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A B S T R A C T

District heat load forecasting is a challenging task that involves predicting future heat demand based
on historical data and various influencing factors. Accurate forecasting is essential for optimizing energy
production and distribution in district heating systems. However, most existing forecasting models lack
transparency and interpretability and fail to capture the spatial–temporal dependencies in the data. Moreover,
they often require a large amount of annotated data for training, which can be costly and time-consuming to
obtain. In this paper, we present a novel approach to district heat load forecasting, which involves predicting
future heat demand based on historical data and various influencing factors. The proposed approach is based on
an Active Graph Recurrent Network (Ac-GRN), which leverages the strengths of active deep learning and graph
neural networks to capture the complex spatial–temporal dependencies in the data. The approach also provides
explainability for its predictions by using correlation-based attribution methods. The active deep learning
component can effectively select the most informative and representative samples from a large pool of data,
reducing the frequency and cost of data collection and human effort. The graph neural network component can
model both linear and nonlinear relationships among heat meters using bidirectional recurrent connections,
enhancing the accuracy and robustness of the predictions. We conduct extensive experiments and compare
our approach with eleven state-of-the-art models on a real-world dataset of district heating consumption data
from Danish residential buildings. Our results show that our approach outperforms other models in terms of
accuracy, robustness, reliability, and computational efficiency for multi-horizon multi-step district heat load
forecasting. Our approach also provides meaningful explanations for its predictions by highlighting the most
influential factors and heat meters for each prediction. This paper makes a novel contribution to district heat
load forecasting with explainability.
1. Introduction

District heating is a system for distributing heat generated in a cen-
tralized location, such as a power plant or a waste incinerator, through
a pipeline network to residential, commercial, and industrial buildings
for space heating and water heating [1]. District heating can provide
energy-efficient, cost-effective, and environmentally friendly heating
solutions for urban areas, especially in cold climates [2]. However,
to optimize the operation and planning of district heating systems,
accurate forecasting of the district heat load is essential. District heat
load is the amount of heat demand that needs to be met by the
heat supplier at a given time [3]. The forecasting of the district heat
load is a challenging task due to the non-linear and non-stationary
nature of heat demand, which is influenced by various factors such
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as weather conditions, building characteristics, human behavior, and
calendar effects [4–6] (see Table 1).

District heat load forecasting is a challenging task that involves
predicting future heat demand based on historical data and various
influencing factors such as weather conditions and building character-
istics [3,7]. The non-linear and non-stationary nature of heat demand,
coupled with the multitude of influencing factors, makes accurate
forecasting difficult [6]. Therefore, researchers have explored advanced
machine learning (ML) techniques, particularly deep learning, for their
ability to learn complex patterns and dependencies from data [8,9].
Among these techniques, active deep learning is a promising approach
that allows the model to actively query the most informative data points
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Table 1
Abbreviation and description.

Abbreviation Description

Ac-GRN Active Graph Recurrent Network
ALM Active Learning Module
ANN Artificial Neural Network
CNN Convolutional Neural Network
CVRMSE Coefficient of Variation of Root Mean Square Error
DHS District Heating System
GCN Graph Convolutional Network
GGNN Gated Graph Neural Network
GRAN Graph Recurrent Attention Network
GRN Graph Recurrent Network
GRU Gated Recurrent Unit
LEU Linear Representation Unit
LSTM Long Short-term Memory Network
MAE Mean Absolute Error
MCFM Multi-Component Fusion Module
MSE Mean Squared Error
PCC Pearson Correlation Coefficient
RMSE Root Mean Square Error
SCC Spearman’s Rank Correlation Coefficient
SCN Single-layer Convolution Network
STME Spatio-Temporal Memory Enhanced Module
TCM Temporal Convolutional Module
TSFCN Temporal–spatial Fully Connected Network
XGBoost Extreme Gradient Boosting

from a large and unlabeled dataset, thus improving the forecasting ac-
curacy while diminishing the costs associated with data collection [10].
This approach is well suited for district heat load forecasting, where
data can be highly variable and complex [8].

District heating systems need accurate and transparent forecast-
ing models to optimize their heat production and supply operations.
However, most existing models that use active deep learning tech-
niques for district heat load forecasting are not very interpretable.
These models are like ‘‘black boxes’’ that do not explain how they
make their predictions or what features are important [11]. This can
be a major drawback for critical applications like district heating,
where explainability is important for trust, reliability, and decision
support [12]. Moreover, many models do not capture the spatial–
temporal dependencies in the data, which are essential for modeling
the interrelationships between different heat meters and their temporal
dynamics [13]. Therefore, there is a need for a novel approach that can
achieve both high accuracy and high explainability for district heat load
forecasting. One possible way to address these challenges is to leverage
the strengths of active deep learning and graph neural networks. Active
deep learning is an approach where the model actively queries the
most informative data points from a large and unlabeled dataset, thus
improving the forecasting accuracy and reducing the frequency and
cost of data collection [14]. Graph neural networks are a class of
deep learning models that can capture the complex spatial–temporal
dependencies in the data by modeling the interdependencies between
different heat meters using graph structures [15]. Furthermore, these
techniques can provide explainability by leveraging the correlation
among heat meters, which can inform the model’s predictions and fea-
ture importance [16]. However, few studies have applied active deep
learning and graph neural networks to district heat load forecasting
with explainability [17,18].

In this paper, we propose a novel approach to district heat load
forecasting using an Active Graph Recurrent Network (Ac-GRN). Ac-
GRN actively learns from the most informative data points and models
the interdependencies between different heat meters using graph neural
networks. It consists of two main components: an Active Learning Mod-
ule (ALM) and a Graph Recurrent Network (GRN). The ALM selects the
most representative heat meters and prepares the inputs for the GRN.
The GRN then uses the inputs to make predictions. The GRN has two
core parts: a temporal convolution module and a spatio-temporal mem-
2

ory enhanced module. The former extracts temporal dependencies from
the smart heat meter data using graph neural networks and single-layer
convolutions. The latter further captures dynamic spatial and temporal
correlations using spatial attention and recurrent neural networks. Our
approach is novel in its ability to actively learn from the most informa-
tive data points using an uncertainty-based sampling strategy and its
use of graph neural networks to model the interdependencies between
different heat meters. Moreover, our approach provides explainability
by using correlation-based methods that highlight the spatial features
that influence the predictions. Our approach has several advantages
over existing methods that use active deep learning or graph neural
networks for district heat load forecasting. First, it enhances forecasting
accuracy and diminishes data collection costs by implementing a strat-
egy based on uncertainty sampling. Second, it captures the complex
spatial–temporal patterns in the data by using graph neural networks.
Third, it provides explainability by using correlation-based methods.

The key contributions of this paper are threefold:

• We propose a novel approach to district heat load forecasting
using an Active Graph Recurrent Network, which leverages the
strengths of active deep learning and graph neural networks to
capture the complex spatial–temporal dependencies in the data.

• We provide explainability for our model’s predictions by employ-
ing relationship-inspired methods that utilize correlations among
heat meters. This approach highlights the spatial features in the
input that contribute to pattern discovery and prediction.

• We evaluate our approach on real-world district heating data
and compare it with 11 state-of-the-art models in terms of accu-
racy and robustness. We also conduct ablation studies to analyze
the impact of different components of our model, as well as
computational efficiency compared with other models.

The rest of the study is structured as follows. Section 2 reviews
the literature on heat load forecasting and AL. Section 4 describes
the proposed Ac-GRN model. Section 5 conducts the evaluation. Sec-
tion 6 discusses the contributions and limitations of the proposed
model. Section 7 concludes the paper and presents the future research
directions.

2. Related work

In this section, we review the existing literature on district heat
load forecasting, and highlight the main challenges and limitations of
current methods. We also review the literature on active deep learning
and graph neural networks, and explain how they can address some
of the challenges and limitations of existing methods. Finally, we
summarize the main contributions of our paper and how it differs from
the existing literature.

2.1. District heat load forecasting

District heat load forecasting is a challenging task that involves
predicting future heat demand based on historical data and various
influencing factors such as weather conditions and building characteris-
tics [3,19]. Accurate forecasting is essential for optimizing energy pro-
duction and distribution in district heating systems [2]. Existing meth-
ods for district heat load forecasting can be broadly categorized into
physical models, black-box models [20], and gray-box models [21].
Physical models use equations that describe the physical behavior of
a system to predict an output, while black-box models use supervised
ML methods where measurements of input and output variables of a
system are collected, and then used to mathematically describe the
system [22]. Gray-box models provide a balance between high accuracy
and good generalization capabilities, by extracting the mathematical
model/structure from the system’s physics, and estimation of model
parameters from measured data [23,24]. Physical models have the
advantage of being easily interpretable, but they require a large number

of parameters and detailed information about the system as input,
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which can be costly and time-consuming to obtain [22]. Moreover,
physical models suffer from poor generalization capabilities, as they
may not capture the non-linear and non-stationary nature of heat
demand [25]. Black-box models have the advantage of being easy
to build and capable of learning complex patterns and dependencies
from data [12]. However, black-box models require a large amount of
data for training purposes, which may not be available or reliable in
some cases [26]. Moreover, black-box models lack transparency and
interpretability, as they provide little insight into how they make their
predictions [27]. Gray-box models have the advantage of combining the
strengths of physical models and black-box models, by exploiting the
domain knowledge and data-driven learning [28]. However, gray-box
models also face some challenges, including determining the optimal
model structure and parameters, and dealing with incomplete or noisy
data [29].

