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Abstract
Hand, foot and mouth disease (HFMD) is a susceptible viral infectious disease to infants and
children, which led to millions of cases and hundreds of deaths annually in China. Existing
predictive methods commonly learn the development patterns from historical observations.
However, almost all these methods are neglect the immediate impact of exogenous factors on
HFMD transmission. To solve the limitation, we consider the approximately unidirectional
influences from temperature to confirmed cases and then propose a transfer one-step-ahead
learning (Tr-OSH) method to establish their association. The Tr-OSH method first extract
the unidirectional representation from temperature observations, and subsequently transfer
the obtained representation for HFMD cases prediction. Moreover, we notice the indepen-
dent correlation of each time step and period, and generate the independent representation
by the relevance to upcoming values. Intensive experiments on real-world HFMD datasets
demonstrate that our Tr-OSH method much efficaciously improves prediction accuracy.

Keywords Transfer learning · Prediction · HFMD · Time series · Representation learning

1 Introduction

Hand, foot and mouth disease (HFMD) is a prevalent infectious disease that has been listed
as a statutorily notifiable category-C infectious disease since May 2008 in China [30]. It is
caused by enteroviruses and primarily harms infants and young children. Due to the severe
complications of HFMD, such as central nervous system (CNS) disorders and pulmonary
[12], the mean annual severe illness rate was 11.8 per one million person-years, and the
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yearly mortality rate was 0.308 per one million person-years in China [31]. Besides, HFMD
also caused colossal losses in Asian Pacific countries, inducing a substantial disease burden
for governments and healthcare facilities all over the world [11]. Therefore, establishing an
effective model to monitor and track the spread of HFMD received extensive attention in
recent years.

Mathematical modeling, such as the susceptible infectious recovered (SIR) model and
SEIR model, is regarded as a practical method to infer the transmission of HFMD [33].
However, these methods require relatively accurate classification of the target population
and are sensitive to initial values. Recently, the learning methods have been widely used
in related infectious disease problems, which can model the development of outpatients by
end-to-end architecture, and forecast the upcoming confirmed cases merely depending on
the historical observations [24]. Wang et al. [26] proposed a dual-grained learning method
to predict weekly outpatients incorporate the fine-grained HFMD data. [34] consider the
incubation period of HFMD and employ the traditional tree method to generate predictions.
On account of the plentiful stochastic fluctuations, improving the predictive accuracy of
HFMD cases is still a major challenge.

To integrate several exogenous factors, such as search query [14] and temperature [33],
seems a promising way to improve the HFMD cases predictive accuracy. Benefit from the
record of historical incidence and related factors, [5, 24, 27] show well performance in fore-
casting upcoming outpatients. However, most studiesmerely consider the impact of historical
patterns in exogenous data, while neglecting the immediate and unidirectional impact on the
transmission of infectious diseases. The temperature has a tremendous unidirectional influ-
ence on the activation of causative pathogens and rapidly impacts the risk of HFMD infection
[18, 20]. Nevertheless, the number of search queriesmay increase after the epidemic outbreak
[14]. Therefore, the change of meteorological factors commonly precedes the fluctuation of
HFMD incidence, while the fluctuation of the search index has a delayed reaction.

We conclude the causal relationship between temperature and HFMD epidemics as a uni-
directional weak-feedback mechanism: temperature affects the number of patients, but not
vice versa. Depending on the abovemechanism, we assume that fusing the future temperature
representation can enhance the predictive accuracy of HFMD cases. In order to establish an
end-to-end predictor with the representation of prospective temperature, the transfer learn-
ing approach is integrated into our designed architecture. We regard the mean temperature
historical observations as the source time series and would like to learn the representation
of upcoming temperature states. After that, the obtained source time series representation
is delivered into the training processing of the target time series to generate final predictive
results.

We proposed a transfer one-step-ahead learning (Tr-OSH) method to effectively benefit
the source and target time series. The Tr-OSH leverages the dual-side multi-head attention
components for source time series to enhance the association with target data. Then, the
CNNRNN is incorporated to extract the potential dependencies between each time step.
Finally, a fully connected linear layer maps the inputted representation to the final generation
linearly. For target time series, the Tr-OSH uses a relatively concise learning structure to
reduce the computational cost and avoid overfitting, which consists two directional transfor-
mation units (DTU) that highlight the critical time steps and periods to upcoming cases. At
last, the Tr-OSH incorporates the source time series representation to make predictions.

