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Hand, foot, and mouth disease (HFMD) is an infection that is common in children under 5 years old. This disease is not a serious
disease commonly, but it is one of the most widespread infectious diseases which can still be fatal. HFMD still poses a threat to the
lives and health of children and adolescents. An effective prediction model would be very helpful to HFMD control and prevention.
Several methods have been proposed to predict HFMD outpatient cases. These methods tend to utilize the connection between
cases and exogenous data, but exogenous data is not always available. In this paper, a novel method combined time series
composition and local fusion has been proposed. The Empirical Mode Decomposition (EMD) method is used to decompose
HFMD outpatient time series. Linear local predictors are applied to processing input data. The predicted value is generated via
fusing the output of local predictors. The evaluation of the proposed model is carried on a real dataset comparing with the state-
of-the-art methods. The results show that our model is more accurately compared with other baseline models. Thus, the model
we proposed can be an effective method in the HFMD outpatient prediction mission.

1. Introduction

Hand, foot, and mouth disease (HFMD) is a common infec-
tion caused by a group of viruses. It is likely to occur to chil-
dren under 5 years old. HFMD causes a serious threat to
children’s health. Especially in developing Asian countries,
this disease is more likely to cause big damage. China is a
country with a large population and vast territory, and the
development of different regions is uneven. Under this situa-
tion, it is difficult to control infectious diseases spread in
China. HFMD has been a nationally notifiable disease since
2008. The new cases should be reported in 24 hours. How-
ever, the situation is still worsening. According to the data
from the Chinese Centre for Disease Control and Prevention
(CCDC) [1], nearly 2 million cases were reported in China in
2019, with an incident rate of over 137/100,000. Although
most HFMD patients are self-limiting, HFMD can still be
fatal. Thus, the prevention and control of HFMD are very
important. And if health authorities had anticipated the situ-

ation before the outbreak, a lot of unnecessary damage could
have been avoided.

Many methods have been proposed to predict HFMD
cases. ARIMA is one of the most general time series models,
which is already used in HFMD prediction work [2]. ARI-
MAX is the ARIMA with external parameters added, and
study showed that the ARIMAX has better performance than
ARIMA [3]. With the increase of computer computing
power, multiple learning models are utilized in HFMD pre-
diction, such as LSTM [4], RNN, and CNN-RNN [5]. These
methods often attempt to learn the law of the disease spread
trend based on a global predictor.

However, on the one hand, the HFMD outpatient data is
nonlinear and nonstationary. On the other hand, the spread
of HFMD is affected by complex and diverse external factors,
such as climate, living habits, and living conditions. These
two characteristics make it difficult to improve performance
based on a global predictor. The relationship between target
data and external factors provides a new idea to researchers,
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and many studies focus on prediction using external factors
to enhance the model performance have been down. The
data about external factors is named exogenous data to dis-
tinguish it from target data. In this paper, we use new ideas
to improve the accuracy of prediction: time series decompo-
sition and local fusion.

Essentially, decomposition is the process of dividing a
complex problem into subproblems that can be easily solved.
In our experiments, a classical method named Empirical
Mode Decomposition (EMD) is used to decompose the
HFMD outpatient data. This method decomposes a time
series into several subseries named Intrinsic Mode Function
(IMF) and a residual. Each IMF contains a local feature. In
addition, in our study, the residual is also treated as an
IMF. Each IMF is treated equally by local predictors in the
experiment.

In this paper, we propose a Concurrent Autoregression
with Decomposition (CARD) model for HFMD prediction.
We try to improve the accuracy of prediction as much as pos-
sible without exogenous data. CARD generates predicted
value by fusing the output of the local predictors. The
method utilizes two linear autoregression predictors to pro-
cess the past outpatient data and the IMFs, respectively.
Then, a fusion component fuses the outputs of two linear
predictors. Finally, a global predictor is introduced to gener-
ate the predicted result. In a word, we propose an effective
time series decomposition and local fusion method, which
can catch a higher accuracy than several general methods
that only use history outpatient data.

The main contributions of this paper can be summarized
as follows:

(1) We propose a novel prediction model, which applied
time series decomposition and local fusion to the pre-
diction of outpatient cases of HFMD

(2) A classical decomposition method named EMD is
introduced to decompose the HFMD outpatient time
series. Compare with several other decomposition
methods, EMD is simpler and more efficient in this
study

(3) The proposed method applies a linear weighted mod-
ule to fuse the output of two local predictors. Each
local predictor predicts an output result indepen-
dently. Then, the fusion module trains to generate
the final predicted value of the output of local
predictors

The rest of the paper is organized as follows. Section 2
introduces related work. The CARD model we proposed is
explained in detail in Section 3. Section 4 illustrates the
experiment design. Section 5 analyzes the experimental
results. Finally, the whole research is summarized in Section
6.