Among these three categories of methods, black-box models have
received increasing attention lately, owing to their efficacy in learning
complex patterns and dependencies from data [3]. Black-box models
are ML techniques that do not reveal the internal logic or structure of
the model, but only provide the input–output relationship [30]. In par-
ticular, black-box models such as artificial neural network (ANN) [31],
convolutional neural network (CNN) [32], long short-term memory net-
work (LSTM) [8], attention mechanism [8], extreme gradient boosting
(XGBoost) [33], and among others, have been applied to district heat
load forecasting with promising results. For example, Xue et al. [17]
used SVR, DNN, and XGBoost to validate the accuracy and stability of
black-box models for multi-step ahead heat load forecasting in district
heating system (DHS). Dang et al. [18] employed XAI methods, such
as SHAP and PDP, to explain the significance of exogenous features
for district heating prediction using XGBoost. Li et al. [34] proposed a
heat load forecasting model based on gated recurrent units with time-
varying features using LSTM and attention mechanism. However, these
methods require large storage space and high costs of data collection,
which can be prohibitive in many cases and affect the efficiency in DHS.
In addition, collecting and transferring excessive data for DHS may
lead to expensive labor and communication overhead. To address these
challenges, we propose an AL-based framework for district heat load
prediction, which can utilize less heat meter data to achieve accurate
prediction for all smart heat meters in a certain time period. With
the AL framework, we select representative heat meters for training
the prediction model based on an uncertainty-based sampling strategy,
while excluding heat meters with similar patterns.

2.2. Active deep learning and graph neural networks

High accuracy, cost-effectiveness, and timeliness are important
goals in the field of energy consumption monitoring [27]. Active deep
learning offers a potential approach to enhancing cost-efficiency in
data acquisition and storage by selecting the most informative or
uncertain samples for training, as per specific criteria or strategies [14].
This method optimizes the learning process by focusing on samples
that the model finds most challenging to classify or predict [35].
Specifically, the most uncertain samples are those that the model has
the most difficulty classifying or predicting. In the context of classifi-
cation tasks, these typically are the samples where the predicted class
probabilities closely resemble a uniform distribution, implying that the
model struggles to assign a clear class to these samples. For regression
tasks, these are often the samples that yield the widest confidence
interval for the model’s prediction. This strategic selection of high-
uncertainty samples empowers the model to maximize information
extraction from a minimal number of samples, thereby fostering accel-
erated learning and enhanced accuracy. For example, Settles et al. [36]
proposed several query strategies, e.g., uncertainty sampling, query-
by-committee, expected model change, and expected error reduction.
Zhang et al. [10] utilized active learning to counter data bias and
3

achieve high performance in building energy forecasting. Aryandoust
et al. [37] proposed a spatio-temporal, multi-modal method for electric
load forecasting, which exhibits improved accuracy. Wang et al. [38]
designed a selector–predictor framework for electric load forecasting.
Active deep learning can be enhanced through the combination with
various techniques, such as transfer learning [39], semi-supervised
learning [40], and reinforcement learning [41]. These approaches can
further improve its performance and expand its applicability.

Graph neural networks have been widely used in various domains
such as social networks [42], knowledge graphs [43], computer vi-
sion [44], natural language processing [45], etc., where data has rich
structural or relational information. Graph neural networks can capture
the complex spatial–temporal dependencies in the data by modeling the
interdependencies between different nodes using graph structures [15].
For example, Kipf et al. [46] proposed a graph convolutional network
(GCN) that can learn node representations by aggregating information
from their neighbors using spectral graph theory. Li et al. [47] proposed
a gated graph neural network (GGNN) that can learn node represen-
tations by propagating information through recurrent neural networks
using spatial graph theory.

In this paper, we propose to use active deep learning and graph
neural networks for district heat load forecasting. Our approach can
address some of the challenges and limitations of existing methods by
actively learning from the most informative data samples and modeling
the inter-dependencies between different heat meters using graph struc-
tures. To the best of our knowledge, this is the first attempt to predict
district heat load utilizing a graph neural network and AL framework.

3. Materials

This study uses the public dataset of district heating consump-
tion from residential buildings in Aalborg, Denmark [48]. The dataset
covers 3,127 smart heat meters with hourly readings for three years
(2018–2020). It also includes contextual information such as dwelling
type, construction year, and energy efficiency level. This study primar-
ily targets the prediction of heat load for single-family houses, terraced
houses, and apartments, which account for 3,021 smart meters in the
dataset. Smart heat meters lacking dwelling type and those that are
unoccupied (a total of 105 samples) are excluded from the focus of
this study. Additionally, meteorological data from a nearby weather
station was collected. This data has nine variables, such as outdoor
temperature, solar radiation intensity, wind speed, and others, that may
affect heat consumption patterns.

Due to the unavoidable interference for the transmitting process,
there are about 0.3% smart heat meter data missing. To ensure compati-
bility with the model and adhere to the original data processing method
described in [48], missing data from the smart meters is filled using a
weighted moving average imputation. This method utilizes a symmetric
window size of 48 (including 48 preceding and following values) and
applies a linear weighting scheme. The meteorological data is complete
and devoid of missing values. Then, we conducted a correlation analysis
to evaluate the relationship between various meteorological variables
and the mean value of heat load. We visualized the results of the
correlation analysis using a heatmap (see Fig. 1), which shows the
Spearman’s rank correlation coefficient (SCC) between each pair of
variables. The SCC measures the monotonic relationship between two
variables, regardless of whether the relationship is linear or nonlinear.
Additionally, the SCC is robust to outliers and apt for handling data that
may not follow the same distribution. The coefficient values of the SCC
range from −1 to 1. A value of −1 denotes a perfect negative correla-
tion, a value of 0 signifies no correlation, and a value of 1 corresponds
to a perfect positive correlation. The heatmap displays the correlation
between variables, with darker colors indicating stronger correlations
and lighter colors indicating weaker correlations. The diagonal cells
display the correlation of each variable with itself, invariably equal to

1.
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Fig. 1. The Spearman’s rank correlation coefficient between heat load observations and meteorological factors.
As illustrated in Fig. 1, outdoor temperature and grass temperature
emerge as the most significant meteorological variables for heat load
forecasting. The strong correlation between these two factors highlights
their closely aligned trend. To reduce the redundancy of temperature
information, we choose the outdoor temperature as an exogenous fea-
ture in our study. Outdoor temperature directly influences the energy
required for heating and cooling in residential and commercial build-
ings [49]. Solar radiation intensity also significantly correlated with
heat load. The solar radiation might contribute to reducing the heating
load by naturally warming the building. This effect is particularly
significant in structures designed for passive solar heating, where the
building’s design and orientation synergize to maximize the capture and
retention of solar heat [50]. Hence, solar radiation intensity is included
as an exogenous meteorological factor in our study. Relative humidity
and cloud cover both exhibit a relatively minor impact on heat load.
Given the established correlation between relative humidity and build-
ing heat transfer, as confirmed by prior research [51], we have included
relative humidity as the third meteorological factor in our analysis. The
presence of moisture in the air can significantly impact the thermal
characteristics of a building, consequently affecting the overall heat
load. The variables of wind speed, air pressure, leaf moisture, and
precipitation exhibit weak correlations with heat load data. To enhance
the diversity of meteorological features without excessive inclusion, we
have additionally included wind speed as a factor, as it demonstrates
relatively lower correlation with the other three selected variables.
Moreover, as wind speed increases, the rate of convective heat transfer
from the building surfaces to the outside environment tends to increase.
This prompts a need for more heating to keep the inside temperature
steady, influencing the overall district heat load.

Above all, the factors of outdoor temperature, solar radiation in-
tensity, relative humidity, and wind speed are selected as additional
feature combination for our experiment. We summarized the statistics
of heat load and these meteorological factors in Table 2, which shows
the minimum, maximum, median, mean, standard deviation, Pearson
correlation coefficient (PCC), and SCC. The PCC is another measure that
quantifies the strength and direction of a linear relationship between
two continuous variables. It also ranges from −1 to 1 and has a similar
4

interpretation as the SCC. Finally, we normalized the data using min–
max scaling, a technique that adjusts the range of variable values to a
common scale, promoting model stability and learning efficiency.