The main contributions of this work can be summarized as follows:

(1) We utilized the unidirectional weak-feedback mechanism between temperature and
HFMD cases.
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(2) We proposed a transfer one-step-ahead learning (Tr-OSH) method to benefit the HFMD
prediction with prospective temperature observations.

(3) The Tr-OSH method effectively captures the potential association in time steps and
periods.

(4) The experiments on actual HFMDdata collections show the effectiveness of the proposed
Tr-OSH.

The remainder of this paper is organized as follows. Section 2 provide the literature review.
Section 3 gives problem formulation on related time series problem. Section 4 illustrates the
proposed Tr-OSHmethod. Section 5 gives the configurations of the experiment environment.
Section 6 shows the experimental results and analyses. Finally, we conclude in Sect. 7.

2 RelatedWork

This section introduces related prediction methods. According to the relationship with trans-
fer learning, these methods are divided into the traditional learning methods in time series
prediction and transfer learning methods in time series prediction.

2.1 Traditional LearningMethods in Time Series Prediction

Traditional learningmethods are categorized intomathematical, stochastic, and deep learning
methods.

Mathematical methods. [33] employed a mathematical approach modeling the dynamic
behaviors of HFMDwith the temperature-dependent latent period. [21] considered the effect
of vaccination and used mathematical simulating the spread of HFMD epidemics. However,
these methods are sensitive to the initial parameters and show relatively weak robustness.

Stochasticmethods.Autoregressive IntegratedMovingAverage (ARIMA) and its different
variations (e.g., ARMA,GlobalAR [13] andVectorAR [22]) are common stochasticmethods,
which based on the famous Box-Jenkins principle [1, 25]. Nonetheless, the non-stationary
and non-linear characteristics exist in the transmission of HFMD epidemics, which reduce
the stochastic methods predictive accuracy [16].

Deep learning methods.Deep learning methods regard the historical observations as time
series input vectors, and then learning the non-linearity mapping to the upcoming values
[13]. Recurrent Neural Networks (RNN) have been widely applied in many infectious dis-
ease problems [2], it establishes connections between hidden units and can preservememories
of recent events [19]. Due to the vanilla RNNs prone to vanishing gradient or exploding gra-
dient, two modified RNN architectures, long and short-term memory (LSTM) and gated
recurrent unit (GRU), are proposed to obtain time-long dependence of time series data [29].
Wang et al. [26] captures the potential information from dual-grained HFMD data based on
the GRU component and shows relatively well prediction performance than others bench-
marks. Otherwise, efficient convolutional architecture for epidemiological predictions are
also widely employed, Wu et al. [28] used RNNs to extract the long-term dependency from
the inputs, and then integrated CNN to merge the potential information from different source
data. However, few studies consider fusing the independent correlations of time steps and
periods, which is a usefulmanner to improve the reasoning abilities of the predictivemethods.
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2.2 Transfer LearningMethods in Time Series Analysis

Transfer learning is the process of extracting the knowledge from one task to perform another
target task [3]. In recent years, numerous studies designed many effective architectures to
verify the feasibility in transfer learning on time series problem [35]. Transfer learning in time
series analysis can be divided into two aspects: transfer learning via representation extraction
and transfer learning via fine-tuning.

Transfer learning via representation extraction. In [17], the representations are extracted
from electronic health records by unsupervised pre-trained method, and then evaluated the
generations through forecasting the health state of patients. Gupta et al. [7] leveraged deep
RNN pre-trained for representations extraction and subsequent target tasks in the healthcare
domain. Harutyunyan et al. [9] considered learning generic representations from clinical
time series the multitask training method and shown well performance. We also consider
the to benefit exogenous time series representation to capture the correlation between mean
temperature and HFMD confirmed cases.

Transfer learning via fine-tuning.Zhuang et al. [35] trained a generate time series predictor
to release the time-consuming in multi-channels anomaly detection. Ye et al. [32] pre-trained
a fully convolutional network (FCN) to learn the time series representation and then fine-
tuned two sub-networks parameters to make anomaly detect. Ma et al. [15] addressed the
long-interval consecutive missing values imputation problem in air pollution time series by
fine-tuning source domain trained LSTM to the target domain. However, the fluctuations
of HFMD epidemics are more dramatic than mean temperature, transferring the parameters
trained bymean temperature time series and fine-turning to the target domain cannot improve
accuracy.

In this work, we proposed a method to transfer the upcoming representation on mean
temperature tasks to the HFMD cases prediction tasks. To our best knowledge, there is no
research on HFMD cases prediction that has effectively utilized transfer learning architecture
on this problem before.

