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A B S T R A C T

Wind power serves as a clean and sustainable form of energy. However, its generation is fraught with variability
and uncertainty, owing to the stochastic and dynamic characteristics of wind. Accurate forecasting of wind
power is indispensable for the efficient planning, operation, and grid integration of wind energy systems. In
this paper, we introduce a novel forecasting method termed Temporal Collaborative Attention (TCOAT). This
data-driven approach is designed to capture both temporal and spatial dependencies in wind power generation
data, as well as discern long-term and short-term patterns. Utilizing attention mechanisms, TCOAT dynamically
adjusts the weights of each input variable and time step based on their contextual relevance for forecasting.
Furthermore, the method employs collaborative attention units to assimilate directional and global information
from the input data. It also explicitly models the interactions and correlations among different variables or time
steps through the use of self-attention and cross-attention mechanisms. To integrate long-term and short-term
information effectively, TCOAT incorporates a temporal fusion layer that employs concatenation and mapping
operations, along with hierarchical feature extraction and aggregation. We validate the efficacy of TCOAT
through extensive experiments on a real-world wind power generation dataset from Greece and compare
its performance against twenty-two state-of-the-art methods. Experimental results demonstrate that TCOAT
outperforms existing methods in terms of both accuracy and robustness in wind power forecasting. Moreover,
we conduct a generality study on an additional real-world dataset from a different climate condition and wind
power characteristics. The results show that TCOAT can achieve comparable or better performance than the
state-of-the-art methods, confirming the generalization ability of TCOAT.
1. Introduction

Wind power is a renewable and clean energy source that has been
growing rapidly in recent years, reaching a global capacity of 934
GW in 2022 [1]. However, wind power generation is also fluctuating
and intermittent, due to the stochastic and dynamic nature of wind
speed and direction, as well as other meteorological factors [2]. These
characteristics pose a threat to the stability of electric power systems
and hinder the effective application and management of wind en-
ergy [3]. Therefore, forecasting wind power accurately is crucial for the
planning, operation, and integration of wind energy systems into the
power grid [4]. Wind power forecasting (WPF) is the task of estimating
the amount of wind power that can be produced by one or more wind
turbines or wind farms in a given location and time period [5]. Wind
power forecasting can help wind farm operators and grid managers to
plan ahead, adjust the power supply and demand, reduce the risk of
power outages or curtailments, and optimize the economic benefits.
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WPF can be categorized into different types according to the time
horizon, such as long-term (more than one year), medium-term (one
month to one year), short-term (one day to one week), and very short-
term (less than one day) [3]. Among these types, short-term and very
short-term WPF are the most important and challenging ones, as they
have direct implications for the economic and technical aspects of
wind power integration, such as scheduling, dispatching, balancing,
and market participation [6].

WPF confronts a multitude of challenges that stem from the in-
herent complexities of wind power generation data. These challenges
include nonlinearity, nonstationarity, high-dimensionality, and uncer-
tainty. Nonlinearity in wind power generation is manifested through
intricate relationships with a variety of input variables such as wind
speed, wind direction, air density, turbine characteristics, and terrain
features. As Duan et al. [7] have demonstrated, linear models and
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rudimentary statistical methods often fall short in capturing these
nonlinear relationships, leading to forecasts that are either suboptimal
or biased. To mitigate this issue, the adoption of nonlinear modeling
techniques capable of learning complex data patterns is imperative. The
temporal variations and seasonal changes in wind power generation
introduce another layer of complexity, termed nonstationarity. The
study [8] indicates that such variations can alter the data distribution
and the underlying dynamics over time, thereby affecting the reliability
of models that assume constant parameters or stable conditions. Conse-
quently, there is a pressing need for adaptive modeling approaches that
can adjust to these changing conditions to yield consistent forecasts.
High-dimensionality is another significant challenge, as wind power
generation is influenced by a multitude of factors that operate across
different spatial and temporal scales. These include weather conditions,
geographical locations, turbine configurations, and grid conditions.
As Karamichailidou et al. [9] have noted, the sheer volume of data
generated from these multiple sources complicates data processing
and analysis. Therefore, models capable of handling high-dimensional
data are essential for effective forecasting. Wind power generation is
affected by various sources of uncertainty, such as measurement errors,
model errors, parameter errors, and forecast errors [10]. These sources
of uncertainty may introduce errors or deviations in the forecasts,
affecting the decision-making and risk management of wind power
integration. To address this difficulty, uncertainty quantification and
propagation techniques can be used to provide probabilistic forecasts
or confidence intervals, such as [11,12].

In recent decades, a plethora of methods have been developed to
tackle the challenges associated with WPF, as evidenced by a range
of seminal works [13–16]. These works can be broadly categorized
into three categories: physical methods, statistical methods, and hybrid
methods. Physical methods are based on numerical weather predic-
tion (NWP) models that simulate atmospheric dynamics and physics
using mathematical equations [8]. Physical methods primarily rely on
numerical weather prediction (NWP) models, which employ mathe-
matical equations to simulate atmospheric dynamics and physics [8].
While these physically-based models, such as NWP systems [17,18],
are adept at providing detailed long-term wind forecasts, they are
computationally intensive and may suffer from inaccuracies due to
model simplifications. Moreover, the computational burden becomes
particularly pronounced during the downscaling process [19]. Statis-
tical methods, on the other hand, employ data-driven models to learn
empirical relationships between input variables, such as historical wind
and meteorological data, and output variables like future wind power
generation [5]. These models are generally efficient for short-term
forecasts but are susceptible to overfitting and may exhibit reduced
accuracy over extended prediction horizons [20]. Traditional statistical
models like the Persistence Model (PM) and various Autoregressive
(AR) types, including ARMA and ARIMA, have been adapted to ac-
count for the non-stationary and complex nature of wind speeds. For
example, Fractional ARIMA models have demonstrated significant im-
provements in 24-hour and 48-hour wind speed forecasts compared
to the PM [21]. However, these models often make the simplifying
assumption of Gaussian distributions in wind speed data, which may
not always hold true [22]. Hybrid methods aim to amalgamate the
strengths of both physical and statistical approaches, thereby providing
robust and reliable forecasts across various time horizons [8]. Despite
their potential, these methods may encounter challenges in effectively
integrating disparate models or data sources [23].