4. Methodology

4.1. Overview

In this section, we provide a comprehensive description of the
proposed Active Graph Recurrent Network (Ac-GRN) model. The Ac-
GRN model combines active learning, graph convolutional components,
and recurrent learning units to effectively capture both spatial and
temporal dependencies in district heating data. An overview of our
proposed model is illustrated in Fig. 2. The proposed Ac-GRN is com-
posed of several key modules. First, the training and validation sets
of heat load data are pre-processed and randomly segregated into
annotated and unannotated groups for subsequent analysis. Second, the
active learning module (ALM) is initiated using the annotated meters,
while the unannotated meters are stored in the data center. The ALM
consists of two components: the knowledge extractor and the feature
reconstructor. The knowledge extractor is responsible for selecting the
most informative samples using an uncertainty-based sampling strat-
egy. The observations from the selected representative meters are then
passed to the feature reconstructor component to reconstruct the un-
known trends of the unselected heat load meters for prediction. Third,
a graph recurrent network (GRN) is designed to capture the latent
heat load patterns across multiple heat meters and make predictions.
This network comprises three elements: (1) The temporal convolutional
module (TCM) employs multi-layer graph convolutional networks in
the temporal dimension, extracting temporal dependencies from the
heat load data. (2) The spatio-temporal memory enhanced module (STME)
augments the model’s capacity to capture dynamic spatial and temporal
correlations by implementing a spatial attention mechanism and a
recurrent component. (3) The multi-component fusion module (MCFM)
fuses the linear representation of the input data with the output from
the recurrent component to generate the final prediction. The linear
representation is a simplified projection of the input data that can alle-
viate the vanishing gradient problem and enhances the expressiveness
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Table 2
The descriptive statistics and correlation coefficients of heat load and meteorological factors. The standard deviation (STD) measures the variability of each variable. The 𝑝-value
indicates the significance level of the correlation coefficients. A 𝑝-value less than 0.001 (∗∗∗) means that the correlation is very unlikely to occur by chance. The Pearson correlation
coefficient (PCC) and Spearman’s rank correlation coefficient (SCC) measure the strength and direction of the linear relationship between each meteorological factor and the median
heat load.

Symbol Number of time series Min Max Medium Mean STD PCC SCC

Outdoor temperature 1 −7.883 23.712 8.450 9.159 6.138 −0.953∗∗∗ −0.966∗∗∗

Solar radiation intensity 1 1.804 391.483 94.046 126.140 106.669 −0.709∗∗∗ −0.738∗∗∗

Relative humidity 1 45.758 99.892 84.252 82.422 10.930 0.370∗∗∗ 0.424∗∗∗

Wind speed 1 1.150 12.829 4.685 4.996 2.059 0.102∗∗∗ 0.101∗∗∗

Heat load 3021 0 462.328 37.110 45.610 36.526 – –
Fig. 2. The overview of the proposed Ac-GRN method.
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of the model. With this network structure, the proposed AC-GRN model
will be able to capture the complex spatial–temporal dependencies in
district heating data, and actively learn from the most informative data
samples, thereby improving the forecasting accuracy and reducing the
costs of data acquisition.

4.2. Knowledge extractor by active learning

The knowledge extractor leverages active learning to efficiently iden-
tify the most informative samples among numerous heat meters. This
method significantly curtails costs related to data collection and stor-
age, while enhancing the efficiency of the learning process. As illus-
trated in Fig. 3, the module consists of two phases: a query phase
and an update phase. Within the query phase, we develop a novel
classifier known as the Temporal–spatial Fully Connected Network
(TSFCN). The TSFCN is combined with a temporal convolutional net-
work (Temp-FCN), a spatial convolutional network (Spat-FCN), a fully
connected network for output (Out-FCN), and two activation layers.
The Temp-FCN and Spat-FCN are employed to capture the temporal and
spatial patterns among annotated heat load observations, respectively.
The Out-FCN and the softmax function are employed to compute the
probabilities corresponding to each class. Specifically, this classifier
learns patterns from annotated samples and subsequently classifies
the category of unannotated meters. The detail processing of TSFCN
classifier 𝑓𝜃(⋅) can be formulated as:

𝑓𝜃(𝑥) = softmax((𝒎𝛼 ⊙ (𝜎((𝑊 ⊤
𝛼,1𝑥)𝑊𝛼,2)))𝑊𝛼,3 + 𝑏𝛼), (1)

where 𝑥 is an unannotated sample from data center 𝑈 , which consists
of unannotated heat meters. 𝑊𝛼,1, 𝑊𝛼,2, and 𝑊𝛼,3 are the learnable pa-
rameters of Temp-FCN, Spat-FCN, and Out-FCN, respectively. ⊙ denotes
the element-wise multiplication. 𝒎𝛼 is the dropout vector to alleviate
overfitting. 𝑏𝛼 is the bias term. softmax is the activation function that
normalizes the output to a probability distribution over the possible
classes. ⊤ is the transpose operation that changes the orientation of a
matrix or a vector.

After obtaining the probability map, we incorporate an uncertainty
sampling method to select the most uncertain samples, designated as
representative meters for annotation. The uncertainty of the sample
5

can be measured by different criteria, including entropy, least con-
fidence, or margin. In this study, we employ the least confidence
criterion, which selects the sample where the model exhibits the lowest
confidence. The least confidence criterion can be formulated as follows:

𝑥∗ = argmin
𝑥∈𝑈

𝑓𝜃(𝑥), (2)

where 𝑥∗ are samples from the unannotated data pool 𝑈 . 𝑓𝜃(𝑥) is the
redicted label of sample 𝑥 by the model with parameters 𝜃, which is
rained on a subset of annotated meters.

In the update phase, the identified representative meters are incor-
orated into the annotated data subset and concurrently removed from
he unannotated data center 𝑈 . The classifier is subsequently retrained
o update the model parameters. This iterative process, involving both
he query strategy and update process, continues until the proportion of
nnotated to unannotated meters achieves a specified target ratio or a
redetermined number of iterations is reached. The targeted annotated
ata ratio is a hyperparameter that controls the trade-off between the
ata collection cost and the model performance.

.3. Feature reconstructor for incomplete data

As illustrated in Fig. 4, traditional district heat load prediction
tilizes historical records (including recent trends) to forecast the target
eriod for each heating meter. However, when using the active learning
ramework, the unrepresentative meters inevitably lack information re-
arding recent short-term trends. This absence can significantly impact
he accuracy and efficiency of predictions. Incorporating recent short-
erm trends can effectively help capture rapid changes, thus allowing
or more agile and accurate responses to dynamic circumstances in
eal-time [49]. To address this issue, our feature reconstructor module
everages observations from representative heat meters to supplement
he incomplete data acquired through the Active Learning framework,
s shown in Fig. 5. This module consists of two components: a relation
iscovery module and a representation generation module.

The relation discovery module establishes associations between
nannotated heat meters and selected representative heat meters based
n their correlation. Specifically, we first calculate the PCC for each
air of unannotated and annotated heat meter data. The trend among
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Fig. 3. Illustration of the uncertainty-based query processing in ALM.
Fig. 4. The illustration of motivation for feature reconstructor.
Fig. 5. The illustration of relation discovery and representation generation module.
heat load meters may exhibit some common characteristics or usage
patterns [52], PCC is more suitable to measure these linear relation-
ships. Then, for each unselected heat load meter, we choose the top-𝐾
most correlated meters to construct a sparse correlation coefficient
matrix , where 𝑐𝑖,𝑗 denotes the correlation value between heat meter
𝑖 and 𝑗. This method can reduce the information redundancy inherent
in these relationships, and reconstruct the sequence by exploiting the
low-rank relationship structure [53]. The learning process of the sparse
relationship can be formulated as follows:

arg min
𝑊 𝛽∈𝑾

𝑓𝛽 (𝑊
𝛽
𝑖,1 ⋅ 𝑥

∗
𝑖,1,… ,𝑊 𝛽

𝑖,𝐾 ⋅ 𝑥∗𝑖,𝐾 ), (3)

where 𝑥∗𝑖 represents the correlated representative samples for 𝑖th unan-
notated meter, and 𝑓𝛽 is the function for relation learning. 𝑊 𝛽

𝑖 denotes
the learnable weighting parameters for the 𝑖th unannotated meter.

The representation generation module operates as a linear weight-
ing process based on the learned weighting matrix 𝑾 𝛽 . This process
adaptively emphasizes certain relevant heat meters in the sparse matrix
by multiplying them with their corresponding weights. The aim of this
is to improve the prediction of the heat load for the target, specifically
for the unannotated meters. The generation process can be described
6

as follows:

𝑖 = 𝑊 𝛽
𝑖 ⋅ [𝑥∗𝑖,1,… , 𝑥∗𝑖,𝐾 ], (4)

𝑖 represents the generation for the 𝑖th unannotated meter, and 𝑊 𝛽

is the obtained relational weighting matrix. 𝑖 encompasses trend
information that can provide linear characteristics for the prediction
model, thereby helping to reduce the effects of missing data in the heat
load predictions for unannotated heat meters.

4.4. Graph recurrent network

The overview of graph recurrent network (GRN) is shown in Fig. 6,
which consists of three main parts: temporal convolutional module,
spatio-temporal memory enhanced module, and multi-component fu-
sion module. They are described in the following.