3 Problem Formulation

This section gives problem definitions and major notations. Table 1 lists the main notations
used in this paper.

Time series. The consecutive historical observations of HFMD confirmed cases in a
specific state could be described as a univariate time series (UTS). The symbol Y =
(y1, y2, . . . , yL) ∈ R

L×1 represents the cases in L consecutive days, the symbol S =
(s1, s2, . . . , sL ) ∈ R

L×1 denotes the exogenous observations in L consecutive days as well.
Time series prediction problem. The prediction based on past target values is formulated

as:

ŷT+1,1 ← F(Y1:T ,1), (1)

where the symbol T is the look-back window size, which indicates the past T consecutive
intervals. ŷT+1,1 represents the prediction of confirmed cases in the upcoming day. F(·)
represents a mapping.

Commonly, as shown in Fig. 1a, the prediction using exogenous time series is defined as:

ŷT+1,1 ← F([Y1:T ,1; S1:T ,1]), (2)

where [; ] indicates the concatenate operation for multiple group inputs.
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Table 1 Major notations Symbol Notation

L The time steps of time series data

T The look-back window size for time series data

N The number of variables

B The batch size

I The input feature vector, I ∈ R
L×1

H , h The h-th head of attentions heads H

X The input matrix to learning method, X ∈ R
T×N

Y The output matrix to learning method, Y ∈ R
1×1

yT+1,1 The actual confirmed cases of the next day

ŷT+1,1 The confirmed cases prediction of the next day

Y The matrix of target time series, Y ∈ R
T×1

S The matrix of exogenous time series, S ∈ R
T×1

F(·) The mapping function

h The hidden state of recurrent neural network

W The learnable weight matrix

b The learnable bias term

M The output representation of multi-head attention

R The output representation of DTU component

A The linear representation of inputs

(a)

(b)

Fig. 1 The overview of time series learning architecture with exogenous inputs. a Traditional learning archi-
tecture. b The proposed transfer one-step ahead learning architecture
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One-step-ahead split. The one-step-ahead split approach is applied to split time series data
into data pairs further to organize the original input data into supervised data. Then, training
the predictive model with the obtained supervised data. The one-step-ahead split approach
is formulated as: ⎡

⎢⎢⎣
x1,: x2,: · · · xT ,:
x2,: x3,: · · · xT+1,:
· · · · · · · · ·

xK−T−1,: xK−T−1,: · · · xK−1,:

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣
yT+1,1

yT+2,1

· · ·
yK ,1

⎤
⎥⎥⎦ , (3)

where the left part is the input matrix, and the right part is the output results of the predictive
model. To simplify the notation, let X ∈ R

(L−T−1)×T×N and Y ∈ R
(L−T−1)×1×1 denote

input matrix and output matrix. Each sample in (X,Y) is denoted by (x ∈ R
T×N , y ∈ R

1×1).
Transfer one-step-ahead learning problem. The symbols DS and DY correspond to

source and target time series, respectively. We consider the source time series DS =
{(XS

t :t+T ,N ,YS
t+T+1,1)}L−T−1

t=1 represents the exogenous observations, where t is the time
steps and N represents the number of time series instances. And the target time series
DY = {(XY

t :t+T ,YY
t+T+1)}L−T−1

t=1 denotes the HFMD confirmed cases observations.
The learning processing in source time series is formulated as:

p̂T+1,1 ← F(XS;YS), (4)

where p̂T+1,1 is the generation of source learning method. Subsequently, the generation, as
a part of the input, is integrated into the target learning method makes further training:

ŷT+1,1 ← F([XY ; p̂T+1,1];YY ), (5)

where the ŷT+1,1 indicates the predictive result. Hence, the target function in transfer one-
step-ahead learning is formulated as follows:

LY = argmin
ω,φ

∑
t

‖yt − (ω · XY
t + φ · p̂t )‖2, (6)

whereLY indicates the target time series prediction loss,ω andφ are the learnable parameters,
‖ · ‖2 represents the �2-norm.

4 The Proposed Tr-OSH

This section illustrates the proposed Tr-OSH method and makes the description in three
stages: data processing, source time series representation learning, and target time series
representation learning. The schematic illustration of the proposed method ploted in Fig. 2.
The pseudo-code for training Tr-OSH in the source domain and target domain are shown in
Algorithms 1 and 2, respectively.

4.1 Data Processing

Normalization and de-normalization. To release the numerical difference between source
time series and target time series, the normalization techniques introduced in the pre-
processing stage.

