed method are

shown in Figure 1. In the proposed method, the diagnosis is

first fed into a data clean layer to initially filter out invalid

and missing values. Secondly, the cleaned data is passed

through the normalization layer to reduce the difference

between metrics values. And then, the normalized matrix is

fed into a multi-convolutional layer to extract feature repre-

sentations. Finally, the representations are passed through

a full connection layer and activation layer to generate

classification results, the major symbols and notations used

in this paper are listed in Table I.

TABLE I
SYMBOLS AND SEMANTICS.

Notation Meaning

N Samples number
M Examination-items number
K Filtered examination-items number

X Input matrix, where X ∈ R
N×M

Z Normalized input matrix, Z ∈ R
N×M

U Filtered normalized input matrix U ∈ R
N×K

H Feature maps number
G(·) Pooling strategies
f(·) Flatten operation

P Probability matrix, P ∈ R
N×1

Y Binary target matrix, Y ∈ R
N×1

B. Normalization

To reduce the difference between the metrics and speed

up the convergence process, the “Min-Max normalization”

[18], [19] is adopted to compress the inputs into [0, 1]. The

mathematical formulation is defined as follows:

Zi =
Xi −min(Xi)

max(Xi)−min(Xi)
, (2)

where Zi represents the i-th normalized item, Xi is the

the i-th input item, min(Xi) is the minim value of Xi,

max(Xi) is the maxim value of Xi.

C. Feature Selection

To alleviate the effect of the high dimensionality and

improve the model accuracy, feature selection techniques

are adopted to transform the input matrix to be small-scale.

The filter methods are employed for feature selection by

ordering, which leverages variable ranking techniques as the

criterion. The chi-square test is chosen as the correlation

criterion. The mathematical definition is as follows:

X 2 =
(Zi · Y − 1

N

∑N
j=1 Y

j ·∑N
j=1 Z

j
i )

2

1
N

∑N
j=1 Y

j ·∑N
j=1 Z

j
i

, (3)

where Zi is the i-th feature matrix, X 2 is the correlation

score matrix. And then the features are selected accord to

magnitude of the X 2. Let symbol U ∈ R
K be the filtered

feature matrix, where K is the number of top K ranked

features, Z ∈ R
N×M is the normalized input matrix.

D. Stacked multi-scaled convolutional Unit

To reduce the effect of sparse matrix and build associa-

tions between inputs. A stacked multi-scaled convolutional

unit (SMCU) is designed. The detailed process of the multi-

scaled convolutional layer is plotted in Figure 1(b). The

proposed SMCU is mainly constituted of convolutional

layers and pooling layers.

For a lucid presentation, given the input matrix x, the i-
th feature map sweeps through the input matrix x can be

formulated as follows:

Cri (x) = ReLU(W r
i ∗ x+ bi), (4)

where W r
i ∈ R

1×r is the kernel weight, bi ∈ R is the

bias term of i-th feature map, ∗ denotes the convolution

operation, the ReLU(·) is the rectified linear unit function

and Cri (·) refers to the i-th feature map with kernel size r.

And the pooling layer with pooling kernel size k is defined

as follows:

Rk
i (x) = G(xk

i,j−1,x
k
i,j , · · · ,xk

i,j+k−1), (5)

where x represents the output of preceding layer, G(·)
represents the pooling strategy, p represent the pooling size,

Rk
i (·) refers to pooling i-th feature map with size k.

The residual learning trick is adopted to alleviate the

degradation problem. The graphical process of this process

is plotted in Figure 1(c). The residual unit is formulated as

follows:

Eri (x) = Cri (x) +ReLU(x), (6)

where x represents the output of preceding layer, Eri refers

to the residual unit to the i-th feature map.

For the proposed SMCU, the filtered input matrix U is

firstly passed through a convolutional layer and max-pooling

layer to initially explore the association between inputs. The

process can be formulated as follows:

Si = R2
i (C

7
i (U)), (7)

where Si is the i-th feature map outputs, S ∈ R
N×H×K|2

is the output matrix, H is the number of feature maps.