4.4.1. Temporal convolutional module
The temporal convolution component comprises two temporal graph

convolution networks (TGCNs) along the temporal dimension and a
single-layer convolution network (SCN) in the spatial dimension. The
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Fig. 6. The overview of the proposed graph recurrent network.
TGCN module extracts temporal dependencies from adjacent time steps
of each smart heat meter, while the SCN module captures spatial
dependencies from all smart meters.

To apply the TGCN module, we need to transform the graph struc-
ture into an algebraic form that can capture its connectivity and other
patterns. One way to do this is to use spectral graph theory and the
Laplacian matrix, which are tools for analyzing the properties of graphs
in the frequency domain. We define the multi-meters network as a
directed graph  = ( ,  ,𝑨), where  represents a finite set of 𝑁 nodes,
corresponding to the smart heat meters;  is the set of edges, repre-
senting the relationships between each heat meter and other meters;
and 𝑨 ∈ R𝑁×𝑁 is the adjacency matrix of graph . The normalized
Laplacian matrix can be formulated as 𝑳𝑝 = 𝑰𝑢𝑛𝑖𝑡 −𝑫− 1

2 𝑨𝑫− 1
2 , where

𝑳𝑝 ∈ R𝑇×𝑇 is the normalized Laplacian matrix; the diagonal matrix
𝑫 ∈ R𝑇×𝑇 is a degree matrix, 𝑫(𝑖,𝑖) =

∑

𝑗 𝑨
(𝑖,𝑗); 𝑰𝑢𝑛𝑖𝑡 denotes a unit

matrix.
The embedding process of TGCN can be described as follows: First,

we multiply the normalized Laplacian matrix with the input time series
and a learnable weight matrix, and add a bias term. This operation
performs a linear transformation on each node’s features based on its
adjacency matrix. Second, we apply a ReLU activation function and a
dropout mask to introduce non-linearity and regularization. This oper-
ation enhances the model’s ability to learn complex and robust features
from the data. Third, we multiply the output of the previous operation
with another learnable weight matrix. This operation produces the
final output of TGCN, which is a node representation that captures
the temporal dependencies from adjacent time steps. The mathematical
equations for these operations are:

𝑾 𝑔,𝜃 ∗  = 𝑫− 1
2 𝑨̂𝑫− 1

2 𝑾 𝑔,𝜃 + 𝒃𝑔 , (5)

𝑔,𝑜 = 𝑾 𝑔,𝑜 ∗ (𝒎𝑔 ⊙ 𝜎(𝑾 𝑔,𝜃 ∗ )), (6)

where ∗ denotes the graph convolution operation. 𝑨̂ = 𝑨 + 𝑰𝑢𝑛𝑖𝑡 ∈
R𝑁×𝑁 is an adjacent matrix with inserted self-loops.  ∈ R𝐵×𝐿×𝑁 indi-
cates the input time series. 𝑔,𝑜 is the final output of TGCN component.
⊙ indicates element-wise multiplication, 𝜎(⋅) is rectified linear unit
(ReLU) activation, and 𝒎𝑔 is a binary mask denotes dropout processing.
𝑾 𝑔,𝜃 and 𝑾 𝑔,𝑜 are both the learnable weighting matrix, 𝒃𝑔 denotes the
biases.

After capturing information from adjacent time steps for each node
in the graph’s temporal dimension, we proceed to integrate an SCN
layer in the spatial dimension to emphasize important pattern infor-
mation among all smart meters. The SCN module is a single-layer
convolutional network that applies a one-dimensional convolution op-
eration to the output of the TGCN along the spatial dimension. This
operation involves sliding a kernel or filter over each node’s features
and computing a dot product. The size of the kernel dictates the number
of heat meters considered in each convolution step. Capable of ex-
tracting spatial features, the convolutional module effectively discerns
7

similarities or differences between nodes based on their heat meter
observations. The spatial convolution can be formulated as follow:

𝑐,𝑜 = 𝒎𝑐 ⊙ 𝜎(𝑾 𝑐,𝑜 ∗ 𝑔,𝑜), (7)

where 𝑐,𝑜 denotes the generated representation of convolution com-
ponent, 𝑾 𝑐,𝑜 is the learnable parameters of convolution kernel. 𝒎𝑔 is a
binary mask matrix that prevents the networks from overfitting.

4.4.2. Spatio-temporal memory enhanced module
The spatio-temporal memory enhanced module is designed to fur-

ther enhance the model’s ability to capture dynamic spatial and tem-
poral correlations by applying a spatial attention mechanism and a
recurrent component. The spatial attention mechanism assigns different
weights to different parts of the input based on their relevance, while
the recurrent component stores and updates information over time. This
spatial attention is defined as follows:

𝑜 = softmax(𝑾 (1)
𝑠 ⋅ 𝜎(𝑾 (2)

𝑠 𝑐,𝑜) + 𝒃𝑔), (8)

𝑠,𝑜 = 𝑐,𝑜 ⊙ 𝑜, (9)

where 𝑜 denotes the attention score that dynamically adjusts the
impact weights in the spatial dimension. 𝑠,𝑜 is the produce of spa-
tial attention mechanism. 𝑾 (1)

𝑠 and 𝑾 (2)
𝑠 are the learnable weighting

matrix, 𝒃𝑔 is the learnable bias.
The recurrent component is built upon a gated recurrent unit (GRU)

capable of learning long-term dependencies in sequential data. The
GRU possesses two gates: a reset gate and an update gate. The reset gate
determines the degree to which the previous hidden state is forgotten,
while the update gate governs how much of the previous hidden state is
updated with the new input. The equations governing these gates are:

𝒆𝑡 = 𝜑(𝑾 𝑟,𝑒[𝒉𝑡−1;𝑠,𝑜] + 𝒃𝑟,𝑒), (10)

𝒖𝑡 = 𝜑(𝑾 𝑟,𝑢[𝒉𝑡−1;𝑠,𝑜] + 𝒃𝑟,𝑢), (11)

𝒛𝑡 = tanh(𝑾 𝑟,𝑧[𝒆𝑡 ⊙ 𝒉𝑡−1;𝑠,𝑜] + 𝒃𝑟,𝑧), (12)

𝒉𝑡 = (1 − 𝒖𝑡)⊙ 𝒉𝑡−1 + 𝒖𝑡 ⊙ 𝒛𝑡, (13)

where 𝒆𝑡, 𝒖𝑡, and 𝒛𝑡 are the internal state of the update gate, reset gate,
and candidate hidden state at time step 𝑡, respectively. 𝑾 𝑟,𝑒, 𝑾 𝑟,𝑢, and
𝑾 𝑟,𝑧 are the learnable weighting matrices. 𝒃𝑟,𝑒, 𝒃𝑟,𝑢, and 𝒃𝑟,𝑧 are the
correspondent biases. 𝜑(⋅) denotes sigmoid activation function, and [; ]
indicates the concatenation operation. In these equations, 𝒉𝑡−1 is the
previous hidden state, and 𝑠,𝑜 is the output of the attention compo-
nent. The recurrent component takes 𝑠,𝑜 as the input and updates 𝒉𝑡−1
using the three gates to produce 𝒉𝑡, which is the current hidden state.
The integration of exogenous meteorological features necessitates an
update to the GRU’s input, as detailed in the following equation:

(14)
 𝑠,𝑜 = [𝑠,𝑜;𝑾 𝑒 ⋅ ],
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where  represents the exogenous data. 𝑠,𝑜 signifies the input, com-
bining observations from both the heat meters and meteorological
features.

The embedding process maps the output of the recurrent component
into an embedding space that matches the desired output shape. The
embedding process consists of two steps: first, it applies a temporal
embedding function Emb𝑡𝑚𝑝(⋅) on 𝒉𝑡 to reduce its temporal dimension;
second, it applies a spatial embedding function Emb𝑠𝑝𝑡(⋅) on Emb𝑡𝑚𝑝(𝒉𝑡)
to reduce its spatial dimension. The equation for this process is:

𝑟,𝑜 = Emb𝑡𝑚𝑝(Emb𝑠𝑝𝑡(𝒎𝑟 ⊙ 𝒉𝑡)), (15)

where 𝑟,𝑜 ∈ R𝐵×𝐿×𝑁 is the final output of STME module. 𝒎𝑟 denotes
a binary mask matrix for the dropout layer.

4.4.3. Multi-component fusion module
The nonlinear modules can effectively capture potential depen-

dencies in either the temporal or spatial dimension. However, exces-
sive nonlinearity may result in the vanishing or exploding gradients
problem, which in turn can adversely affect the prediction accuracy.
Therefore, to balance the nonlinearity and robustness of the proposed
Ac-GRN, we introduce a linear representation unit (LEU) that adds a
linear combination of the input features  to the recurrent component
output 𝑟,𝑜 as the final prediction:

𝒀̂ 𝑡+ℎ∶𝑡+ℎ+𝐿 = 𝑟,𝑜 ⊕ (𝑾 𝑓,𝑜 + 𝒃𝑓 ), (16)

where 𝒀̂ 𝑡+ℎ∶𝑡+ℎ+𝐿 ∈ R𝐵×𝐿×𝑁 is the predictive values, ⊕ indicates the
addition operation, 𝑾 𝑓,𝑜 is learnable weighting parameters, and 𝒃𝑓 is
correspondent bias.