The normalization operation can scale the original input data range to the other range.
Normalization techniques are majorly divided into two categories: Min–Max normalization
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(a) (b)

(c)

Fig. 2 The schematic illustration of the proposed transfer one-step-ahead learning method (Tr-OSH). a The
architecture of proposed Tr-OSH, the upper and lower parts represent the processing process of source time
series and the target time series, respectively. b The processing of multi-head attention mechanism. c The
processing of directional transformation unit (DTU)

and z-score normalization. The z-score normalization scale the original inputs to conform
to the standard normal distribution. However, this technique cannot maintain the original
relative difference of each time step, so we use the Min–Max normalization to build a linear
mapping to the original data and scale the inputs into the range of [0, 1]. The normalize and
recovery processing of Min–Max normalization is formulated as:

I = I − min(I)
max(I) − min(I)

, (7)

I = I ′ · (max(I) − min(I)) + min(I), (8)

where max(·) is the maximal value of I , and min(·) is the minimal value of I . I ∈ R
L×1

denotes a feature vector of the inputs, I ′ is the normalized data, L is the number of input
samples.

4.2 Source Time Series Representation Learning

The upper part of Fig. 2a demonstrates the source time series representation learning pro-
cessing.

To effectively distribute the attention on source time series, two multi-head attention
components are employed to highlight the relatively important time step and periods for the
upcoming values. As shown in Fig. 2b, the multi-head attention component linearly projects
the sequential input vectors into different subspaces, and maps the query and key-value
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Algorithm 1: Pseudo code for training Tr-OSH (source domain).

Input: Mean temperature observations DS ∈ R
L×1, the number of attention heads H and window

size T
Output: The representation p̂ ∈ R

1×1 of source time series

1 D̃S ← normalize DS using (7);

2 (XS ,YS) ← one-step-ahead split DS using (3);
// Feed forward and backward gradient updating

3 foreach sample (x̃S , ỹS) in (X̃S
, ỸS

) do
4 for h ← 1 to H do
5 Qh , Kh , Vh ← mapping x̃S using (9), (10) and (11);
6 Sh,b, Sh,t ← calculate attention scores using (12), (13);
7 end
8 Mb, Mt ← summarize Sb and St using (14);

9 M̃c ← Mb, Mt and D̃S
using (15);

10 for t ← 1 to T do
11 rt ← M̃c and ht−1 using (16);

12 zt ← M̃c and ht−1 using (17);

13 h̃t ← M̃c, rt and ht−1 using (18);

14 ht ← h̃t , zt and ht−1 using (19);
15 end
16 p̂ ← linear projecting ht using (20);
17 Loss LS ← ỹS and p̂ using MSE;
18 Backward using Adam optimizer;
19 end
20 return p̂

Algorithm 2: Pseudo code for training Tr-OSH (target domain).

Input: HFMD observations DY ∈ R
L×1, source time series representation p̂ and window size T

Output: The prediction of next step HFMD confirmed cases ŷ ∈ R
1×1

1 D̃Y ← normalize DY using (7);

2 (XY ,YY ) ← one-step-ahead split DY using (3);
// Feed forward and backward gradient updating

3 foreach sample (x̃Y , ỹY ) in (X̃Y
, ỸY

) do
4 Rb,Rt ← highlight x̃Y using (21) and (22);

5 A ← Rb,Rt and x̃Y using (23);

6 Ô ← A and p̂ using (24);

7 Loss LY ← ỹY and Ô using MSE;
8 Backward using Adam optimizer;

9 ŷ ← de-normalize Ô using (8);
10 end
11 return ŷ

pairs to the predictive target in each subspace, which shows better performance in extracting
complex potential information than single-head attention.
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First, given a set of queries and key-value pairs by the source time series observations,
which can be defined as follows:

Qh = Wh,q · X̃S + bh,q , (9)

Kh = Wh,k · X̃S + bh,k, (10)

Vh = Wh,v · X̃S + bh,v, (11)

where Q, K , V ∈ R
H∗(B×T×1) represent the query, key and value, respectively. h denotes

the h-th head of attentions heads, Wh,: ∈ R
B×1×γ and bh,: ∈ R

B×γ is weight and bias of
h-th head attention, γ is a constant indicates the hidden state dimensions, which used to keep
the gradient stable. After that, the multi-head attention scores can be calculated as follows:

Sh,b = softmax(
(Qh · K τ

h )b,:,:√
γ

), d = 0, (12)

Sh,t = softmax(
(Qh · K τ

h ):,t,:√
γ

), d = 1, (13)

where Sh ∈ R
H∗(B×T×T ) represents the multi-head temporal attention score, Sh,b and Sh,t

denotes the score of the time step and period respectively. d indicates the attention direction
of input vector. d = 0 denotes weighting on the each period, and d = 1 represents highlight
the significant time steps.