2. Related Work

This section introduces several most commonly used decom-
position methods and fusion methods related to our research.

2.1. Decomposition Methods. A time series can be decom-
posed into several subseries via decomposition methods.
For time series decomposition, the following methods are
widely used: wavelet transform [6], Robust Seasonal-Trend
Decomposition (RobustSTL) [7, 8], EMD [9], and Ensemble
Empirical Mode Decomposition (EEMD) [10].

Wavelet transform [6] inherits and develops the idea of
localization short-time Fourier transform. Wavelet trans-
form is a local transform not only the frequency but also time
can be obtained. The method replaces the basis of Fourier
transform. For a signal that has been processed by wavelet
transform, both frequency part and specific position in time
can be obtained. Compared with Fourier transform, it has
good time-frequency localization characteristics and can
extract information on signals more effectively.

RobustSTL [7, 8] is a robust method for decomposing
complex time series into trend, seasonality, and remainder
components. This method allows for multiple seasonal, cyclic
components, and multiple linear regressors with constant,
flexible, seasonal, and cyclic influence.

EMD [9] is a Fourier transform-based signal decomposi-
tion method, which can process any nonlinear and nonsta-
tionary signal adaptively. Compared with most of the
decomposition methods, EMD is easy to use, since EMD
decomposes data based on the local feature of the data, so this
method is adaptive and does not require setting up extra
parameters in advance.

EEMD [10] is a variant of EMD. For EMD, the extremum
points of the signal will affect IMFs, and mode mixing will
occur if the distribution of the extremum is uneven. EEMD
is proposed to solve the mode mixing problem of EMD. This
method using the advantage of uniform distribution of white
noise spectrum, the white noise is added to the signal to be
analyzed so that the signals of different time scales can be
automatically separated to the corresponding reference
scales. This method is mainly to add white noise to the signal
to supply some missing scale which has good performance in
signal decomposition.

In recent years, there are some time series prediction
works using time series decomposition in several search
areas. A regression model combined with wavelet transform
is proposed to forecast the future value of the S&P 500 [11].
EMD is used for electricity load forecasting [12]. Besides,
time series decomposition has been applied to disease predic-
tion work. An ensemble model for chickenpox forecast uti-
lizes the STL decomposition to generate the input of the
model. Wavelet-ARIMA model got a good performance in
COVID-19 case prediction [13]. An improved EEMD algo-
rithm is used to decompose the diarrhea time series [14]. A
TDDF model utilizes heterogeneous data to predict the
HDMD cases [15].

The HFMD outpatient time series data is applied in our
study. The spread of HFMD is easily affected by many exter-
nal factors. Thus, the processing of the time series is difficult.
But the adaptive nature of EMD overcomes this problem. In
this paper, we introduce EMD to process our input data.

2.2. Fusion Methods. Time series forecasting has been a sub-
ject of interest in several different research areas including
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disease control and prevention. In the practical problems of
nature, things are not isolated from each other but inextrica-
bly connected. The same goes for HFMD. Many studies have
fused exogenous data to improve the accuracy of prediction.

The spread of HFMD is influenced by many external fac-
tors, such as meteorological factors including temperature,
humidity, rapid climate change, local policies, air quality,
and population [15–17]. Besides, making good use of some
data can help researchers to predict, for instance, the search
engine query data [18, 19].

Several methods using exogenous data are collected, and
these models can be classified into two categories—stochastic
methods and learning methods. Stochastic methods usually
combine the past data and exogenous data by a linear method
and then learn a linear function to get prediction results [16,
17, 19–23]. The main differences between these methods are
the regression of target variables, functions on exogenous
data, and the decomposition of exogenous data. In the past
few years, exogenous data has been widely used in learning
methods. These methods can be roughly divided into the fol-
lowing three categories:

(1) Traditional Learning Methods Using Exogenous
Inputs. The most common models are multiple linear
regression (MLR), support vector regression (SVR),
and neural network. For these methods, exogenous
data is treated as an input dimension, just like the
past data, in which each element of the inputs is
equally treated. To prevent data jitter, these methods
need to be validated.