Nevertheless, existing methods still have some limitations and draw-
backs. One of them is that most of the methods do not consider the
importance and relevance of each input variable or time step. They
treat all the input data equally or use fixed weights, which may lead
to poor or biased forecasts. For example, ARIMA [2], ELM [3] and SVR
models [5], do not differentiate the importance of different wind fields,
time steps, or meteorological factors, respectively. Another notable lim-
2

itation is the inadequate exploitation of collaborative and directional
information present in the input data. Many existing methods overlook
the interactions and correlations among different variables or time
steps, leading to forecasts that may be either incomplete or redundant.
For instance, both the ARIMA and SVR models fail to capture the direc-
tional nuances of wind speed and direction, as well as the interactions
among different input variables or geographical locations. Moreover,
a majority of the methods exhibit a lack of effective integration be-
tween long-term and short-term information from the input data. They
either focus on one of these aspects to the exclusion of the other or
resort to simplistic concatenation techniques, potentially resulting in
information loss or inconsistencies in the forecasts. For example, ELM
networks and SVR methods primarily concentrate on long-term infor-
mation derived from NWP equations or short-term information from
Multi-Temporal Scale (MTS) models, or they attempt to combine both
types of information through rudimentary concatenation. Furthermore,
most of existing methods do not consider the spatial dependencies
among different wind turbines or wind farms, which may affect the
accuracy and reliability of the forecasts. These methods often rely on
fixed or predefined weights for each input variable or time step, which
may not reflect their contextual relevance for forecasting. Therefore,
there is a need for a novel method that can address these challenges
and provide accurate and robust forecasts for WPF.

In this paper, we aim to answer the following research problem
statement: How to accurately forecast wind power generation using a
data-driven method that can capture the temporal and spatial depen-
dencies, as well as the long-term and short-term patterns in the data,
and that can dynamically adjust the weights of each input variable
and time step based on their contextual relevance for forecasting? The
research objectives of this paper are: (1) To develop a novel data-driven
method for WPF that can accurately forecast wind power generation
by capturing the temporal and spatial dependencies, as well as the
long-term and short-term patterns in the data. (2) To explore how the
proposed method can dynamically adjust the weights of each input vari-
able and time step based on their contextual relevance for forecasting,
and how this can improve the representation and interpretation of the
data.

To address these objectives, we propose Temporal Collaborative
Attention (TCOAT), a novel method for WPF that advances the state-
of-the-art in several ways. First, it is the first method that integrates
temporal collaborative attention with temporal fusion for WPF, which
can capture both the temporal and spatial dependencies, as well as the
long-term and short-term patterns in the data. Existing methods either
use fixed or predefined weights for each input variable or time step, or
use simple attention mechanisms that do not consider the directional
information or the global information in the data. Second, it introduces
collaborative attention units (CAUs), which can transform the input
data into a tensorial representation capable of capturing directional
dependencies, and computing attention scores and memory weights for
each tensor direction. CAUs can model the interactions and correlations
among different variables or time steps using self-attention and cross-
attention, and can enhance the representation and interpretation of
the data. Existing methods either do not use attention mechanisms,
or use single-directional or single-dimensional attention mechanisms
that do not capture the complex relationships in the data. Third, it
designs a temporal fusion layer, which can effectively integrate the
long-term and short-term information from the data, and fuse them
using concatenation and mapping operations and hierarchical feature
extraction and aggregation. The temporal fusion layer can capture
both global and local data characteristics, and can extract hierarchical
features for WPF. Existing methods either do not use temporal fusion,
or use simple concatenation or averaging techniques that may result in
information loss or inconsistencies in the data. TCOAT is an end-to-end
model that can learn directly from raw wind power data without any
preprocessing or post-processing steps.
The main contributions of this paper are:
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• We propose TCOAT, a novel method for WPF that uses attention
mechanisms to capture the temporal and spatial dependencies
in wind power generation data, and to dynamically adjust the
weights of each input variable and time step according to their
relevance for forecasting.

• We introduce CAUs, a novel component of TCOAT that can learn
the directional information and the global information from the
data, and model the interactions and correlations among different
variables or time steps using self-attention and cross-attention.

• We design a temporal fusion layer, a novel component of TCOAT
that can effectively integrate the long-term and short-term in-
formation from the data, and fuse them using concatenation
and mapping operations and hierarchical feature extraction and
aggregation.

• We evaluate TCOAT’s performance and generality on two real-
world wind power generation datasets from different climate
zones. One dataset is from Greece, which has a Mediterranean
climate. The second dataset, while the precise location is not
disclosed, is derived from a wind farm situated in a flat, in-
land terrain. We compare TCOAT with twenty-two state-of-the-art
methods on various forecasting tasks and metrics. The results
demonstrate that TCOAT outperforms existing methods in terms
of accuracy, generality and robustness for WPF.

The rest of this paper is organized as follows: Section 2 presents
elated work. Section 3 describes the study materials. Section 4 presents
he proposed TCOAT model. Section 5 describes the experimental
ettings, reports, and discussions on the experimental results. Section 6
oncludes this paper and outlines some future research directions.

. Related work

.1. Wind power forecasting models

Wind power forecasting is essential for the integration and op-
ration of wind energy in power systems. It can help optimize the
cheduling and dispatch of power generation, reduce the uncertainty
nd variability of wind power, and enhance the reliability and secu-
ity of the grid. Wind power forecasting can be classified into four
ategories according to the forecasting horizon: very short-term (up
o 6 h ahead), short-term (6 to 48 h ahead), medium-term (2 to 10
ays ahead), and long-term (more than 10 days ahead) [24]. Different
orecasting methods have different strengths and weaknesses, depend-
ng on the forecasting horizon, the spatial and temporal resolution, the
nput data, and the evaluation metrics. In this section, we review some
f the main approaches for wind power forecasting, namely physical,
tatistical, and deep neural networks (DNNs) methods. We also discuss
heir advantages, disadvantages, and challenges.

.1.1. Physical approaches
Physical models, employing numerical weather prediction (NWP)

echniques, are crucial in wind power forecasting. These models are
ased on atmospheric physics and solve equations of fluid dynamics
nd thermodynamics. They can account for complex terrain and en-
ironmental factors, and provide forecasts for multiple variables, such
s wind speed, direction, temperature, and pressure. These variables
an affect the power output and the fatigue and damage of wind
urbines, as well as the power flow and congestion in transmission
ines [25]. One of the most prominent examples of physical mod-
ls is the Weather Research and Forecasting (WRF) model, which
xcels in medium to long-term forecasting. However, these models
lso have drawbacks, such as requiring high computational resources
nd extensive meteorological data, which can hamper their real-time
pplications.

Several studies have applied and compared the performance of
3

hysical models for wind power forecasting, using different input data,
forecasting horizons, and evaluation metrics. For example, Jacondino
et al. [26] compared different physics schemes for wind forecasting in
Brazil using WRF. They found that the best setup used a local closure
PBL, a single-moment microphysics, a two-layer land surface, a profile
adjustment cumulus, and cloud-aerosol radiation. Wang et al. [27]
proposed a method to correct the wind forecast of the WRF model using
random forest (RF) and machine learning (ML) techniques. They used
WRF output, GTS observation and ERA5 reanalysis data as inputs, and
evaluated the forecasts using RMSE and spatial distribution. They found
that the RF-based method improved the average forecast accuracy of
10 m wind, 2 m temperature and sea level pressure by 40%, 36%,
and 50%, respectively, compared to the original WRF model. They
also found that adding a MLP-based feature selector to the RF model
further improved the accuracy by 5%. Zheng et al. [28] used the WRF-
RF model for short-term wind power prediction at a wind farm in
China. They used data from a NWP model and a wind tower as inputs,
and evaluated the forecasts using RMSE and MAPE. They found that
the WRF-RF model improved the accuracy of wind power prediction,
especially at higher wind speeds. Zhao et al. [29] created a hybrid
method that combines a WRF ensemble, a fuzzy system, and a cuckoo
search algorithm to forecast wind speed for wind farms. The method
reduces NWP errors, selects and weighs the best ensemble members,
and performs better than other models in different regions.