Finally, summarize the attention context vectors from each head, and then generate the
final attention representation by connecting the output of different heads.

M = Wm · [S1 × V1; S2 × V2; · · · ; SH × VH ], (14)

whereM ∈ R
B×T×1 denotes the finalmulti-head attention representation,which concatenate

different transformationmatrices in different head.Wm ∈ R
H×γ×1 is linear projectionweight

matrix.
After collecting the transform information in different time intervals by the dual-direction

multi-head attention mechanisms, the CNNRNN combination component is employed to
extract further each time step’s correlation of source time series. The CNNmodule is applied
to generate indirect nonlinearity projecting for each time step.

M̃c = Dropout(ReLU(Wc ⊗ [Mb; Mt ; X̃S] + bc)), (15)

where the symbol⊗ denotes the convolution operation, M̃c ∈ R
B×T×K indicates the product

time series feature map, K is the output channel. Mb, Mt ∈ R
B×T×1 are the production of

multi-head attention mechanism. Wc represents the kernel and bc is the bias. Dropout and
ReLU are introduced to prevent overfitting and gradient disappearance. The output feature
vectors are then input into the GRU component:

rt = σ(Wr · [M̃ t
c;ht−1] + br ), (16)

zt = σ(Wz · [M̃ t
c;ht−1] + bz), (17)

h̃t = tanh(Wh̃ · [M̃ t
c; rt ◦ ht−1] + bh̃), (18)

ht = (1 − zt ) ◦ h̃t + zt ◦ ht−1, (19)

where the ht is the sequence hidden state at time t , M̃ t
c represents the input tensor at time

t , zt , zt and h̃t are the reset, update, and new gates, respectively. σ is the sigmoid function,
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and ◦ is the element-wise product. Wr ,Wz and Wh̃ is the learnable weights, br ,bz and bh̃
is bias for input and hidden states.

To obtain the upcoming state of source time series, the fully connected feed-forward layer
is employed to converge the hidden state representations and make linear projecting to the
forecast target:

p̂ = Wsout · ht + bsout , (20)

where p̂ represents the prediction and also the significant transfer parameter to the target
method processing.Wsout is a weight parameter that needs to be learned, and bsout is a bias
term, and ht is the hidden state which is represented from the source time series.

4.3 Target Time Series Representation Learning

As shown in the lower parts of Fig. 2a, to enhance the non-linearity and mitigate the gradient
explosion and gradient disappearance problems, the ReLU layer is employed to rectify the
delivery information of the target processing stage. After that, we proposed a directional
transformation component to highlight the critical outbreak time steps or periods of target
time series, which is defined as:

Rb = δ · exp(Wdb ◦ X̃Y
b,:,:)∑

b exp(Wdb ◦ X̃Y
b,:,:))

, d = 0 (21)

Rt = δ · exp(Wdt ◦ X̃Y
:,t,:)∑

t exp(Wdt ◦ X̃Y
:,t,:))

, d = 1 (22)

where exp(·) represents the exponential function, R is viewed as the attention weight dis-
tribution on the d-th direction, Wdb,Wdt ∈ R

T×1 is the weighting matrix. δ denotes a sign
vector generated by theBernoulli probability function. The processing is presented in Fig. 2c.

To establish the connection between the upcoming values and multiple representations,
the linear global autoregression component is integrated to establish a linear projecting:

A =
∑
T

Wa[Rb;Rt ; X̃Y ] + ba, (23)

where A ∈ R
B×1×1 is the output potential representation of target time series observations,

Rb,Rt ∈ R
B×T×1 denotes the transform representation of time period and time steps,

respectively.Wa and ba are the learnable parameters.
Eventually, the final predictive result is generated by fusion the potential representation

of target and source time series:

ÔT+1,1 = Wo[A; p̂] + bo, (24)

where ÔT+1,1 is normalized prediction of the next step HFMD cases, ŷT+1,1 represents the
de-normalize results. Wo is the weight of outputs from above two kind representations, and
bo is a bias term.
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Fig. 3 The distribution of daily outpatient visit counts and mean temperature values from January 1, 2012 to
December 31, 2018

Table 2 The basic statistical
characteristics of source time
series (mean temperature) and
target time series (HFMD
confirmed cases)

Characteristics Mean temperature HFMD

Min 6 0

Max 33 162

Mean 22.534 20.188

Median 23 13

STD 6.238 21.294

“STD” denotes standard deviation

5 Experimental Configurations

This section introduces data collections, performance measurements, comparable methods,
and model configurations.