And then, the feature maps are passed through two

convolutional layer blocks with smaller kernel sizes to learn

the associations between features further. After being well-

tuned, the kernel size is determined at 5 and 3, respectively.

To ensure stability and performance, the residual learning

trick is employed. The process can be formulated as follows:
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+

Fig. 1. The schematic illustration of the proposed method. (a) The workflow. (b) Stacked multi-scaled convolutional unit (SMCU) (c) Residual convolution
block.

Ii = E3i (E5i (S)), (8)

where I ∈ R
N×H×K|2 is the proceeding block outputs.

Finally, the feature maps I are fed into an average-pooling

layer to learn the association between feature representations

further. The process can be formulated as follows:

Ai = R2
i (I), (9)

where A ∈ R
N×H×K|4 represents the pooled feature maps,

R2
i (·) represents the pooling operation.

E. Full connection layer

To aggregate feature maps and inputs, the Full-connection
is selected as the feature fusion method since it is easy and

robust. The process can be formulated as follows:

O = f([A1,A2, · · · ,AH ])�Wp +Bp, (10)

where O ∈ R
N×1 is the prediction matrix, Wp ∈ R

H·M |4×1

is the weight matrix, f(·) is the flatten operation, Bp is the

bias term.

The outputs of the proceeding layer are fed into a sigmoid

layer to generate probability matrix P and generate classi-

fication results. These processes are formulated as follows:

Pi = σ(Oi) =
1

1 + exp−Oi
, (11)

Yi =

{
0, Pi < 0.5

1, Pi ≥ 0.5
, (12)

where Y ∈ R
N×1 is the classification results.

F. Loss Function

The Binary Cross-Entropy with Logits Loss (BCEwith-

LogitsLoss) is chosen as the loss function for the content

criterion. The BCEwithLogitsLoss is constituted of a Binary

Cross-Entropy Loss function and a Sigmoid function. The

mathematical formulation of the loss function is as follows:

L(O,Y ) =
1

n
{−w[Y logσ(O) + (1− Y )log(1− σ(O))]},

(13)

where L is the loss matrix, � represents the transpose

operation, w is the weight matrix, σ is the Sigmoid function.
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IV. EXPERIMENTAL CONFIGURATIONS

A. Dataset

NAFLD diagnosis is shared by Xiamen Hospital of Tra-

ditional Chinese Medicine (XHTCM). In the 304 real-

world outpatients’ electronic health records, a total of 338

physical examination items were collected to evaluate the

proposed method and benchmarks. These items include a

blood routine examination, blood biochemistry examination,

liver function test, renal function test, blood glucose test,

blood lipid test, electrolytes, potassium, sodium, chloride,

myocardial enzymes, and urine examination. Notably, the

required items are different for outpatient. Therefore, these

data are usually high-dimensional with missing values. For

some quantitative items, the values are directly collected,

such as white blood cell count (WBC) and red blood cell

count (RBC). For the binary text description, positiveness

and negativeness are replaced with 1 and 0, respectively,

such as white blood cells (WBC) and red blood cells (RBC).

We collected data from March 29, 2018, to April 28, 2022.

All individual-level data are anonymized. The diagnostic

record dataset is homogeneously divided into five parts for

the cross-validation strategy [20]. One of them was selected

to validate the trained models.

B. Benchmarks

The below machine learning methods are adopted as parts

of benchmarks.

1) K-nearest neghibors (KNN) [21] is a non-parametric

methods, which generate classifications according to

the distances between features.

2) SVM [22] maps the feature into high-dimensionality

and classifies the samples according to the distances

between samples and hyperplane.

3) RF [23] uses partial features to train multiple decision

trees and generate classification results by tree voting.

4) Gradient boosting decision tree (GBDT) [24] is an

iterative decision tree algorithm, which generates clas-

sifications according to multiple decision trees.

5) XGB [25] minimizes the loss function by iteratively

fitting the annotations and the residuals.

6) Gaussian naive bayes (GNB), Multinomial naive bayes
(MNB) and Bernoulli naive bayes (BNB) are all Bayes-

based methods [26] and the difference between them

is the likelihood estimation of features.