One of the advantages of physical models is that they can provide
forecasts for any location, even where historical data is not available or
sufficient. This is especially useful for remote or offshore wind farms,
where data collection can be challenging or costly [30]. However,
physical models also face some challenges and limitations. One of them
is that they depend on the quality and availability of input data, such as
initial and boundary conditions, which can introduce uncertainties and
errors in the forecasts. For example, errors in the initial wind speed or
direction can propagate and amplify over time, leading to inaccurate
forecasts [31]. Another challenge is that they require high-resolution
spatial and temporal grids, which can increase the computational com-
plexity and cost of the models. This can limit the applicability of
physical models for short-term or very short-term forecasting, where
fast and frequent updates are needed [32]. Moreover, physical models
may not account for local effects, such as topography, land use, and
vegetation, which can influence wind power production at specific
sites. These effects can be difficult to model or parameterize, and may
require site-specific calibration or validation [33]. Finally, physical
models may not be able to capture the stochastic and nonlinear nature
of wind power fluctuations, especially in short-term horizons. These
fluctuations can be caused by random or chaotic phenomena, such as
gusts, ramps, or cut-offs, which can be hard to predict or simulate [34].

2.1.2. Statistical approaches
Statistical models, such as the Auto Regressive Moving Average

(ARMA) and its extension, the Auto Regressive Integrated Moving
Average (ARIMA), are widely utilized in wind power forecasting. These
models are based on linear regression of observed values, and can
handle time series data effectively. The ARIMA model, in particular,
addresses the non-stationarity of wind data, making it more adaptable
to varied forecasting scenarios. However, these models require high-
quality, stationary historical data to maintain accuracy, which may
limit their applicability in some conditions.

Several studies have applied and compared the performance of
ARMA and ARIMA models for wind power forecasting, using different
input data, forecasting horizons, and evaluation metrics. For example,
Cao et al. [35] combined the ARMA model for forecasting up to one
hour ahead, and the pattern-matching method for forecasting up to six
hours ahead. They found that the ARMA model had better accuracy
in shorter time scales, while the pattern-matching method was more
accurate for longer time scales. Milligan et al. [36] tested various
alternative ARMA models for up to six hours forecasting horizon, and

found that the ARMA (1,24) model had the best performance of all
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the models tested. They also observed that the forecasting accuracy
decreased significantly for greater forecasting horizons, and that the
ARMA models managed to surpass the persistence model in most cases.
Ahn et al. [37] proposed a short-term wind power forecasting method
using an ensemble model based on wavelet transform and ARIMAX
techniques. They claimed that their method outperformed the single
ARIMAX model and other benchmark models in terms of accuracy and
reliability. Zhang et al. [38] proposed a hybrid model based on DWT,
SARIMA and LSTM to forecast short-term offshore wind power. They
used DWT to decompose the power signal into linear and nonlinear
components, and applied SARIMA and LSTM to capture the seasonal
and dynamic patterns, respectively. They achieved lower NMAE and
NRMSE than using single models or other hybrid models. Sheoran
and Pasari [39] forecasted wind speed from four Indian locations.
They updated model parameters dynamically and compared with stan-
dard ARIMA and persistence models. They showed that window-sliding
ARIMA was more accurate, robust, flexible, and efficient.

Statistical models have some advantages and drawbacks for wind
power forecasting. One of the advantages is that they are simple, fast,
and easy to implement. They can provide reliable forecasts for short-
term horizons, such as minutes or hours ahead, which are useful for
operational planning and scheduling. They can also capture the auto-
correlation and seasonality of wind power data, which are important
features for forecasting. Moreover, statistical models can be combined
with other methods, such as physical models, machine learning models,
or ensemble methods, to improve their performance and robustness.
For example, Singh et al. [40] proposed a hybrid method that used
ARIMA and artificial neural networks (ANNs) to forecast wind power
for different time scales. Bazionis et al. [41] presented a critical review
of various forecast models, including statistical models, and compared
their performance indices. However, statistical models also have some
drawbacks and challenges. One of them is that they ignore external
factors that affect wind power generation, such as weather conditions,
terrain features, or turbine characteristics. These factors can introduce
uncertainties and errors in the forecasts, especially for longer-term hori-
zons, such as days or weeks ahead. Another drawback is that statistical
models are sensitive to outliers and noise in the data, which can distort
the model parameters and reduce the forecast accuracy. Furthermore,
statistical models may fail to capture complex and nonlinear patterns
in the wind power data, such as ramps, gusts, or cut-offs, which can
cause significant deviations from the expected values. These patterns
can be influenced by random or chaotic phenomena, which are hard to
model or predict by linear regression. For instance, Messner et al. [42]
conducted a comprehensive review and statistical analysis of errors in
wind power forecasts, and found that the error dispersion factor, which
measures the variability of errors, depended on the size of the wind
farm, the forecasting horizon, and the class of the forecasting method.
Olson et al. [43] developed an empirical model that used inputs from
a numerical weather prediction (NWP) model to forecast wind power,
and compared it with a statistical model.

2.1.3. DNN-based approaches
Deep Neural Networks (DNNs) are composed of multiple intercon-

nected layers of artificial neurons that can learn complex and nonlinear
mappings between the input data and the output data [2,44]. DNNs can
be classified into different types and categories based on their network
structures and functions, such as Recurrent Neural Networks (RNNs),
Convolutional Neural Networks (CNNs), Attention Mechanisms (AMs),
Transformers, and Graph Neural Networks (GNNs) [45]. These types or
categories of DNNs have different characteristics, strengths, and weak-
nesses for wind power forecasting, depending on the input features, the
forecasting horizon, and the uncertainty quantification [46].