(2) The learning methods focus on temporal, which
inputs of different categories are differential treat-
ment, such as [24–26]. For these methods, the tem-
poral dynamics of input data is captured to use
RNN structures, and a nonlinear mapping from
inputs to the target is learned from training data. To
differently treat exogenous inputs and target inputs,
the encoder-decoder structure is employed to do time
series prediction tasks. The encoder-decoder frame-
work consists of two RNN layers and maps input
sequence to output sequence [27]

(3) Temporal Attention Learning Methods. The attention
mechanism is fused into sequential models to predict
future values, such as TPA-LSTM [28], DA-RNN
[29], HRHN [30], and LSTNet [31]. These models
have strong memory abilities in keeping numerous
samples. Especially for small-scale infection data,
the training loss value would be very small, but the
accuracy would be worse than the general methods
and is not general enough.

Though the exogenous data can help to improve accu-
racy, it still has some unavoidable defects. That is, the exoge-
nous data requires a mass of energy to collect and organize
and it is unavailable sometimes. Therefore, it is not always
wise to do prediction relying on exogenous data, especially
in real-time systems. It is almost impossible to integrate
required data into the model dynamically. Considering the

drawbacks of exogenous data, we discussed above, our atten-
tion focuses on target data itself and we do not utilize the
exogenous data.

3. The Proposed CARD

This section formulates the problem and illustrates our
approach.

Figure 1 shows an overview of the proposed model. The
model consists of 3 stages: data preprocessing (left), Concur-
rent Autoregression with Decomposition (upper right), and
data postprocessing (bottom right). For any module in
Figure 1, if it makes any changes in the input data, then this
module will be connected to the following modules using
dotted lines.

In the data preprocessing stage, the input data is the
HFMD outpatient. The outpatient data is normalized and
then further segmented. Finally, they are decomposed into
finite IMFs and residual by EMD. In the CARD, softmax
function is introduced to avoid unfairness in feature extrac-
tion. Two linear autoregression components are used to mine
the sequence feature details and enhance the feature repre-
sentation of input data. At last, the output of two linear com-
ponents is fused and another linear component is applied to
generate the predicted value. In the data postprocessing
stage, the final result is generated and evaluated after
denormalization.

3.1. Problem Formulation and Notations. The main notations
are explained in Table 1.

Windows size T . A window is a subsequence of the orig-
inal data. T is the length of the subsequence. And the subse-
quence is the data in a certain interval be observed to predict
the value of future time point.

IMF. If we do not have a termination, the EMD algorithm
will loop an infinite number of times. In our experiments, we
set a max number of the IMF which is symbolized as K to
stop the decomposition.

The problem of this paper can be addressed as the prob-
lem of time series prediction missions. A time series is a list of
continuous history observation values with equal time inter-
vals. Our goal is to get a predicted value of the outpatient
value of the next day.

It is a mapping from the history observation time series
and IMFs to the future outpatient value. The symbol yt ∈
ℝ1 is the value at time t. The history observation values with
window size T are symbolized as ½y1, y2,⋯, yT �. And Dðy1,
y2,⋯, yTÞ is the matrix obtained by decomposing the win-
dowed time series. ŷT+1 denotes the predicted value at time
T + 1. The mapping process can be formulated as follows:

ŷT+1 = F y1, y2,⋯, yT ,D y1, y2,⋯, yTð Þð Þ: ð1Þ

In this study, ½y1, y2,⋯, yT � denotes the HFMD outpa-
tient window size T .

3.2. Data Preprocessing. Normalization. The normalization
operation scales the data in a specified range. In order to
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avoid large data dominance caused by the difference of data
magnitude, normalization is essentially requisite.

Min-max normalization (0-1 normalization) is a widely
use method in time series normalization. It is a linear trans-
formation of the original data, making the result fall into
the interval of (0,1). The original data can maintain the dif-
ference of value after the linear transformation. Thus, Min-
max is suitable to normalize the outpatient time series in
our study. The formula of the Min-max normalization is
expressed as follows:

x′ = x −min xð Þ
max xð Þ −min xð Þ , ð2Þ

where x denotes a sample of observed samples, x′ is the nor-
malization result, min ðxÞ is the smallest value in the sam-
ples, and max ðxÞ is the biggest.

Segmentation. The purpose of segmentation is to trans-
form time series data into supervise data. For a given time
series Y with K points, the segmentation formula is as
follows:

y1 y2 ⋯ yT

y2 y3 ⋱ yT+1

⋮ ⋱ ⋱ ⋮

yK−T−1 ⋯ ⋯ yK−1

2
666664

3
777775
→

yT+1

yT+2

⋮

yK

2
666664

3
777775
, ð3Þ

where the left matrix is the input data and the right matrix is
the output data.