7) AdaBoost (Ada) [27] makes a series of weak learners

a strong learner by repeatedly modifying the weights

of the data.

The below deep learning methods are adopted as parts of

benchmarks.

7) ANN [7] maps the features through the multi-layer

hidden neural to minimizes the loss function.

8) Transformer (TRFM) [28] is a variations of encoder-

decoder structure, which captures key features via

attention mechanism.

C. Evaluation Metrics

The Accuracy (ACC), Precision (P), Recall (R), F1-Means

(F1) and Area under the ROC Curve (AUC) values are cho-

sen to evaluate the performance of the binary classification.

The higher values of these metrics are, the better perfor-

mance of the methods. The mathematical representations of

evaluation metrics are listed in the Table II and Table III.

For a lucid presentation, the mathematical formulation of

AUC is indecently listed as follows:

AUC =
2 · Sp − np · (nn + 1)

2 · np · nn
, (14)

where Sp is the sum of the all positive examples ranked,

np and nn represent the number of positive and negative

examples respectively.

TABLE II
CONFUSION MATRIX FOR BINARY CLASSIFICATION

Real
Predicted

False True

False FP TN
True FN TP

TABLE III
EVALUATION METRICS OF CLASSIFICATION PERFORMANCE FOR THE

PROPOSED METHOD AND BENCHMARKS.

Metrics Formula

ACC TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall TP
TP+TN

F1-Means 2·P ·R
P+R

TPR TP
TP+FN

FPR FP
FP+TN

V. EXPERIMENTAL RESULTS

A. Feature Selection

To explore the effective feature and provide a fountain

for further clinical research, the performance is measured in

terms of AUC, ACC, and F1 by varying feature number

K. The collaboration of coarse-tune and fine-tune strategy

is adopted to find the optimal K. The experiments results

are visualized in Figure 2. As shown in Figure 2(f)-2(e),

the optimal values of K is found at 69. And the correspond

items can be detected according to the strengthen of the

correlation coefficient. Several observations from the exper-

iment are summarized as follows:

1) The blood test and urine test data have strong correla-

tions with with the NAFLD incident. Specifically, the

urine pH value has the strongest correlations with the

NAFLD.

2) Several liver diseases metrics have strong correlated

with the NAFLD incident.
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Fig. 2. The performance of the proposed SMCNN with varying the feature number K in terms of AUC, ACC, and F1.

3) Numerous liver-uncorrelated metrics are beneficial for

improving the NAFLD diagnosis prediction accuracy.

The routine examination metrics like red blood cell count

(RBC), white blood cells (WBC), urea, and the other blood

test and urine test metrics show strong correlations with the

NAFLD. A possible reason is that the NAFLD would affect

the metabolism, which causes these metrics to be abnormal.

The urine pH value strongly correlates with the NAFLD.

A possible reason is that this metric has associations with

insulin resistance, which is associated with NAFLD [29].

What’s more, the blood glucose (Glu) and urea/creatinine

show strong correlations with the NAFLD in the experiment.

The above metrics all have associations with diabetes. And

some institutes [30] pointed out that diabetes patients have

a higher proportion of having the NAFLD. In summary, the

collected samples possibly have a large proportion of people

with diabetes.

Several liver disease-related metrics are beneficial for im-

proving the diagnosis accuracy, such as γ-glutamyl transpep-

tidase (γ-GT), hepatitis B virus surface antibody (HBsAb),

and albumin (Alb). There are several possible reasons:

1) The NAFLD is usually detected when the patients

search medical intervention for some more serious

liver disease, such as hepatitis, cirrhosis.

2) The hepatitis may increase the risk of the NAFLD.

3) The NAFLD could cause serious liver diseases, such

as cirrhosis, hepatitis. With the development of the

NAFLD, these metric start to be abnormal.

Therefore, the metrics for these diseases are highly corre-

lating to the NAFLD.

Several liver-uncorrelated disease metrics, such as typhoid

H, typhoid O, and mycoplasma IgG, seem effective for di-

agnosis prediction. There are two possible reasons, and one

is that these diseases bring indirect effects for the NAFLD.