Several DNN-based methods have been proposed for wind power
forecasting, which can be categorized according to their input features,
4

network architectures, and forecasting horizons. Huang et al. [47]
used LSTM, CNN, and fully connected layers to capture the long-
term dependencies and local features in wind power data, achieving
high accuracy and robustness for short-term forecasting. In contrast,
Alcantara et al. [48] used CNN and fully connected layers to extract
local and global features from spatial data and capture the spatial
dependencies in wind power generation, achieving high accuracy and
efficiency for medium-term forecasting. Liu et al. [49] used AM, LSTM,
and fully connected layers to assign different weights to different
inputs or time steps according to their relevance and importance for
wind power forecasting, achieving high accuracy and scalability for
long-term forecasting. Moreover, Sun et al. [50] used spatio-temporal
correlations and transformer neural networks for short-term multi-step
wind power forecasting, evaluating the quality of spatial information
using distance- and correlation-based metrics, and modeling the wind
power using multi-head attention mechanism. They outperformed sev-
eral baseline and state-of-the-art methods in two case studies, but they
ignored the wind direction, seasonal variation, and weather factors.
Wu et al. [51] integrated multidimensional data and spatial correla-
tions for wind speed forecasting, using a Wind Transformer to capture
temporal features and a GNN [52] to aggregate spatial features. They
outperformed existing methods in accuracy and stability. Liu et al. [53]
forecasted the ultra-short-term power of wind farm cluster based on
power fluctuation pattern recognition and spatio-temporal graph neu-
ral network, segmenting the power series into different patterns and
training a separate model for each pattern, and capturing the dynamic
spatio-temporal correlation between adjacent wind farms under differ-
ent patterns. However, they had limitations such as high computational
cost, fixed pattern partition, and lack of uncertainty quantification.

Compared to other methods, DNN-based wind power forecasting
methods have both advantages and drawbacks. On the one hand,
they can learn complex and nonlinear patterns and dependencies from
historical data, without requiring explicit physical or statistical assump-
tions. They can also handle noisy, incomplete, or high-dimensional
data, and adapt to changing conditions and scenarios. Moreover, they
can be combined with other methods, such as physical models, statis-
tical models, or optimization methods, to improve their performance
and robustness. For instance, Lu et al. [54] proposed a hybrid method
that used IVMD-SE data preprocessing, MC-LSTM predictor and PSO
optimization to forecast short-term wind power, which can handle
complex data characteristics and improve forecasting accuracy and
robustness. Wu et al. [55] presented a comprehensive review on DNN-
based approaches in wind forecasting applications, and categorized
the existing methods into four types: RNN-based, RBM-based, CNN-
based and AE-based models. They also discussed the advantages and
disadvantages of each type, as well as the future research directions.
On the other hand, deep learning models also have some limitations
and challenges in wind forecasting. One of them is that they require
high-quality and large-scale data, which may not be easily obtained or
sufficient in some scenarios. Another limitation is that they are suscep-
tible to overfitting and underfitting, which may affect their accuracy
and robustness. Moreover, deep learning models are computationally
expensive and time-consuming, and they need careful tuning of hy-
perparameters and network architectures. Furthermore, deep learning
models are hard to interpret and explain, as they lack transparency
and physical meaning. Therefore, it is important to address these issues
and improve the performance and reliability of deep learning models
in wind forecasting.

2.1.4. Summary
Statistical models, physical models, and DNN-based methods are

three main categories of existing methods for wind power forecasting.
However, each category has its own advantages and drawbacks, such
as data requirements, computational complexity, accuracy, robustness,
and interpretability. In this paper, we propose a novel method for
wind power forecasting, TCOAT, that integrates temporal collaborative

attention and temporal fusion, which can capture both the temporal
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and spatial dependencies, as well as the long-term and short-term
patterns in wind power generation data. TCOAT also introduces col-
laborative attention units (CAUs) and a temporal fusion layer, which
can enhance the representation and interpretation of the data, and
extract hierarchical features for wind power forecasting. TCOAT differs
from the existing DNN-based methods in terms of the design and the
components, and demonstrates the unique contributions of this work
by providing accurate and robust forecasts for wind power forecasting.
TCOAT consists of four main components: a temporal encoder, a spatial
encoder, a collaborative attention module, and a transformer decoder.
TCOAT can handle both sequential and spatial data, capture long-
term and short-term dependencies, provide attention maps, and achieve
state-of-the-art performance. TCOAT is an end-to-end model that can
learn directly from raw wind power data without any preprocessing or
post-processing steps.

2.2. Attention mechanisms in time series forecasting

Attention mechanisms have been widely adopted in natural lan-
guage processing tasks [56,57], as they can effectively capture long-
range dependencies in sequential data. This is especially beneficial for
energy forecasting, where temporal patterns and relationships span
across various time scales. In this subsection, we review the recent
developments in applying attention mechanisms for energy forecasting,
and critically examine their strengths and weaknesses.

We categorize the existing works that use attention mechanisms
for energy forecasting into two groups: single-energy forecasting and
multi-energy forecasting. Single-energy forecasting aims to forecast one
type of energy source or load, such as wind power [58,59] or electrical
load [60]. These works employ various deep learning architectures with
attention mechanisms, such as CNNs, RNNs, LSTMs, or dual-attention
mechanisms, to achieve high accuracy and robustness for single-energy
forecasting tasks. However, they also face some limitations, such as
neglecting external factors that may influence energy generation or
demand, requiring large amounts of data, or being computationally
expensive. Multi-energy forecasting targets to forecast multiple types
of energy sources or loads simultaneously, such as electrical and ther-
mal loads or wind and solar power [61–63]. These works propose
novel methods for short-term or day-ahead multi-energy load forecast-
ing based on a CNN-BiGRU architecture, a CNN-Seq2Seq model, or
an attention mechanism-based transfer learning model. These works
demonstrate high efficiency and accuracy for multi-energy forecast-
ing tasks, but they also encounter some challenges, such as handling
complex and large-scale datasets, accounting for seasonal variations in
energy data, or ensuring the generalizability of the model to different
energy systems. In addition to these works that directly focus on energy
forecasting tasks, there are also some works that apply attention mech-
anisms for related tasks that could indirectly benefit energy forecasting
applications. For instance, Tekin et al. [64] use attention mechanisms
on convolutional LSTMs for spatio-temporal weather forecasting; while
Khan et al. [65] present a dual stream network with an attention mech-
anism for photovoltaic power forecasting. These works could provide
valuable insights and techniques for energy forecasting applications, as
weather conditions are important factors that affect energy generation
and demand. However, these works also have some drawbacks, such
as ignoring the nonlinear and nonstationary characteristics of energy
data, or failing to capture both long-term and short-term patterns.

Unlike existing approaches, in this work, we employ collabora-
tive attention units that consist of self-attention and cross-attention
mechanisms to model intricate interactions among variables and time
steps. Moreover, we utilize a temporal fusion layer for the integra-
tion of long-term and short-term information, deploying concatenation
and mapping operations for hierarchical feature extraction. TCOAT is
end-to-end trainable, eliminating the need for preprocessing or post-
processing steps, and can be learned directly from raw wind power
data. To the best of our knowledge, TCOAT is the first method that
combines temporal collaborative attention with temporal fusion for
5

wind power forecasting.
3. Materials

This study uses two datasets of wind power generation data and
associated meteorological data with different characteristics and chal-
lenges. The first dataset, referred to as the Greece dataset, obtained
from the European Network of Transmission System Operators of Elec-
tricity (ENTSO-E), contains hourly data from 18 locations in Greece
from 2017-01-01 to 2020-12-31. ENTSO-E is an online platform that
aggregates energy data from 42 participants in the European central-
ized energy market. The second dataset, known as the WSTD2 dataset,
can be accessed at (https://zenodo.org/records/5516550) [66]. This
dataset includes hourly data from 200 randomly chosen turbines situ-
ated in a flat terrain inland wind farm, covering the period from 2010-
09-01 to 2011-08-31. Wind power generation data exhibit time-varying
and nonlinear characteristics, as they are influenced by meteorological
factors such as wind speed, wind direction, temperature, humidity,
etc., which change over time and affect the efficiency and stability
of wind power generation [2]. Moreover, wind power generation data
show periodic patterns due to diurnal, seasonal, and climatic varia-
tions [49]. These datasets are suitable for evaluating the performance
and generalizability of the proposed model.