We use the mean square error (MSE) as the loss function to measure
the prediction accuracy and add an 𝐿2 regularization term to prevent
overfitting. The loss function can be defined as:

𝑜𝑠𝑠(𝒀 , 𝒀̂ ) = 1
𝐾

𝐾
∑

𝑖=1

𝑁
∑

𝑗=1

𝐿
∑

𝑣=1
(𝑌𝑖,𝑗,𝑣 − 𝑌𝑖,𝑗,𝑣)2 +

𝜆
2

𝛩
∑

𝑖=1
𝑤2

𝑖 , (17)

here 𝐾 is the length of training samples, 𝑁 denotes the dimension of
arget data, and 𝐿 is the prediction steps. Specifically, 𝜆 is a constant
hat denotes the regularization coefficient, 𝛩 is the number of weights
n the model. 𝑤 indicates the weight parameter of the model.

. Experiment

.1. Experimental setup

To ensure a fair comparison, the same constant parameters related
o training are applied to all methods. The Adam optimizer [54]
s used to obtain the training models, and the mean squared error
MSE) is selected as the loss function. The batch size is set as 32.
he number of training epochs and the learning rate are adjusted to
nsure each method’s optimal performance. To increase the depend-
bility and stability of the results, every experiment is performed five
imes using different random seeds, with the reported results being
he mean values. The grid search approach is employed to search for
elatively optimal hyperparameters. The detailed settings for the hy-
erparameters of each method are provided in Table 9. The model was
mplemented using the deep learning framework, Pytorch v1.12.1 [55].
ll experiments were carried out on a server equipped with Intel(R)
eon(R) Gold 6226R CPU (2.90 GHz) with 128G memory and were
ccelerated by two NVIDIA RTX A6000 GPUs. In this study, we use
he first 70% data for training (766 data points), the following 10%
ata (109 data points) as the validation set, and the remaining 20%
ata (219 data points) for the test. For the experiment with varying
ampling radio, the input to the models was manipulated in the test
et. Specifically, the input from unselected heat meters was set to zero
or the baseline methods, while these observations were reconstructed
8

sing a feature reconstructor for the Ac-GRN model. This processing
does not affect the data in the training or validation sets, ensuring
that these changes do not influence the models during their training
phase. Despite these adjustments, the prediction target remained the
true value.

5.2. Baselines

We compare our proposed model with several state-of-the-art meth-
ods for multivariate time-series forecasting, including:

• Autoregressive (AR): a linear model that predicts the current
value of a time series based on its past values [56].

• Dlinear: a linear regression model that uses the previous values
of all time series as input features [57].

• MTNet: a multi-task learning model that combines convolutional
neural networks and recurrent neural networks to capture both
local and global temporal dependencies [58].

• TPA: a temporal pattern attention model that uses an atten-
tion mechanism to learn the importance of different temporal
patterns [59].

• LSTNet: a long- and short-term time-series network that combines
convolutional neural networks and recurrent neural networks to
capture both short-term and long-term dependencies [60].

• LSTM: a type of recurrent neural network that can learn long-
term dependencies in sequential data using memory cells and
gates [61].

• ED (GRU): an encoder–decoder model that uses gated recur-
rent units to encode the input sequence and decode the output
sequence [62].

• CRNN: a convolutional recurrent neural network that uses con-
volutional layers to extract local features and recurrent layers to
capture temporal dependencies [63].

• CRNN (Res): a variant of CRNN that uses residual connections to
improve the information flow and gradient propagation [64].

• MSL: a prediction method that uses shapelet learning from mul-
tiple variables [65].

• StemGNN: a spectral temporal graph neural network that can
capture both inter-series correlations and temporal dependencies
in the spectral domain. It combines graph Fourier transform and
discrete Fourier transform to model the complex patterns and
dynamics in multivariate time series data [66].

5.3. Evaluation metrics

In this subsection, we present the evaluation metrics that we use to
assess the accuracy and robustness of our proposed model and compare
it with several state-of-the-art models for district heat load forecasting.
We use three metrics to evaluate the performance of different models:
root mean square error (RMSE), mean absolute error (MAE), and
coefficient of variation of root mean square error (CVRMSE). RMSE
measures the average magnitude of the errors between the predicted
and actual values, MAE measures the average absolute errors, and
CVRMSE measures the normalized RMSE by dividing it by the mean
of the actual values. Lower values of these metrics indicate higher ac-
curacy of the model. These metrics are commonly used for district heat
load forecasting because they can capture the overall error distribution
and account for different scales of heat demand.

• Root Mean Square Error (RMSE):

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑌𝑖 − 𝑌𝑖)2, (18)

• Mean Absolute Error (MAE):

MAE = 1
𝑛
∑

|𝑌𝑖 − 𝑌𝑖|, (19)

𝑛 𝑖=1
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Table 3
The multi-horizon one-step performance comparison in three metrics and four horizons on district heat load observations. The best result in terms of each metric is highlighted
in gray, and the second best is underlined.
Horizon
(ℎ)

Metrics AR Dlinear MTNet TPA LSTNet LSTM ED
(GRU)

CRNN CRNN
(Res)

MSL StemGNN Ac-GRN
(80%)

Ac-GRN
(85%)

Ac-GRN
(90%)

15
RMSE 11.983 12.031 11.062 10.998 11.383 23.330 22.294 17.564 13.584 15.690 11.297 12.374 11.035 10.852
MAE 8.570 8.565 7.772 7.966 8.134 15.329 14.377 11.806 9.720 11.504 7.837 8.239 7.628 7.385
CVRMSE 0.361 0.362 0.333 0.331 0.343 0.702 0.671 0.529 0.409 0.472 0.340 0.372 0.332 0.327

30
RMSE 14.592 14.459 12.994 11.852 12.930 23.994 23.237 18.265 15.928 16.990 12.947 12.341 11.554 11.074
MAE 10.826 10.848 9.500 8.737 9.325 17.157 16.154 12.634 11.648 12.668 9.047 8.639 8.214 7.765
CVRMSE 0.439 0.435 0.391 0.357 0.389 0.722 0.699 0.550 0.479 0.511 0.390 0.371 0.348 0.333

45
RMSE 16.970 16.983 13.835 13.386 15.254 23.504 23.687 18.729 18.450 17.878 16.320 12.537 12.175 11.864
MAE 13.015 13.048 9.965 9.913 10.979 17.218 16.730 13.166 13.905 13.299 11.909 8.925 8.596 8.397
CVRMSE 0.511 0.511 0.416 0.403 0.459 0.707 0.713 0.564 0.555 0.538 0.491 0.377 0.366 0.357

60
RMSE 20.454 20.413 17.085 14.811 17.002 24.199 24.823 19.358 20.103 19.850 17.855 14.120 12.706 12.526
MAE 15.627 15.705 12.545 11.033 12.325 17.790 17.955 14.092 15.772 14.838 13.251 10.374 8.998 9.021
CVRMSE 0.616 0.614 0.514 0.446 0.512 0.728 0.747 0.583 0.605 0.597 0.537 0.425 0.382 0.377
• Coefficient of Variation of RMSE (CVRMSE):

CVRMSE = RMSE
𝑌

, (20)

here 𝑌𝑖 is the predicted value, 𝑌𝑖 is the actual value, and 𝑌 is the mean
f the actual values. 𝑛 is the number of observations.

.4. Comparison on multi-horizon prediction

We evaluate the performance of our proposed model Ac-GRN and
ompare it with 11 state-of-the-art baseline models for multi-horizon
ne-step district heat load forecasting using three metrics: RMSE, MAE,
nd CVRMSE. All comparable methods are trained with the whole
amples (i.e., 100% sampling ratio). Table 3 shows the results of the
omparison for four horizons (15, 30, 45, and 60 days). The results
emonstrate that our model Ac-GRN with 90% sampling ratio con-
istently outperforms other models across all metrics and horizons,
specially when the prediction horizon is longer. This indicates that
ur model can effectively capture the complex spatial–temporal de-
endencies in the data and actively learn from the most informative
amples. Moreover, our model shows a remarkable improvement over
ther models when the prediction horizon is longer, which reflects its
obustness and generalization ability. Among the baseline models, TPA
nd LSTNet perform better than the others, but they still lag behind
he Ac-GRN models. This implies that using graph neural networks and
ctive deep learning can improve the performance of district heat load
orecasting.