For example, typhoid fever would significantly affect the

gut microbiota, while the gut microbiota is closely related

to the development of the NAFLD [31]. The details should

be further researched and explored in clinical. Another is

that the patients suffering from these diseases are diagnosed

with NAFLD. And the data scale is not large enough, which

causes these diseases to be associated with NAFLD.

B. Comparable Results

The performance of comparison is done to explore the

effectiveness of the proposed SMCNN. The comparison

results of twelve methods are plotted in Figure 3(a)-3(e).

For all comparable methods, all parameters are well-tuned.

Besides, feature-filtered inputs are used to train all meth-

ods. Several observations from the experiment results are

summarized as follows:

1) The Bayes-related methods achieves the worst perfor-

mance among benchmarks, especially the GNB.

2) The boosting-based methods obtain the highest R
value.

3) Deep learning methods are more stable and efficient

than machine learning methods in general.
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Fig. 3. Box-plots of eleven methods in terms of Accuracy, Precision, Recall, F1-Means, and Area under curve values are plotted in 3(a)-3(e). The ROC
lines of the proposed method is plotted in 3(f), where cvi represent the i-th validation subset.

4) The proposed SMCNN obtained significant improve-

ments compared with benchmarks.

According to Figure 3, the Bayes-related methods achieve

the worst performance. This demonstrates that the joint

probability distribution of inputted features has difference

from a specific probability distribution, such as Gaussian or

Bernoulli. A possible reason is the effect of missing values,

and zero values would interrupt the probability distribution.

The boosting-related methods outperform the other bench-

marks, especially the performance evaluated by R. However,

the other metrics’ values can not match the R. This means

that these methods can accurately recognize the positive

samples but cannot recognize the negative samples well.

As shown in Figure 3(a)-3(e), the deep learning methods

obtain a smaller interquartile range compared with machine

learning methods. This demonstrates that deep learning

methods are more robust and stable. Moreover, the medium

performance of the deep learning methods is higher than the

major machine learning methods in terms of P, F1, and AUC

values. This shows the effectiveness of the deep learning

methods and demonstrates that deep learning methods do

better in capturing effective features from high-dimensional

data and alleviating the data sparsity.

The proposed SMCNN achieves measurable improve-

ments compared with benchmarks. The ACC, P, and F1

values are improved by 3.3%, 6.31%, and 5.97% compared

with the optimal benchmarks. This demonstrates that the

proposed multi-scaled convolutional structure does better in

extracting features from sparse and high-dimensional data.

To further explore the performance of the proposed clas-

sifier, the area under curve (AUC) is adopted to evaluate

all methods, and the receiver operating characteristic (ROC)

curve of test subsets are plotted in Figure 3(e) and 3(f). As

shown in Figure 3(e), the proposed SMCNN achieved the

highest median AUC value, and the AUC value is improved

by 4.33% compared with the optimal benchmarks. This

suggests that the proposed method has an excellent ability in

classification. Moreover, as shown in Figure 3(f), the curves

all are located in the above red dash line. These further

demonstrate the effectiveness of the proposed method. In

addition, the distribution of curves is similar, which shows

the stability of the SMCNN.

VI. CONCLUSION

This paper proposed a multi-scaled convolutional neural

network (SMCNN) for predicting the NAFLD diagnosis by

solely using physical examination data. The proposed multi-

scaled convolutional layer can efficiently learn the associa-

tions between high dimensionality and alleviate the effect

of data sparsity. Extensive experiments on real NAFLD

examination-items dataset are done to explore the effective-

ness of the proposed method. Compared with the bench-

marks, the ACC, P , F1, and AUC values is improved by
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3.3%, 6.31%, 5.97% and 4.33% at least, respectively. More-

over, experimental analysis shows several liver-uncorrelated

metrics have strong correlations with the NAFLD.

In the future, the feature selection and feature fusion

methods will be further discussed in NAFLD diagnosis

prediction, and the multi-diseases diagnosis prediction also

would be further studied.
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