5.1 Data Collections

As Fig. 3 plotted, a total of 2556 days of observations were collected to conduct experiments
and establish predictive methods.

The HFMD confirmed cases in Xiamen are obtained from the Chinese Center for Disease
Control and Prevention (China CDC), which are statistic counts of patients diagnosed at
health care facilities. All the clinical diagnoses of HFMD are conformed to the guidelines
for diagnosing and treating hand-foot-mouth disease by the National Health Commission of
China in 2018. All individual-level data is anonymized.

Themean temperature (◦C) values were collected fromWeather Underground,1 which is a
famousweatherwebsitewithmore than 33,000 privateweather stations. Hence, it can provide
comprehensive, timely, and reliable meteorological data from meteorological monitoring
sites. The provided temperature information has been formatted in days.

The cases of HFMD outpatient and historical mean temperature record from January 1,
2012 toDecember 31, 2018 is arranged in chronological order.Weused the front 80%samples
to training models, and the rest 20% data are used to evaluate the predictive performance of
models.

The basic statistical characteristics of mean temperature series and HFMD confirmed
cases are listed in Table 2.

1 http://www.wunderground.com.
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5.2 PerformanceMeasurements

Numerous measurements have been used to assess the model predict performance. To make
a comprehensive evaluation, we combined four traditional metrics, i.e., MAE , MAPE ,
RMSE , and R2, to estimate the predictive results of the corresponding models for univari-
ate time series prediction. These metrics can be expressed in the following mathematical
expressions:

(1) The Mean Absolute Error (MAE)

MAE = 1

τ

∑
t∈τ

(|yt+1 − ŷt+1|), (25)

(2) The Mean Absolute Percentage Error (MAPE)

MAPE = 1

τ

∑
t∈τ

| yt+1 − ŷt+1

yt+1
|, (26)

(3) The Root Mean Square Error (RMSE)

RMSE =
√
1

τ

∑
t∈τ

(yt+1 − ŷt+1)2, (27)

(4) The coefficient of determination (R2)

R2 = 1 −
∑

t∈τ (yt+1 − ŷt+1)
2

∑
t∈τ yt+1

2 . (28)

where yt+1 and ŷt+1 are the ground truth values and predictions of HFMD confirmed cases
at time t + 1. τ is the length of the test period. The performance with the smallest MAE ,
MAPE , RMSE , and the largest R2 are considered the best model.

5.3 Competition Model

Many studies have been employed for infectious disease prediction and time series pre-
diction. To demonstrate the performance of the proposed Tr-OSH method, we select some
representative methods as competition models:

(1) Autoregression with exogenous data (ARE) [23] processes the target and exogenous time
series simultaneously based on the traditional Autoregression (AR) method [8].

(2) Long and short-term memory (LSTM) [10] obtains time-long dependence of time-series
data by several gate components.

(3) Gated recurrent unit (GRU) [4] using concise architecture than LSTM, which improves
the computation efficiency.

(4) Encoder–decoder [4] adopt LSTM component in the encoding process and the decoding
process, respectively.

(5) Multivariate shapelet learning (MSL) [23] learns the shapelets from historical observa-
tions and benefited these shapelets to generate the explainable predictions.

(6) Convolution neural network (CNN1D) [6] using convolution operation to explore deep
feature representations of time series.

(7) CNNRNN [28] employs CNN to extract the feature representations, and then learns the
relationship of each step through RNN.
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(8) Dual grained representation (DGR) [26] benefits the non-linear representations from
target time series and exogenous data by two learning units.

(9) Dual sides autoregression (DSAR) [25] acquires linear representations from target
observations and exogenous inputs independently, and fusion these representations in
combination stage.

5.4 Model Configuration

For fair competition on all models, eachmethod is trained using theAdamoptimizer. Besides,
the window size T is adjusted for all methods from 1 to 20, and the batch size is searched
from {1, 2, 4, 8, 16, 32, 64, 128, 256}. The mean squared error (MSE) is chosen as the loss
function. For LSTM and GRU methods, the number of hidden neurons is set to {32, 64}. For
the Encoder–decoder method, the structures are based on LSTM, and the number of hidden
neurons is set to 32. The training epoch and learning rate are tuned to the optimal states of
each method.