We also evaluate the impact of different sampling ratios on the
erformance of our model. The sampling ratio is the percentage of
amples that are selected by the active learning module. We use three
ampling ratios: 80%, 85%, and 90%. The results show that our model
an achieve high accuracy with a relatively low sampling ratio (80%),
hich demonstrates the efficiency and effectiveness of our active learn-

ng strategy. However, increasing the sampling ratio to 90% can further
mprove the accuracy of our model, especially for longer prediction
orizons. This suggests that there is a trade-off between the accuracy
nd efficiency of our model, and that choosing an appropriate sampling
atio can balance the costs associated with data collection and the
odel performance. We also compare the results of different sampling

atios with each other and with the baseline models. We find that our
odel with an 80% sampling ratio can outperform most of the baseline
odels except for TPA and LSTNet, while our model with 90% sampling

atio can outperform all of them. This shows that our model can achieve
ompetitive or superior results with fewer heat meter samples than
ther models.

Table 4 presents the prediction performance comparison consider-
ng the meteorological factors. The Dlinear, MTNet, TPA, MSL, and
9

StemGNN models are excluded from the comparison as they do not
take exogenous factors into account in their prior studies. Across all
prediction horizons and metrics, Ac-GRN consistently achieves the best
performance, with the lowest RMSE, MAE, and CVRMSE at 90% sample
ratio. These results underscore the strong predictive performance of
Ac-GRN in handling district heat load observations combined with
meteorological factors, reflecting its ability to effectively incorporate
and utilize exogenous data. For AR, LSTM, ED (GRU), and CRNN (Res),
the introduction of weather data generally improved the accuracy,
substantiating the importance of external data integration in optimizing
district heat load predictions. The meteorological factors are likely
to capture more complexity and variability of the district heat load,
which are further leveraged by these models to yield more accurate
predictions.

It is worth noting that the CRNN model’s performance enhance-
ment appears to be limited to a horizon of 15. This limitation could
potentially be attributed to the nature of convolutional layers, which
primarily extract local features in the data. While beneficial for certain
tasks, they may fail to capture long-term dependencies or complex
patterns that emerge over larger time horizons. As a result, the CRNN
model demonstrates increased performance at a shorter horizon (ℎ =
15) and performs relatively less effectively as the horizon increases.
Moreover, the results suggest that the addition of residual connections
in CRNN (Res) contributes to its superior stability and robustness
compared to the standard CRNN. These connections help to alleviate
the vanishing gradient problem and allow for more complex feature
extraction, ultimately enhancing the model’s performance across all
horizons.

5.5. Comparison on multi-horizon multi-step prediction

Table 5 presents the results of our proposed model Ac-GRN and four
state-of-the-art methods for multi-horizon multi-step district heat load
forecasting. We selected these four methods based on their relatively
strong performance in the multi-horizon one-step prediction task. We
use three metrics: RMSE, MAE, and CVRMSE, to evaluate the accuracy
and robustness of the models. We also analyze the impact of different
sampling ratios on our model’s performance. The results show that
our model Ac-GRN consistently outperforms other models across all
metrics and horizons, especially when the prediction horizon and step
are longer. This indicates that our model can effectively capture the
complex spatial–temporal dependencies in the data and actively learn
from the most informative samples. Moreover, our model shows a re-
markable improvement over other models when the prediction horizon
and step are longer, which reflects its robustness and generalization

ability. Our model also achieves high accuracy with a relatively low
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Table 4
The multi-horizon one-step performance comparison in three metrics and four horizons on district heat load observations with meteorological factors. The best result in
terms of each metric is highlighted in gray.
Horizon (ℎ) Metrics AR LSTM ED (GRU) CRNN CRNN (Res) Ac-GRN (90%)

15
RMSE 11.461 12.266 11.255 17.493 13.096 10.303
MAE 8.393 9.102 8.050 11.725 9.344 7.130
CVRMSE 0.345 0.369 0.339 0.527 0.394 0.312

30
RMSE 12.210 14.531 14.825 18.338 15.496 10.728
MAE 9.033 10.958 11.170 12.798 11.312 7.630
CVRMSE 0.368 0.437 0.446 0.552 0.466 0.325

45
RMSE 12.791 14.684 16.300 19.088 17.744 10.458
MAE 9.415 11.202 12.405 13.677 13.357 7.435
CVRMSE 0.385 0.442 0.491 0.575 0.534 0.317

60
RMSE 13.099 17.140 18.669 19.135 19.820 11.457
MAE 9.687 13.514 14.788 13.696 15.388 8.277
CVRMSE 0.394 0.516 0.562 0.576 0.597 0.347
Table 5
The multi-horizon multi-step performance comparison in three metrics and four horizons on district heat load observations.
Step Horizon (ℎ) Metrics Dlinear LSTNet TPA MTNet Ac-GRN (80%) Ac-GRN (85%) Ac-GRN (90%)

7

15
RMSE 12.556 11.995 11.306 11.789 10.998 10.966 10.821
MAE 9.064 8.586 8.197 8.207 7.852 7.872 7.791
CVRMSE 0.388 0.371 0.350 0.365 0.340 0.339 0.335

30
RMSE 15.294 13.460 12.354 14.648 11.075 11.220 11.143
MAE 11.292 9.813 9.067 10.382 8.004 8.089 8.005
CVRMSE 0.473 0.416 0.382 0.453 0.343 0.347 0.345

45
RMSE 18.101 16.783 14.681 15.323 12.786 12.133 12.039
MAE 13.289 11.912 10.743 10.875 9.220 8.770 8.751
CVRMSE 0.560 0.519 0.454 0.474 0.396 0.375 0.372

60
RMSE 21.974 17.336 17.010 16.678 15.789 15.842 15.683
MAE 16.184 12.314 12.273 12.010 12.078 12.113 11.994
CVRMSE 0.680 0.536 0.526 0.516 0.488 0.490 0.485

14

15
RMSE 13.271 13.432 11.391 12.770 11.795 11.769 10.995
MAE 9.528 9.738 8.276 8.951 8.494 8.474 7.815
CVRMSE 0.419 0.424 0.359 0.403 0.372 0.371 0.347

30
RMSE 16.072 14.491 12.104 14.719 12.159 11.829 11.686
MAE 11.741 10.511 8.924 10.608 8.919 8.588 8.492
CVRMSE 0.507 0.457 0.382 0.464 0.384 0.373 0.369

45
RMSE 19.292 17.055 14.714 16.918 14.448 12.611 12.453
MAE 13.970 12.182 10.799 12.155 10.917 9.296 8.765
CVRMSE 0.609 0.538 0.464 0.534 0.456 0.398 0.393

60
RMSE 23.498 17.499 16.303 18.209 16.048 16.000 15.868
MAE 17.269 12.665 12.024 13.808 12.272 12.243 12.100
CVRMSE 0.741 0.552 0.514 0.574 0.506 0.505 0.501
Table 6
Ablation analysis. The best result is highlighted in gray, while a wavy line indicates the worst result.

Horizon (ℎ) Metrics Ac-GRN Ac-GRN w/o
TCM

Ac-GRN w/o
GRU

Ac-GRN w/o
Attention

Ac-GRN w/o
LEU

Ac-GRN w/o
Generate

15
RMSE 10.852 12.074 11.670 11.671 12.820

⁓⁓⁓⁓
13.455

MAE 7.385 8.484 7.813 8.185 9.403
⁓⁓⁓
9.871

CVRMSE 0.327 0.363 0.351 0.351 0.386
⁓⁓⁓
0.405

30
RMSE 11.074 12.924 11.958 11.855 13.098

⁓⁓⁓⁓
13.751

MAE 7.765 9.435 8.398 8.301 9.655
⁓⁓⁓⁓
10.253

CVRMSE 0.333 0.389 0.360 0.357 0.394
⁓⁓⁓
0.414

45
RMSE 11.864 13.446 12.159 12.448

⁓⁓⁓⁓
17.042 14.709

MAE 8.397 10.041 8.671 8.919
⁓⁓⁓⁓
12.971 10.910

CVRMSE 0.357 0.405 0.366 0.375
⁓⁓⁓
0.513 0.443

60
RMSE 12.526 14.910 12.638 15.599

⁓⁓⁓⁓
16.902 15.018

MAE 9.021 11.134 8.920 11.789
⁓⁓⁓⁓
12.739 11.232

CVRMSE 0.377 0.449 0.380 0.470
⁓⁓⁓
0.509 0.452
sampling ratio (80%), which demonstrates the efficiency and effec-
tiveness of our active learning strategy. This table complements the
results in Table 3, which only considers one-step prediction for different
horizons. It shows that our model can also handle multi-step prediction
for different horizons, which is more challenging and realistic for
district heat load forecasting.
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5.6. Ablation and sensitivity analysis

To evaluate the contribution of each component of our proposed Ac-
GRN model, we conduct an ablation study by removing one component
at a time and comparing the performance with the full model. The
components considered for this analysis include the spatial–temporal
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Fig. 7. Sensitivity analysis of window size 𝑇 in terms of CV-RMSE. The optimal value is found at the red dash line.
convolution (TCM) module, the GRU and Attention in the spatio-
temporal memory enhancement module, the linear representation unit
(LEU) in the multi-component fusion, and the generation component
in the feature-enhanced module. Table 6 shows the results of the
ablation analysis in terms of RMSE, MAE, and CV-RMSE metrics for
four horizons (15, 30, 45, and 60 days). The results show that removing
any component leads to a decrease in accuracy and an increase in error
metrics for all horizons. This indicates that each component is essential
for the effectiveness of our model and that they work well together.
The most significant drop in performance occurs when we remove the
Generate or the LEU components, depending on the horizon. The Gener-
ation component in the feature-enhanced module plays a crucial role in
complementing the incomplete data, which provide by active learning.
This mitigates potential accuracy loss caused by missing data from
unselected heat meters. The LEU in the multi-component fusion aids
in enhancing the trend features of model inputs via linear embedding,
which helps improve the model’s ability to capture and predict heat
load trends accurately. For short horizons (15 and 30 days), removing
the Generate component causes the largest performance degradation.
This observation implies that generating informative samples is vital
to accurately capture the short-term dynamics of heat load. For long
horizons (45 and 60 days), removing the LEU component causes the
largest performance degradation, which suggests that enhancing the
linear features is crucial for capturing the long-term trends of heat load.