Fig. 1(a) shows the daily wind power production changes over time
for one location in Greece from the Greece dataset. Three main patterns
can be observed: (1) The power output varies significantly from month
to month, with higher values in May and September, and lower values
in April and August. This reflects the long-term changes in wind power
generation due to climatic factors such as temperature, precipitation,
and pressure; (2) The power output also varies within each day, with
lower values around 8 to 12 o’clock, and higher values around 16 to
20 o’clock. This reflects the diurnal changes in wind power generation
due to solar radiation and atmospheric stability; (3) The power out-
put does not exhibit obvious seasonal patterns, such as higher values
in winter and lower values in summer. This reflects the uncertainty
and randomness of wind power generation, as it may be affected by
weather, equipment, policy, and other factors that cause anomalies or
fluctuations. Fig. 1(c) shows the heatmap of hourly production within a
year for the same location. It can be observed that the power output has
a clear diurnal pattern, with higher values in the afternoon and lower
values in the morning. It can also be observed that the power output
has some seasonal patterns, with higher values in spring and autumn,
and lower values in summer and winter. However, these patterns are
not consistent or regular, as there are some outliers or deviations that
indicate the uncertainty and variability of wind power generation.

Fig. 1(b) shows the daily wind power production changes over
time from the WSTD2 dataset. Similar patterns can be observed: (1)
The power output varies significantly from month to month, with
peaks in April and November and troughs in July and August; (2)
The power output also fluctuates within each day, with lower values
between 14:00 and 18:00 and higher values between 07:00 and 15:00;
(3) The power output does not show clear seasonal trends, such as
higher values in winter and lower values in summer. These patterns
reflect the influence of various factors such as climatic elements, solar
radiation, atmospheric stability, and other unpredictable factors like
weather conditions and equipment performance. Fig. 1(d) shows the
heatmap of hourly production within a year for the same location. It
can be observed that the power output has a similar diurnal pattern
as the Greece dataset, with higher values in the afternoon and lower
values in the morning. It can also be observed that the power output
has some seasonal patterns, with higher values in spring and winter
and lower values in summer and autumn. However, these patterns are
also inconsistent and irregular, as there are some outliers or deviations
that reflect the inherent uncertainty and variability of wind power
generation.

Two datasets are strategically employed in this paper to assess the
proposed TCOAT model, due to the space constraints of the article. The

Greece dataset is dedicated to verifying the performance of the model,

https://zenodo.org/records/5516550
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Fig. 1. The visualized data analyses of Greece dataset and WSTD2 dataset.
validating its accuracy and robustness, and facilitating a comparative
analysis with twenty-two state-of-the-art methods across various fore-
casting tasks and metrics. The WSTD2 dataset, on the other hand,
examines the model’s generality and its ability to handle diverse data
characteristics and scenarios. This approach ensures a comprehensive
validation of the model’s reliability and wide applicability.

The data preparation phase tackles the prevalent issue of missing
values in wind power data with tailored strategies for each dataset.
The Greece dataset replaces missing data points with average values
calculated from similar dates in the past. This method preserves the
integrity, precision, consistency, and temporal patterns of the data,
enhancing the robustness of the subsequent forecasting tasks. The
WSTD2 dataset, which has only a single year’s data and no additional
data for imputation, adopts a different approach. It fills missing values
with zeros, ensuring the completeness of the dataset and making it
suitable for evaluating the adaptability of the proposed model.

4. Methodology

This section delineates the research problem, outlines the data
preprocessing steps, and provides a detailed description of the proposed
TCOAT model.

4.1. Problem formulation

We consider the problem of predicting the future values of wind
power generation using multivariate time series data. Wind power
generation is a renewable energy source that depends on both temporal
and spatial factors, such as weather conditions, seasonal patterns, and
geographical locations. Therefore, forecasting wind power generation
6

is a challenging task that requires capturing the temporal and spatial
dependencies of the data, as well as the long-term and short-term
patterns. Formally, let 𝑿 ∈ R𝑁×𝐷 be the input data, where 𝑁 is the
number of time steps and 𝐷 is the number of variables. The input data
consists of wind power generation data and associated meteorological
data for a given region at a given resolution. Let 𝒀 be the output data,
where ℎ is the prediction horizon. The output data is the wind power
generation for the next period. The goal is to learn a mapping function
𝑓 ∶ 𝑿 → 𝒀 that minimizes a loss function L(𝒀 , 𝒀̂ ), where 𝒀̂ = 𝑓 (𝑿) is
the predicted data.

The mapping function 𝑓 can be decomposed into four sub-functions:
𝑓 = 𝑓4◦𝑓3◦𝑓2◦𝑓1, where 𝑓1 is the data preprocessing function, 𝑓2 is
the long-term temporal representation function, 𝑓3 is the collaborative
attention unit and fusion function, and 𝑓4 is the short-term temporal
representation function. Each sub-function can be expressed as follows:

• 𝑓1 ∶ 𝑿 → 𝒁, where 𝒁 ∈ R𝐵×𝑇×𝐷 is the normalized data, and
𝐵 and 𝑇 are the batch size and the length of input time steps,
respectively.

• 𝑓2 ∶ 𝒁 → 𝑳, where 𝑳 ∈ R𝐵×𝑇×𝐷 is the tensor representation of
the data.

• 𝑓3 ∶ 𝑳 → 𝑭 , where 𝑭 ∈ R𝐵×1×𝐷 is the processed data.
• 𝑓4 ∶ 𝑺 → 𝒀̂ , where 𝒀̂ ∈ R𝐵×1×𝐷 is the predicted data.