6 Results and Analyses

In this section, we conduct several experiments to reveal the effectiveness of the Tr-OSH
method. Firstly, we assess the parameter sensitiveness of the proposed method. Secondly, we
compare the performance of Tr-OSH and competition methods. Then, the ablation analysis
is introduced to demonstrate the substructure validity of the Tr-OSH.

6.1 Effects on T and B

The length of windowed size indicates utilizing past T days observations to predict the
upcomingvalues,which is highly correlatedwith the incubation period of diseases. Therefore,
we measure the performance in terms of MAE , MAPE , RMSE , and R2 to investigate the
optimal window size. While holding other parameters constant, the window size T gradually
increases from 1 to 20, and the results are presented in Fig. 4. The optimal performance is
found around T = 4, which conform to the incubation period of HFMD (averages around
3–5 days).2

Obviously, as window size increases, performance becomes more unstable and deteri-
orates. When T = 6, the second best MAP and MAPE are shown, while other metrics
are unsatisfactory. Similarly, when T = 11 displayed the second best RMSE and R2, but
the MAE and MAPE relatively worse. This phenomenon results from the characteristics
that MAE and MAPE are applied to evaluate the absolute error while the RMSE and
R2 incline to express the squared loss, which magnifies the predictive error in the outbreak
period. Hence, when T = 4, the overall forecast performance is relatively superior.

Considering the evaluation results of window size T , we fixed the T = 4 to assess the
effects on B, and demonstrated the results in Fig. 5. Remarkably, the optimal values of all
matrices are found when B = 2. The size of B is associated with the weighting grained of the
consecutive periods. The smaller B indicates the finer-grained weighting for each inputted
time period to next-step values, and more easy to obtain a better performance. However, the

2 http://www.nhc.gov.cn/.
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(a) (b)

(c) (d)

Fig. 4 The sensitiveness of window size T in terms of MAE , MAPE RMSE and R2. The optimal values
highlighted by the red dash lines. (Color figure online)

Tr-OSH method shows the worse performance when B = 1. A possible reason is that when
B = 1, the proposed method tends to over-fitting.

6.2 Performance Comparison

According to the conducted experiments on window size T and batch size B, we learn the
effects of the parameters to the Tr-OSH method with respect to the four metrics, the optimal
values of these metrics are obtained around T = 4 and B = 2. Meanwhile, each competition
method also uses the optimal results from different window size T . The experimental results
are plotted in Table 3, which ARE, DSAR, DGR, and Tr-OSH methods utilize the mean
temperature observation, and other methods merely use the HFMD observations.

Several important conclusions are summarized from the comparison experiments:

(1) The proposed Tr-OSH method has the best performance over four metrics.
(2) In terms of MAE , the CNNRNN has the second best performance.
(3) From the perspective of MAPE , the LSTM has the second best performance.
(4) The DGR has the second best performance in terms of RMSE and R2.
(5) Fusion the temperature series, the accuracy of prediction at outbreak period has been

enhanced.
(6) Simple CNN1D structure shows the worst performance.
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(a) (b)

(c) (d)

Fig. 5 The sensitiveness of batch size B in terms of MAE , MAPE RMSE and R2. The optimal values
highlighted by the red dash lines. (Color figure online)

Table 3 The performance
comparison in terms of MAE ,
MAPE , RMSE and R2

Model MAE MAPE RMSE R2

AR 5.87195 0.31936 8.45458 0.89780

LSTM16 5.78652 0.31596 8.35753 0.90013

LSTM32 5.85146 0.31140 8.38398 0.89950

GRU16 5.83043 0.31946 8.37650 0.89968

GRU32 5.82171 0.32078 8.37669 0.89967

MSL 5.81452 0.31874 8.34186 0.90051

CNN1d 5.95201 0.32894 8.45965 0.89768

CNNRNN 5.76217 0.31690 8.32234 0.90097

Encoder–decoder 5.85165 0.32667 8.39041 0.89934

ARE 5.89654 0.33101 8.39652 0.89920

DSAR 5.87570 0.32117 8.41720 0.89870

DGR 5.87554 0.32599 8.31492 0.90115

Tr-OSH 4.04341 0.23754 6.84674 0.93298
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Table 4 The ablation analysis in
terms of MAE , MAPE , RMSE
and R2

Model MAE MAPE RMSE R2

Tr-OSH-Y 4.45224 0.2547 7.35699 0.92261

Tr-OSH-AR(Y) 5.88936 0.32481 8.53233 0.89591

Tr-OSH-AR(S) 4.34208 0.25587 7.10348 0.92785

Tr-OSH 4.04341 0.23754 6.84674 0.93298

We divide the competition methods into two categories: one that uses only the HFMD
observations for training, and the other that utilize the exogenous temperature data.