Empirical Mode Decomposition. In this paper, we use
EMD [13] to do data decomposition. We perform time series
decomposition on the supervision data generated by segmen-
tation. For each sequence, we decompose it into 3 IMFs and a
residual.

An IMF must satisfy the requirements as follows:

(1) In any local time scale, the number of extrema and
the number of points cross zero must be equal or
the difference is 1

(2) At any point, the mean value of the upper envelop
defined by the local maxima and the lower envelope
defined by local minima is close to 0

The procedures of EMD algorithm are shown in
Algorithm 1.

Let X = ½IMF1, IMF2,⋯, IMFk, residual� be the decom-
posed data.
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Figure 1: The scheme illustration of the proposed CARD.

Table 1: Notation and semantic.

Notation Semantic

K Number of points in the time series

T Window size

k Number of IMF

O Input matrix, O ∈ℝ1×K

Y Matrix after split, Y ∈ℝ K−T−1ð Þ×T

X Matrix after decomposition, X ∈ℝ K−T−1ð Þ×T×k

ŶT+1 Output matrix, ŶT+1 ∈ℝ1× K−Tð Þ
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3.3. Concurrent Autoregression. The processing of IMF. We
utilize the softmax function to process the IMF future. The
softmax function is an extension of the logistic function. This
function maps a k-dimensional vector containing any real
number to another k-dimensional real-valued vector. Such
that each element is in the interval (0, 1), and the sum of all
elements is 1. After the process of softmax, the largest value
is highlighted and the other components that are far below
the maximum value are suppressed. The formula of softmax
function is expressed as follows:

ωi =
exi

∑k
j=1e

xj
, ð4Þ

where xi is the output value of the i-th input vector. ω is the
weight matrix. k is the number of output elements. The gen-
eration of input memory ai is based on the input vectorX and
the weight matrix ω. The formula is expressed as follows:

ai = ω ×X: ð5Þ

CARD employs a linear layer to receive a regression
result of IMF. The formula is expressed as follows:

eq =〠ωq × ai + bq, ð6Þ

where eq is the weighted IMF feature matrix, ωq is the weight
corresponding to the input dimension, and bq is a bias value.

The processing of the HFMD outpatient data. The pro-
cessing of outpatient data is essentially the same as that of
IMFs. The difference is the softmax function is not use for
normalization. Only a linear component is applied to analyze
the trends in outpatient data. The formula is expressed as fol-
lows:

ey =〠ωy × yi + by , ð7Þ

where ey is the weighted outpatient feature matrix, ωy is the
weight corresponding to the input dimension, and by is a bias
value.

Concatenation. The CARD model combines the output
of two concurrent working components by the cat function
in PyTorch. The data is treated as the input for last linear
module, and finally, this module generates a predicted value
ŷT+1. The generation of ŷT+1 is formulated as follows:

ŷT+1 =Ф ω ey; eq
� �

+ b
� �

, ð8Þ

where ½ey; eq� is the concatenated vector of dual side outputs,
ω is the weight of outputs from dual represented sources,
ŷT+1 is the predicted value of the outpatient number in the
next day, b is a bias value, and Ф represents the activation
function.

3.4. Data Postprocessing. Denormalization. Denormalization
is an inverse procedure of normalization, and the denormali-
zation formula is applied to generate the final prediction
results acquired from our model. The formula is expressed
as follows:

x = x′ × max xð Þ −min xð Þð Þ +min xð Þ: ð9Þ

The detail steps of the proposed CARD are shown in
Algorithm 2.

4. Experimental Setup

This section configures our experiments. Section 4.1 intro-
duces the dataset we use. Section 4.2 gives three evaluation
metrics. And Section 4.3 presents the implementation of
our model and the baseline models for comparison. All
experiments are proceeding with the real-world HFMD out-
patient case time series data.

4.1. Data. The real dataset we applied in our experiments is
HFMD outpatient case data which is collected from the Xia-
men Center for Disease Control and Prevention (XCDC).
This dataset is the daily record data from January 1, 2012,
to December 30, 2018. A total of 2555 sample points are
included. In Figure 2, the time series is shown at one-year
intervals.