The loss function L(𝒀 , 𝒀̂ ) is defined as the mean squared error
(MSE) between the true data and the predicted data. The goal is to
minimize this loss function by learning the optimal parameters of the
mapping function 𝑓 . The problem can be formulated as an optimization
problem as follows:

minL(𝒀 , 𝒀̂ ), (1)
𝜃
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Fig. 2. The schematic illustration of the proposed TCOAT model. The model consists of four components: a long-term temporal representation (LTR) module that uses a GRU
network to learn features from historical data, a collaborative attention unit (CAU) module that uses attention mechanisms to capture the directional and global information
from the data, a temporal fusion module that uses concatenation and mapping operations to integrate the collaborative information with long-term information, and a short-term
temporal representation (STR) module that uses a residual network to learn features from local data.
Algorithm 1 Pseudo-code for training the proposed TCOAT model.
Input: The training set of historical observations X , initialize model 𝜃
Output: The trained model 𝜃𝑡𝑟𝑎𝑖𝑛
// Feed forward and backward gradient updating
Trainer(X , 𝜃):

X ′ = X−min(X )
max(X )−min(X ) ⊳ Normalization (Eq. (2))

(,) ← ℎ-step-forward-split X ′ ⊳ Split (Eq. (4))
foreach batch sample (Z ,Y ) in (,) do

L ← extract the long-term temporal representation of the input
data Z ⊳ LTR (Eq. (9))
foreach direction 𝑑 ← 0 to 2 do

C𝑑 ← calculate the collaborative attention representation
using CAU(L,d)

⊳ CAU (Algorithm. 2)
F ← G ← A ← [Z ;C0;C1;C2] ⊳ Temporal fusion (Eq. (23);
(24); (25))
S ← extract the short-term temporal representation of the input
data Z ⊳ STR (Eq. (26))
Ŷ ← F ⊕ S ⊳ Prediction (Eq. (27))
Loss  ← Y and Ŷ using MSE ⊳ MSE error (Eq. (28))
Backward using Adam optimizer [67]

return 𝜃𝑡𝑟𝑎𝑖𝑛

where 𝜃 denotes the parameters of the mapping function 𝑓 . This opti-
mization problem can be solved by using Adam, which is a variant of
stochastic gradient descent (SGD) with momentum and weight decay.
Adam can adaptively adjust the learning rate, making the updated step
size suitable for each parameter.

4.2. Overview

Fig. 2 presents a schematic illustration of the proposed Tempo-
ral Collaborative Attention (TCOAT). The pseudocode detailing the
training process of TCOAT is provided in Algorithm 1. The primary
objective of TCOAT is to forecast future values in multivariate time
series data, with a specific focus on wind power generation – a do-
main influenced by both temporal and spatial variables. The entire
process comprises four sequential stages: data preprocessing, long-term
temporal representation, collaborative attention unit and fusion, and
short-term temporal representation. To encapsulate the intricate tem-
poral and spatial dependencies, as well as the long-term and short-term
patterns inherent in the data, we introduce TCOAT. The TCOAT model
7

is structured around four core components: a Long-term Temporal Rep-
resentation (LTR), Collaborative Attention Units (CAUs), a Temporal
fusion Layer, and a Short-term Temporal Representation (STR).

The LTR component aims to extract a long-term temporal repre-
sentation from the input data. The extracted data is then processed
by CAUs, which are capable of learning directional information and
global information from the data. The CAUs then obtain a collabora-
tive attention representation in multiple directions. Subsequently, the
Temporal Fusion Layer integrates these multi-directional collaborative
representations, generating fusion data that encapsulates the global
characteristics of the original data. Simultaneously, the STR component
extracts a short-term temporal representation from the original data.
The final prediction is produced by integrating the output of the STR
and the Temporal Fusion Layer using a residual network.

The architecture is designed to synergize the strengths of Recurrent
Neural Networks (RNNs) and attention mechanisms in the context of
multivariate time series forecasting. While RNNs are adept at modeling
sequential data dependencies, attention mechanisms excel at discerning
the significance and relevance of individual data elements. The integra-
tion of these two methodologies enables the generation of predictions
that are both accurate and robust. A comprehensive discussion of each
stage will be described in the following subsections.

4.3. Data preprocessing

The data preprocessing function 𝑓1 is responsible for normalizing
the input data 𝑿 ∈ R𝑁×𝐷 and splitting it into windowed multivariate
time series (MTS) with a prediction horizon ℎ. To mitigate the impact
of outliers on the learning process of the model and encourage faster
convergence, Min-Max normalization is utilized. This technique scales
all values of X into a range between 0 and 1. In comparison to Z-Score
normalization, Min-Max normalization offers a more straightforward
computational process and maintains the original distribution of the
data, which can enhance the training process of the model and reduce
the influence of outliers. The normalization formula is given by:

𝑿′ =
𝑿 − min(𝑿)

max(𝑿) − min(𝑿)
, (2)

where min(𝑿) and max(𝑿) are the minimum and maximum values of 𝑋,
respectively. The de-normalization formula is applied to the outputs of
the model in the post-processing stage to recover the original scale of
the data. The de-normalization formula is given by:

𝑿 = 𝑿′ ⋅ (max(𝑿) − min(𝑿)) + min(𝑿), (3)

The splitting process uses an ℎ-horizon split to transform the data
into a supervised learning problem. Given a time series 𝑿′ ∈ R𝑁×𝐷
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with 𝑁 consecutive time intervals and 𝐷 variables, the ℎ-horizon split
s formulated as:
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⎥

⎥

⎥
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, (4)

where 𝑇 is the window size, which determines how many past ob-
servations are used as inputs for each prediction. The left part is the
normalized inputs of the model, denoted by  ∈ R(𝑁−𝑇−1)×𝑇×𝐷, and
he right part is the normalized outputs of the model, denoted by
∈ R(𝑁−𝑇−1)×𝐷. Several consecutive instances in (,) are denoted by

(𝑍, 𝑌 ) ∈ R𝐵×𝑇×𝐷 ×R𝐵×1×𝐷, where 𝐵 is the batch size, 𝑇 is the window
ize, and 𝐷 is the number of variables. The splitting process can be
eneralized to multiple steps ahead by changing the value of ℎ.

.4. Long-term temporal representation (LTR)

To capture the impact of long-term temporal variables on future
ind power generation, we use a gated recurrent unit (GRU) module

o extract the hidden representation of the input data. A GRU is a
ype of recurrent neural network (RNN) that can model the sequential
ependencies of the data and handle the vanishing gradient prob-
em [8]. A GRU consists of two gates: a reset gate and an update
ate, which control the information flow and the memory state of the
etwork [9]. Given an input tensor 𝒁 ∈ R𝐵×𝑇×𝐷, we first apply a linear
ransformation to each slice of the tensor along the window dimension,
enoted by 𝑾 𝒕 ∈ R𝐵×𝑇×𝐷, where 𝑡 = 1, 2,… , 𝑇 . Then, we feed each
ransformed slice to a GRU cell and obtain the hidden state 𝒉𝒕 ∈ R𝐵×𝐷

t each time step. The GRU cell is defined as follows:

𝒓𝒕 = 𝜎(𝑾 𝒓[𝒉𝒕−𝟏;𝑿𝒕;𝑾 𝒕] + 𝑏𝑟), (5)

𝒛𝒕 = 𝜎(𝑾 𝒛[𝒉𝒕−𝟏;𝑿𝒕;𝑾 𝒕] + 𝑏𝑧), (6)