To examine how the performance of our model changes with dif-
ferent values of a parameter or a variable, we conduct a sensitivity
analysis by varying one parameter or variable at a time and measuring
the impact on the performance. Fig. 7 shows the results of the sensi-
tivity analysis for the window size 𝑇 , which is the number of historical
observations used as input for our model. AR and Dlinear are chosen for
the experiment as they do not rely on other hyper-parameters, allowing
for a more transparent view of how changes in window size 𝑇 affect
utcomes. The results demonstrate how the CV-RMSE metric varies
ith different window sizes 𝑇 for four different forecasting horizons

15, 30, 45, and 60 days). These results reveal that an optimal value
f 𝑇 exists for each horizon that minimizes the CV-RMSE metric and
aximizes the accuracy of our model. The optimal values of 𝑇 are 88,

80, 55, and 55 for horizons 15, 30, 45, and 60 days, respectively. This
suggests that our model can capture the temporal dependencies in the
data better when using an appropriate window size. If the window size
is too small, our model may not have enough information to make
accurate predictions. If the window size is too large, our model may
11
suffer from overfitting or noise. All comparisons are made using the
optimal window size settings for each method.

The ablation analyses demonstrate the robustness and generaliza-
tion capabilities of our proposed Ac-GRN model. Meanwhile, the sensi-
tivity analyses offer valuable insights into the significance and influence
of various parameters within our model for district heat load fore-
casting. These analyses collectively affirm the potential of the Ac-GRN
model as a reliable tool for district heat load prediction.

5.7. Computational efficiency and sampling ratio analysis

In this subsection, we compare the computational efficiency and
sampling ratio analysis of different methods for district heat load
prediction. The computational efficiency is measured by the running
time per batch for prediction processing, while the sampling ratio
indicates the proportion of annotated samples used for training. The
results are shown in the two tables, which report the running time and
the prediction accuracy for different methods under different horizons
and sampling ratios, respectively. The relatively worse result in terms
of each metric is highlighted in red.

We compared the computational efficiency of the proposed Ac-
GRN with other comparable methods for district heat load prediction
without meteorological factors, as shown in Table 7. The prediction
horizon ℎ and the prediction step 𝑠 were fixed at 15 and 1, respectively.
The performances are evaluated based on two statistical measures: the
mean and the standard deviation, computed over 20 repetitions of the
experiment for each model. The mean represents the average processing
time per batch, while the standard deviation measures the degree of
variation in the processing times. As can be seen from Table 7, the AR
model has the fastest running time, with a mean value of 0.00103 s
per batch. This is likely attributable to the linear structure of the
AR model, which, while beneficial for computational efficiency, could
limit its performance in long-horizon predictions. The StemGNN model
has the slowest running time, with a mean value of 1.74973 s per
batch, which is considerably higher than any of the other models. The
performance of StemGNN also has a large variation, as indicated by its
high standard deviation of 0.00689. The proposed model (Ac-GRN) has
a moderate running time, with a mean value of 0.01058 s per batch.
Although not the fastest, our proposed method still demonstrates rea-
sonable efficiency, especially when compared to the StemGNN model.
Both methods are based on graph neural network structures, with
our method being over 160 times faster than StemGNN. This suggests
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Table 7
The running time per batch for prediction processing of comparable methods and Ac-GRN. The best and worst methods are highlighted in green and red, respectively.

Time (s/batch) AR Dlinear MTNet TPA LSTNet LSTM ED (GRU) CRNN CRNN (Res) MSL StemGNN Ac-GRN (90%)

Mean value 0.00103 0.00182 0.00537 0.00697 0.01104 0.00728 0.00700 0.00571 0.00314 0.00105 1.74973 0.01058
Standard deviation 0.00017 0.00022 0.00055 0.00144 0.00309 0.00446 0.00299 0.00180 0.00303 0.00022 0.00689 0.00256
Table 8
The multi-horizon one-step performance comparison in three metrics and four horizons on district heat load observations with different sampling ratios. The relatively worse result
in terms of each metric is highlighted in red.

Horizon
(ℎ)

Metrics Dlinear
(80%)

Dlinear
(90%)

Dlinear
(100%)

MTNet
(80%)

MTNet
(90%)

MTNet
(100%)

TPA
(80%)

TPA
(90%)

TPA
(100%)

LSTNet
(80%)

LSTNet
(90%)

LSTNet
(100%)

Ac-GRN
(80%)

Ac-GRN
(90%)

15
RMSE 18.160 16.644 12.031 12.363 12.315 11.062 15.244 13.068 10.998 13.684 12.516 11.383 12.374 10.852
MAE 12.719 12.121 8.565 8.581 8.529 7.772 10.526 9.158 7.966 9.284 8.633 8.134 8.239 7.385
CVRMSE 0.547 0.501 0.362 0.372 0.371 0.333 0.459 0.393 0.331 0.412 0.377 0.343 0.372 0.327

30
RMSE 20.320 18.168 14.459 14.450 13.873 12.994 14.798 13.869 11.852 15.741 14.550 12.930 12.341 11.074
MAE 15.771 13.680 10.848 10.207 9.785 9.500 10.700 9.955 8.737 11.187 10.415 9.325 8.639 7.765
CVRMSE 0.612 0.547 0.435 0.435 0.418 0.391 0.445 0.417 0.357 0.474 0.438 0.389 0.371 0.333

45
RMSE 21.257 19.214 16.983 15.656 15.689 13.835 16.712 15.503 13.386 16.629 15.748 15.254 12.537 11.864
MAE 16.859 15.087 13.048 11.451 11.312 9.965 12.369 11.392 9.913 11.871 11.218 10.979 8.925 8.397
CVRMSE 0.640 0.578 0.511 0.471 0.472 0.416 0.503 0.467 0.403 0.501 0.474 0.459 0.377 0.357

60
RMSE 23.490 22.351 20.413 17.852 17.977 17.085 17.790 16.389 14.811 21.136 19.168 17.002 14.120 12.526
MAE 18.980 17.868 15.705 13.036 12.838 12.545 13.209 12.164 11.033 15.841 13.968 12.325 10.374 9.021
CVRMSE 0.707 0.673 0.614 0.537 0.541 0.514 0.535 0.493 0.446 0.636 0.577 0.512 0.425 0.377
that Ac-GRN is capable of balancing the computational efficiency and
prediction performance more effectively than some of the other models.
The standard deviations for each method are relatively small compared
to their corresponding means, indicating a relatively tight distribution
of running times. The largest standard deviation is for StemGNN, which
could suggest variability in its performance.

Table 8 shows the multi-horizon one-step performance comparison
of different methods for district heat load prediction with different
sampling ratios. The sampling ratios indicate the proportion of an-
notated samples used for training, ranging from 80% to 100%. The
prediction accuracy is measured by three evaluation metrics: MAE,
RMSE, and CVRMSE. The relatively worse result in terms of each metric
is highlighted in red. As can be seen from Table 8, our proposed model
(Ac-GRN) achieves the best performance in most cases, especially in
longer horizons (45 and 60), where it significantly outperforms other
methods. The only exception is in horizon 15, where Dlinear has a
slightly lower MAE and RMSE than our proposed model with 80%
and 90% sampling ratios, but our proposed model still has a lower
CVRMSE than Dlinear with all sampling ratios. This demonstrates that
our proposed model is more accurate and robust than other methods
under different sampling ratios. The other methods have varying per-
formances under different horizons and sampling ratios, but generally,
they have higher MAE, RMSE, and CVRMSE than our proposed model.
The Dlinear model has the worst performance in most cases, which
is likely due to its linear structure that cannot capture the complex
spatial–temporal dependencies in the data. The MTNet model has a
relatively good performance in shorter horizons (15 and 30), but it
deteriorates in longer horizons (45 and 60), which could indicate its
difficulty in handling long-term dependencies. The TPA model has
a moderate performance in most cases, but it has a high CVRMSE
in horizon 45 with an 80% sampling ratio, which could suggest its
instability under data scarcity. The LSTNet model has poor performance
in most cases, which could be attributed to its high complexity and
computational cost.