4.2. Metric. To measure the performance of our proposed
model and compare our model with the selected baseline
models, 3 widely used standard methods are adopted in our
experiments, and the formulas are defined as follows:

MAE = 1
T
〠
T

t=1
yt − ŷtj jð Þ, ð10Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T
〠
T

t=1
yt − y∧tð Þ2

vuut , ð11Þ

R2 = 1 − ∑T
t=1 yt − y∧tð Þ2

∑T
t=1 �yt − y∧tð Þ2

: ð12Þ

In these equations, the parameter yt is the real

Input: The original signal xðtÞ, max-IMF k
Output: k IMFs and a residual
1. i = 1;
2. while i < k do
3. UpperðtÞ = spline localmaxima xðtÞ;
4. LowerðtÞ = spline localminima xðtÞ;
5. AvgðtÞ = 1/2ðUpperðtÞ + LowerðtÞÞ;
6. hðtÞ = xðtÞ –AvgðtÞ;
7. if hðtÞ meets two requirements of IMF do
8. IMFi = hðtÞ;
9. i + +;
10. xðtÞ = AvgðtÞ;
11. Residual = xðtÞ

Algorithm 1: EMD
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observation value at time t, and ŷt is the predicted value pre-
dicted by model at the same time.

MAE is a basic and universal metric in regression mis-
sion. Compared with MAE, RMSE has the same degree as
the data. For R2, the denominator is understood as the dis-
persion degree of the original data, and the molecule is the
error between the predicted data and the original data. The
division of the two can eliminate the influence of the disper-
sion degree of the original data. These three metrics can be
used together to evaluate the performance of the model com-
prehensively and objectively.

4.3. Configuration. Parameter settings. In our experiments,
the target data is divided into two parts: training set (80%)
and test set (20%). The batch size is set to 32. A set of exper-
iments are completed to find the best values of window size,
and the results are shown in Figure 3, and as we can see, the
best performance is achieved when T = 10. For each experi-
ment, we chose the learning rate between 0.0005 and 0.002
for a step 0.0005 to acquire the best performance of every
model. We repeat each set of experiments five times and take

the average value to obtain the final result. Thus, the result is
stable and has a high level of credibility.

Decomposition algorithm. RobustSTL is more suitable for
long-time series processing, and the time series we used is too
short for this method. Therefore, we only consider wavelet
transform, EMD, and EEMD as the time series decomposi-
tion method candidates. There are four experiments for com-
parison that have been done, and the results are shown in
Figure 4. “IMF3” means the original data will be decomposi-
tion into three IMFs and one residual. Both “db” and “sym”
are commonly used wavelet basis functions. “db” is the
abbreviation of Daubechies, and “db2” represents a wavelet
of order 2. “sym” is symlets and “sym3” means a wavelet of
order 3. As we have seen in Figure 4, the wavelet
transform-based approach has a time advantage, while the
EEMD algorithm consumes too much computational time.
Although the EMD algorithm is at a time disadvantage, it
takes the lead in three metrics. Thus, this configure is applied
in the formal experiments.

Baseline models. To verify the effectiveness of the EMD
function and local fusion, experiments based on multiple
models are necessary. MLR [32], LSTM [33], GRU [34], ED

Input: Observed HFMD outpatient time seriesO ∈ℝ1×K , window size T , max-IMF k
Output: Prediction value for future cases ŶT+1 ∈ℝ1×ðK−TÞ

1. O′ ← normalization O using Equation (2);
2. Y← Split using Equation (3);
3. X← Time series decomposition using Algorithm 1;
4. for each sample y in Y do
5. for i← 1 do
6. for j← 1 do
7. ey ← yi,j using Equation (7);
8. for each sample x in X do
9 for i← 1 do
10 for j← 1 do
11. for n← 1 do
12. ω← softmax xi,j using Equation (4);
13. A← ω and X using Equation (5);
14. ex ←A using Equation (6);

15. by′T+1 ← ex and ey using Equation (8);

16. ŷT+1 ← denormalization by′T+1 using Equation (9);

Algorithm 2: CARD
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Relative time (day)
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Figure 2: The distribution of outpatient cases ranges from Jan 1, 2012, to Dec 30, 2018.
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[35], CNN-1d, and CNN-RNN [36] are selected as the base-
line models. To explain, MLR is a widely used regression
model in many research areas. LSTM, GRU, and ED are
improved neural networks based on RNN. CNN-RNN is a
hybrid model of CNN and RNN.