𝒉𝑡 = tanh(𝑾 𝒔[𝒓𝒕 ⊙ 𝒉𝒕−𝟏;𝑋𝑡;𝑾 𝒕] + 𝑏𝑠), (7)

𝒕 = (1 − 𝒛𝒕)⊙ 𝒉𝑡 + 𝒛𝒕 ⊙ 𝒉𝒕−𝟏, (8)

here 𝒓𝒕 and 𝒛𝒕 are the reset gate and the update gate, respectively, 𝜎
s the sigmoid activation function, ⊙ is the element-wise product, [; ] is
oncatenation operations, 𝑾 𝒓, 𝑾 𝒛, and 𝑾 𝒔 are the weight matrices,
nd 𝑏𝑟, 𝑏𝑧, and 𝑏𝑠 are the bias terms. To obtain the final long-term
emporal representation, we concatenate the hidden states from all time
teps and apply another linear transformation, denoted by 𝑳 ∈ R𝐵×𝑇×𝐷:

= 𝑾 𝒍[𝒉𝟏;𝒉𝟐; ...;𝒉𝑻 ] + 𝑏𝑙 , (9)

here 𝑾 𝒍 and 𝑏𝑙 are the weight matrix and the bias vector of the linear
ransformation, respectively. The output of this module is then fed to
he next module for collaborative attention and fusion.

We employ the GRU module to extract the impact of long-term
emporal variables on future time. Based on the previous 𝒉𝑡−1, it is
ossible to derive the hidden representation 𝒉𝑡 of GRU:

𝑡 = 𝜎(𝑾 𝑟 ⋅ [𝒉𝑡−1;𝑨′; 𝒀 ;𝑨♯] + 𝒃𝑟), (10)

𝑡 = 𝜎(𝑾 𝑧 ⋅ [𝒉𝑡−1;𝑨; 𝒀 ;𝑨♯] + 𝒃𝑧), (11)

𝑡 = 𝜎(𝑾 𝑠 ⋅ [𝒓𝑡 ⊙ 𝒉𝑡−1;𝑨; 𝒀 ;𝑨♯] + 𝒃𝑠), (12)

𝑡 = (1 − 𝒛𝑡)⊙ 𝒔𝑡 + 𝒛𝑡 ⊙ 𝒉𝑡−1, (13)

here, respectively, 𝒓𝑡, 𝒛𝑡, and 𝒔𝑡 stand for the reset gate, update gate,
nd cell state at timestamp 𝑡. Meanwhile, ⊙ represent the Hadamard
roduct, and 𝜎(⋅) represent the sigmoid activation function; the weights

𝑟 𝑧 𝑟 𝑟 𝑧 𝑠
8

re 𝑾 , 𝑾 and 𝑾 , and the associated biases are 𝒃 , 𝒃 , and 𝒃 . To
Algorithm 2 Pseudo-code of for the learning process of the proposed
CAU.
Input: The final long-term temporal representation L, direction d
Output: The collaborative attention representation C𝑑

Learning_CAU(L,d):
// Transform the input L into 𝑑-th direction
L𝑟 ← ReLU(L) ⊳ Relu (Eq. (15))
V ← L𝑟 ⋅W 𝑣 ⊳ Multiply learnable weight (Eq. (16))
H𝑑=0 ←

exp(V 𝑏,𝑡,𝑖)
∑𝐵

𝑏=1 exp(V 𝑏,𝑡,𝑖)
,H𝑑=1 ←

exp(V 𝑏,𝑡,𝑖)
∑𝑇

𝑡=1 exp(V 𝑏,𝑡,𝑖)
,H𝑑=2 ←

exp(V 𝑏,𝑡,𝑖)
∑𝐷

𝑖=1 exp(V 𝑏,𝑡,𝑖)
⊳ Calculate directional score (Eq. (17), (18), (19))

I𝑑 ← H𝑑 ⋅ L𝑟 ⊳ Transformed representation (Eq. (20))
// Calculate the symmetric attention

representation
J ← I𝑑 ⋅W 𝑗 ⊳ Multiply learnable weight (Eq. (21))
H𝑑=0 ←

exp(J𝑏,𝑡,𝑖)
∑𝐵

𝑏=1 exp(J𝑏,𝑡,𝑖)
,H𝑑=1 ←

exp(J𝑏,𝑡,𝑖)
∑𝑇

𝑡=1 exp(J𝑏,𝑡,𝑖)
,H𝑑=2 ←

exp(J𝑏,𝑡,𝑖)
∑𝐷

𝑖=1 exp(J𝑏,𝑡,𝑖)
⊳ Calculate directional score (Eq. (17), (18), (19))

C𝑑 ← H𝑑 ⋅W 𝑐 ⊳ Collaborative attention representation (Eq. (22))
return C𝑑

get the final temporal representation, the GRU layer productions of 𝑇
groups are concatenated and then given a linear transformation:

𝑿𝑙 = 𝑾 𝑙 ⋅ [𝒉1,𝑡;𝒉2,𝑡;⋯ ;𝒉𝑇 ,𝑡] + 𝒃𝑙 , (14)

where 𝑿𝑙 is the final output of GRU module, 𝑾 𝑙 and 𝒃𝑙 are the
weighting matrix and biases parameters of a linear transformation,
respectively.

4.5. Collaborative attention unit (CAU)

The CAU is a key component of the TCOAT model, designed to
capture both directional and global information from the input data. It
consists of two steps: a Directional Transformation (DT) and a Symmet-
ric Attention (SA). Fig. 3 and Algorithm 2 show the detailed structure
and pseudo-code of the CAU, respectively. The TCOAT model integrates
multiple CAUs, enabling the representation of Collaborative Attention
from various directions. This multi-directional approach enhances the
model’s ability to capture complex patterns in the data, ensuring a
smooth and logical flow of information.

4.5.1. Directional transformation (DT)
In the directional transformation step, we first apply a rectified lin-

ear unit (ReLU) function to the input tensor 𝑳 to ensure the reliability
of long-term temporal series feature extraction. Then, we multiply the
rectified input tensor with a learnable weight matrix 𝑾 𝑣 to transform it
and learn the temporal patterns during the training process. The process
can be expressed as follows:

𝑳𝑟 = ReLU(𝑳), (15)

𝑽 = 𝑳𝑟 ⋅𝑾 𝑣, (16)

where 𝑽 ∈ R𝐵×𝑇×𝐷 is the result of multiplication, and 𝑾 𝑣 ∈ R𝑇×𝐷

is the weight matrix. Next, we feed 𝑽 into a softmax layer to enlarge
the difference in several aspects. These aspects are instance dimension,
temporal dimension, and variate dimension.