The simple CNN has the worst performance for the methodmerely using target time series
(HFMD). A possible reason is that the HFMD time series consists of numerous stochastic
fluctuations. The CNN1D is hard to extract the comprehensive relationship between each
time step. Hence, the CNNRNN further integrates the RNNs component and performs rela-
tively well. The LSTM and GRU also demonstrate the effectiveness of recurrent architecture.
Meanwhile, LSTMshows the second best performance in terms ofMAPE . TheMSLmethod
can reduce the error in high-risk periods by learning the significant subsequence. But some
general information is also neglected and leads to reduced accuracy.

Fusion the source time series (mean temperature), the performance of ARE and DSAR are
significantly reduced compared with others learning methods, which illustrates the vanilla
linear-based methods incapable of fitting the complex fluctuations. The DGR approach uses
theGRUunit to improve non-linearity and capture the associated characterization for both the
target and source time series processing. Therefore,DGRobtains the second best performance
in terms of RMSE and R2.

The proposed Tr-OSH has the best performance over all the inputs in four evaluation
metrics. Considering the superiority of the RNN unit to extract potential correlation informa-
tion for time series, we incorporate the CNNRNN component to enhance the non-linearity
of source representations after being transformed by dual directional multi-head attention
mechanism. Inspired by the unidirectional weak-feedback mechanism, the generation rep-
resentation of the source time series is combined into the target training process. Besides,
the critical time steps or periods of target inputted are also strengthened through the DTU
component. The proposed Tr-OSH takes the local time steps and periodical correlation of
sequences into account and fusion the non-linearity representations to product predictions.
Consequently, the proposed method exhibits the best performance.

6.3 Ablation Analysis

In this section,we conduct an ablation analysis to demonstrate the usefulness of each designed
module in our proposed Tr-OSHmethod. The performance comparison of three perspectives
and proposed Tr-OSH are illustrated in Table 4.

To demonstrate the contribution of each training module in Tr-OSH, we replace the
learning module in source time series or target time series with the simple AR compo-
nent, respectively. The Tr-OSH-AR(S) uses AR to produce the representation of source time
series, which slightly affects predictive performance. A possible reason is that the target time
series representations have a more important place in forecasting upcoming HFMD cases.
The performance of Tr-OSH-AR(Y) further verified this reason, which supplants the target
learning unit with the AR, the accuracy drops significantly. Then, to show the effectiveness of
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(a) (b)

Fig. 6 The visualizations and correlation analyses between real values and predictions

the exogenous temperature information, we remove the representation of source time series in
target processing in Tr-OSH-Y. The predictive accuracy is obviously decreasing. Therefore,
we summarize the observations as follows: (1) Each design module plays a significant role in
the proposed Tr-OSH method. (2) The representation structure of the target time series has
a relatively important contribution. (3) It is useful to integrate the exogenous information to
improve accuracy in Tr-OSH.

6.4 Analyses on Predictions

The visualization comparing actual values and predictions is presented in Fig. 6a. From the
performance, we summarize the following information: (1) The development of HFMD
epidemics can be well traced in the low-risk periods. (2) The performance in high-risk period
with gentle trend also performs well, while the outbreak period prediction still room for
improvement.

The normalized results and Pearson correlation of actual values and predictions is demon-
strated in Fig. 6b. To estimate the relationship between numerical magnitude and accuracy,
we use the first-order function to fitting the results, which draw the following conclusions:
(1) The predicted value is significantly correlated to the actual value. (2) Consistent with
the visualization of predictions, the predictive error will magnify as the increase of cases
magnitude.

7 Conclusions

In this paper, we investigated a novel HFMD predictive transfer method Tr-OSH to fusion the
representation of temperature depending on the unidirectional weak-feedback mechanism.
Specifically, we incorporate the multi-head attention component and CNNRNN method to
extract the non-linearity association from source time series and produce upcoming represen-
tation. Then, we transfer the source representation to the target processing, and combined the
generations, which capture from the time steps and period relationship of target time series,
to obtain the final results. The experiments on real-world HFMD historical observations
demonstrate the effectiveness of the proposed method.

In the future, we will focus on investigating the cross-correlations phenomenon in multi-
variate time series prediction and multi-horizon prediction.
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