Experiment process. All experiments could be divided
into 3 groups. The main difference between the three groups
of experiments is their input data. The input data of the first
group of experiments contains only historical data, and the
second group uses only the data after time series decomposi-
tion. The last group of experiments takes both historical and

decomposed data as input. As a result, the final group has the
best performance. Details are discussed in the next section.

5. Results and Analysis

This section gives prediction results, comparisons, and
analyses.

5.1. Effects on Decomposition and Fusion. In this subsection,
we investigate the effects of decomposition and fusion. As
we can see in Figure 5, the result of three metrics shows that
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Figure 3: The comparison of CARD performance at different values of T in terms of MAE, RMSE, and R2.
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Figure 4: The comparison of four methods in terms of MAE, RMSE, R2, and computation time.
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the CARD model we proposed has the ideal performance
compared with baseline models.

Time series decomposition is an important part of this
study. We decompose the HFMD outpatient time series into
finite and multitime scale IMFs and a residual; then, each
subsequence is modeled and predicted with a local linear pre-
dictor separately. The single IMF contains a specific physical
meaning, such as seasonality and trend. Each sequence is
treated equally in the model. Compared with the original
data, each IMF can represent the local features by itself. This
means that separate predictions for each sequence and then
fusion may give better results than using only the raw data,
and the experimental results proved this.

The prediction accuracy of all baseline models has
increased after fusing the HFMD outpatient case data. This
result shows the superiority of data fusion. A possible expla-
nation is that existing models do not work well with complex
time series like IMF, and some methods cannot capture the
relation between different sequences. The data processing of
the CARD can be divided into two stages. In the first stage,
each sequence is predicted separately, and then, the results
are fused. In the second stage, the predicted values are
obtained from the fused data, which can analyze the relation-
ship between each sequence. So, we get better results than
other models. By the way, the IMFs may lose some features
in the original data. These defects are more obvious with
the short and complex time series data. However, the fusion
of IMF and case data overcomes this shortage. That may

explain why all models have various degrees of improvement
after fusion.

5.2. Comparison. The main results are shown in Figure 5. The
major results can be observed, and the analysis of them is as
follows:

Out of all the models, CARD performs the best. In detail,
MLR is the second-best model. Compared to MLR, CARD is
slightly behind in MAE and RMSE, and we are slightly ahead
in R2. In addition, we are at least 0.1, 0.4, and 0.1 ahead of the
other models in three metrics. The advantages of our model
are described in Section 5.1, and these should explain the
leading position of our model.

In the experiments using only decomposed data as input,
several baseline models showed various degrees of degrada-
tion in performance. And their performance is improved if
the outpatient data is added to the dataset. However, as we
can see in Figure 5, the best performance of these models is
still obtained in the first set of experiments—the input is out-
patient data. In contrast, the performance of CNN-1d and
MLR shows only small fluctuations. One possible explana-
tion is that the EMD algorithm filters peaks in the time series
while CNN-1d and MLR are insensitive to peaks. Therefore,
the accuracy of these two models is not affected much. LSTM,
ED, and GRU study the dependence of time series, and since
these models cannot capture the relationship between the
series, the IMF may negatively affect the prediction accuracy.
CARD performs weighting at each time point and predicts
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Figure 5: The comparison of eleven methods on three groups of inputs in terms of MAE, RMSE, and R2. The windows size T is fixed at 10.
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each IMF separately. Finally, the model generates a result by
fusion. Thus, CARD solves these problems and obtains better
performance.

Although the CARD model does not make revolutionary
advances, however, the model is much less computationally
intensive compared to most neural network models. There-
fore, the model has relatively low hardware requirements.
Moreover, this model still has good predictive performance
when using only historical data, which means that the data
needed to run the model is easily available. This further
lowers the threshold for practical using the model. Therefore,
our proposed model has good prospects for practical
applications.

6. Conclusions

Our experiment indicates that data decomposition and local
fusion can improve prediction performance. In this paper, we
propose a time series decomposition and local fusion model
named CARD for HFMD outpatient case prediction. The
main conclusions of this study are shown as follows:

(1) Compared with wavelet transform and EEMD, the
EMD method has advantages in predicting accuracy
in terms of HFMD outpatient prediction. Therefore,
EMD is suitable for HFMD outpatient time series

(2) The fusion model we proposed is superior to the
most general methods, which means that such a
model still has great potential in infectious disease
forecasting

Our study must go further research. In this paper, we do
not test the predicting accuracy on the multistep prediction.
In the next step, we can try to extend our model to multistep
times series prediction and other diseases.
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