In summary, our proposed model (Ac-GRN) outperforms other
methods in terms of prediction accuracy and computational efficiency
under different sampling ratios. This shows that our proposed model
can effectively leverage the spatial–temporal correlations among heat
meters using active deep learning and graph neural networks, while
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other methods may suffer from data sparsity or complexity issues.
6. Discussions

In this paper, we proposed Ac-GRN, a novel model that combines
active deep learning and graph neural networks for district heat load
forecasting. Our model consists of three main components: a knowledge
extractor that uses active learning to select the most informative heat
meters, a feature reconstructor that imputes the missing data of unse-
lected meters using correlation analysis, and a graph recurrent network
that models the spatial–temporal dependencies among heat meters. Our
model can capture the complex patterns and relationships in the data
and provide accurate and robust forecasts for different horizons and
steps.

One of the main contributions of our paper is that we use active
learning to reduce the frequency and cost of data collection and human
effort. By selecting only a small subset of heat meters that are most
representative and informative, we can train our model with fewer
data and achieve better performance than using all the data. We also
use correlation analysis to reconstruct the missing data of unselected
meters, which improves the data quality and completeness. We show
that our model can achieve high accuracy with only 80% of the
data, which demonstrates the efficiency and effectiveness of our active
learning strategy.

Another contribution of our paper is that we use graph neural net-
works to model the spatial–temporal dependencies among heat meters.
We represent the heat meters as nodes in a graph, where the edges
are defined by the heat load similarity. We use a graph convolutional
network to learn the spatial features of the nodes, and a gated recurrent
unit to learn the temporal features of the sequences. We also use an
attention mechanism to learn how to weigh different nodes and time
steps for prediction. We show that our model can capture both linear
and nonlinear relationships in the data, and outperform other methods
that use different types of neural networks.

A third contribution of our paper is that we provide explanations for
our model and its predictions. Our proposed Ac-GRN model leverages
active deep learning methods and correlation-based techniques to offer
explainability. A novel framework was designed to select representative
smart heat meters by active deep learning. This framework identifies
both representative and non-representative meter groups using the least
confidence measure. The annotated results of these meter groups can
provide actionable feedback to corporations or governmental bodies,
thereby aiding in heating regulation and management. Further, we
introduce a feature reconstructor to interpolate incomplete data based

on correlations among heat meters. This reconstruction process is both
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transparent and interpretive, effectively linking unselected heat meters
with their correlated, annotated counterparts. In addition, we use
attention mechanisms to explain how our model attends to different
nodes in the graph and different time steps in the time series. These
attention weights can be visualized, demonstrating how they adjust
depending on the input data and the horizon. To provide a concrete
example of our model’s explainability, consider a scenario where our
model is predicting heat load for a specific time period. The active deep
learning component identifies the heat meters that are most influential
for the prediction. The feature reconstructor then fills in any missing
data in the heat meter readings, using correlations among the meters.
This reconstructed data is transparent and interpretable, offering a clear
view of how the model arrived at its prediction.

Despite the promising results of our model, we acknowledge that
there are some limitations and challenges that need to be addressed
in future research. First, our model relies on a fixed graph structure
to represent the spatial dependencies among heat meters, which may
not capture the dynamic changes in the network topology or node
attributes over time. For example, there may be new nodes added or
removed, or node features updated over time. Second, our model uses a
single prediction horizon for all heat meters, which may not be optimal
for each meter. For example, some meters may have more stable or
predictable patterns than others, and may require different prediction
horizons. Third, our Ac-GRN model requires a large amount of compu-
tational resources and time to train and update the model parameters,
especially when dealing with large-scale and high-dimensional district
heating data. This may limit the applicability and scalability of our
model in real-time and resource-constrained settings, where timely
and efficient forecasting is essential for optimizing energy production
and distribution. Fourth, our model does not provide interpretable
explanations for its predictions, which may limit its applicability and
trustworthiness in real-world scenarios. For example, it may be useful
to know why some meters have higher or lower heat load than others,
or what factors contribute most to the prediction.

To address these limitations, we propose some possible directions
for future research. First, we can use dynamic graph neural networks
to model the spatial dependencies among heat meters, such as tem-
poral graph convolutional networks [42], recurrent graph neural net-
works [47], or graph attention networks [46]. These networks can
handle the changes in the graph structure or node attributes over
time and learn more expressive representations of the data. Dynamic
graph neural networks have been shown to improve the accuracy and
robustness of district heat load forecasting in previous studies [67,68].
Second, we can use multi-task learning or multi-output learning to pre-
dict different horizons for different heat meters simultaneously. These
learning methods can leverage the shared information and correlations
among different horizons and meters and improve the accuracy and
efficiency of our model. Multi-task learning or multi-output learning
can also reduce the complexity and redundancy of the model by sharing
parameters and features across different tasks or outputs [69]. Third,
we can use explainable artificial intelligence techniques to provide in-
terpretable explanations for our predictions, such as SHAP values [70],
LIME [71], or counterfactuals [72]. These techniques can help us under-
stand how our model works and what factors influence its predictions.
Explainable artificial intelligence techniques can also enhance the trust
and reliability of our model and support decision-making for optimizing
energy production and distribution [73]. Last, to further validate and
refine our model’s explanations, we plan to conduct user studies or
expert evaluations. These studies will involve presenting the model’s
explanations to users or experts and collecting their feedback on the
clarity, utility, and relevance of the explanations. This feedback will
provide valuable insights into how well users or experts understand the
explanations and how they might use the explanations in real-world
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decision-making scenarios. We believe that this additional validation
will not only strengthen our model’s ability to provide ‘‘meaningful
explanations" but also provide directions for further improving the
model’s explainability.

7. Conclusions and future work

District heat load forecasting is an important task for improving
the efficiency and sustainability of district heating systems. However,
existing methods for district heat load forecasting face several chal-
lenges, such as capturing the complex spatial–temporal dependencies
among heat meters, reducing the frequency and cost of data collection
and human effort, and providing interpretable explanations for the
predictions. In this paper, we addressed these challenges by propos-
ing Ac-GRN, a novel model that combines active deep learning and
graph neural networks for district heat load forecasting. Our model
can effectively select the most informative and representative samples
from a large pool of data, and use them to train a graph recurrent
neural network with bidirectional recurrent connections. Our model
can capture both linear and nonlinear relationships in the data and
provide accurate and robust forecasts for different horizons and steps.
We evaluated our model on a real-world dataset of district heating
consumption data from Danish residential buildings and compared it
with 11 state-of-the-art methods. We conducted extensive experiments
to test the performance of our model for different prediction horizons,
steps, and sampling ratios. The results indicate that our model achieved
superior performance in terms of accuracy, robustness, and reliability
for multi-horizon multi-step district heat load forecasting. We also com-
pared the computational efficiency of our model with other methods
and found that our model has a reasonable running time per batch for
prediction processing, especially when compared to other graph neural
network-based methods. This shows that our model can balance the
trade-off between computational efficiency and prediction performance
more effectively than some of the other methods.

For future work, we plan to extend our model to handle dynamic
graph structures and node attributes, to predict different horizons for
different heat meters, and to provide interpretable explanations for
our predictions. We also plan to apply our model to other domains
that involve spatial–temporal data, such as traffic flow forecasting, air
quality forecasting, and social network analysis. We hope that our work
can inspire more research on active deep learning and graph neural
networks for district heat load forecasting and other related tasks.
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Appendix

A.1. Hyper-parameter setting

The parameters setting of the proposed method and benchmarks are
listed in Table 9.

Table 9
Hyper-parameter settings.

Model Parameter Option range

LSTM Hidden size {24 , 25 , 26 }ED (GRU)

CRNN Kernel size 3–9 (2 per step)
CNN out channels {22 , 23 , 24 , 25 , 26 }

CRNN (Res) Hidden size {24 , 25 , 26 }

CRNN (Res) Residual window size 1–5 (1 per step)

TPA-LSTM Kernel size 3–9 (2 per step)
CNN out channels {22 , 23 , 24 , 25 , 26 }

LSTNet GRU hidden size {24 , 25 , 26 }

MTNet The number of GRU layers 1–3 (1 per step)
Highway window size 1–10 (1 per step)

LSTNet Skip window size 1–3 (1 per step)
Skip GRU hidden size {24 , 25 , 26 }

MTNet Block size 1–10 (1 per step)

MSL Shapelet size {22 , 23 , 24 , 25 , 26 }

StemGNN Encoder layers 1–3 (1 per step)
The numbers of blocks 1–3 (1 per step)

Ac-GRN

GCN hidden size {24 , 25 , 26 }
GCN out channel {23 , 24 , 25 , 26}
GRU hidden size {24 , 25 , 26 }
Kernel size 3–9 (2 per step)
The number of correlated
meters for reconstruction

{ 3, 5, 10, 15, 20 }

CNN out channels {23 , 24 , 25 , 26 }
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