The instance attention is employed to observe and highlight the con-
nections between consecutive instances. It enhances the key look-back
windows by highlighting the outbreak values. The attention mechanism
on instance dimension can be formulated as follows:

𝑯𝑑 =
exp(𝑽 𝑏,𝑡,𝑖)

∑𝐵 , 𝑑 = 0, (17)

𝑏=1 exp(𝑽 𝑏,𝑡,𝑖)
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The temporal attention is employed to observe and highlight the
onnections between input and output time steps. It enhances the key
ime steps by using the feedback of the output time step. The attention
echanism on the temporal dimension can be formulated as follows:

𝑑 =
exp(𝑽 𝑏,𝑡,𝑖)

∑𝑇
𝑡=1 exp(𝑽 𝑏,𝑡,𝑖)

, 𝑑 = 1, (18)

The variate attention is employed to observe and highlight the
onnections between the input time series and the output target. It
nhances the key factors by using the feedback of the output. The
ttention mechanism on the variate dimension can be formulated as
ollows:

𝑑 =
exp(𝑽 𝑏,𝑡,𝑖)

∑𝐷
𝑖=1 exp(𝑽 𝑏,𝑡,𝑖)

, 𝑑 = 2. (19)

The highlighted score tensor 𝑯𝑑 is then multiplied with the pro-
essed input tensor 𝑳𝑟 to generate the transformed tensor 𝑰𝑑 dy-
amically. The multiplication process can be described as follows:

𝑑 = 𝑯𝑑 ⋅𝑳𝑟, (20)

here 𝑰𝑑 ∈ R𝐵×𝑇×𝐷 is the transformed tensor, 𝑯𝑑 is the highlighted
core tensor and 𝑳𝑟 is the input tensor processed by a ReLU function.

.5.2. Symmetric attention (SA)
In the symmetric attention step, we enhance the temporal features

f the transformed tensor from different directions. We multiply the
ransformed tensor 𝑰𝑑 with a learnable weight matrix 𝑾 𝑗 to produce a
core tensor 𝑱 . The multiplication process can be described as follows:

= 𝑰𝑑 ×𝑾 𝑗 , (21)

here 𝑱 ∈ R𝐵×𝑇×𝑇 is the score tensor, 𝑰𝑑 is the transformed tensor and
𝑗 is the learnable weight matrix.
Then we apply a softmax function to 𝑱 to obtain a highlighted score

tensor 𝑯𝑑 , which assigns weights to each element in 𝑱 according to
its importance for future prediction. The softmax function is applied
along different dimensions, depending on the direction 𝑑. The specific
operation processes are the same as formula (17), (18) and (19).

Finally, we multiply the highlighted score tensor 𝑯𝑑 with a learn-
able weight matrix 𝑾 𝑐 to calculate the final attention tensor 𝑪𝑑 , which
represents the collaborative attention representation from direction 𝑑.
The multiplication process can be described as follows:

𝑪𝑑 = 𝑯𝑑 ×𝑾 𝑐 , (22)

where 𝑪𝑑 ∈ R𝐵×𝑇×𝐷 is the attention tensor in 𝑑th direction, 𝑯𝑑 is the
9

highlighted score tensor and 𝑾 𝑐 is the learnable weight matrix.
4.6. Temporal fusion

To effectively benefit from those attention representations, a tempo-
ral fusion layer was proposed to aggregate the outputs from CAU. The
graphical process of the temporal fusion layer is plotted in Fig. 4.

The temporal fusion layer is constituted by a global autoregres-
sion (GAR) layer and a linear layer. The outputs from CAUs are first
concatenated together. The input tensor is also concatenated to cap-
ture short-term temporal dynamics. The process can be formulated as
follows:

𝑨 = [𝒁;𝑪0;𝑪1;𝑪2], (23)

where 𝑨 ∈ R𝐵×𝑇×4∗𝐷 is the concatenated tensor, 𝒁 is normalized
ime series from data processing, 𝑪0, 𝑪1 and 𝑪2 are attention tensors

viewed from dimensions 0, 1, and 2, respectively, [; ] is concatenation
operations.

The concatenated tensor is passed through a GAR layer to learn the
various temporal patterns. The process can be described as follows:

𝑮 =
𝑇
∑

𝑖=𝑡
𝑾 𝑔 ×𝑨∶,𝑖,∶ + 𝑏𝑔 , (24)

here 𝑮 ∈ R𝐵×1×4∗𝐷 is the learned temporal patterns, 𝑾 𝑔 ∈ R𝑇×4∗𝐷 is
he weight matrix, 𝑏𝑔 is a bias.

The learned pattern tensor is passed through a linear fusion layer
o generate consecutive model outputs. The process can be described
s follows:

=
𝑇
∑

𝑖=𝑡
𝑾 𝑙 ×𝑮∶,∶,𝑖 + 𝑏𝑙 , (25)

here 𝑭 ∈ R𝐵×1×𝐷 is the model outputs, 𝑾 𝑙 ∈ R4∗𝐷×𝐷 is the weight
atrix, 𝑏𝑙 is a bias.

.7. Short-term temporal representation (STR)

In general, future wind power generation will be more influenced
y short-term temporal data than by long-term temporal data. Simple
odels, such as linear models or RNN-based methods, can be used to

apture short-term time series features. Fig. 4’s lower part presents the
rocessing. Different short-term time series feature capture models can
e applied to various horizon split data sets to get various outcomes:

= R (𝒁𝑅∶), (26)

here 𝒁𝑅∶ ∈ R𝐵×𝑅×𝐷 is the input data of the short-term temporal part,
nd it represents the last 𝑅 time steps of input temporal data, 𝑺 ∈
𝐵×1×𝐷 is the short-term temporal process result, and R is the short-

erm temporal process function, linear and GRU and other models are
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Fig. 4. The schematic illustration of the conditional fusion procedures. The layer concatenates the input data and the outputs from the CAUs, and then applies a global autoregression
(GAR) layer and a linear layer to fuse them. The layer also splits the input data into different parts and feeds them into a short-term temporal representation (STR) module that
uses a residual network to capture the short-term variations of the data. The final predictions are obtained by combining the outputs from the temporal fusion layer and the STR
module.
w

optional. Then, in order to obtain the final forecast data, we combine
the short-term data features with the long-term data features:

𝒀̂ = 𝑭 ⊕ 𝑺, (27)

where 𝒀̂ ∈ R𝐵×1×𝐷 is the final output of TCOAT, and 𝑭 represents
the final output of temporal fusion, 𝑺 represents the final output
of short-term temporal process, and ⊕ is the symbol of the residual
operation.

5. Experiments

In this section, we describe the data, experimental settings, model
implementations, and results. We also compare the proposed model
with other methods.

5.1. Data and experimental settings

In the experiments, the Greece dataset served as the primary source
of data. To further validate the generalizability of the TCOAT model,
the WSTD2 dataset was also incorporated. This auxiliary dataset offers
a unique set of data characteristics for analysis. Detailed introductions
to both datasets can be found in Section 3.

The preprocessing of the primary dataset was meticulously executed
as follows: (1) Aggregation: Hourly data points were aggregated into
daily averages to reduce data noise and complexity; (2) Standard-
ization: The daily values were standardized using their annual mean
values to account for changes in wind turbine installations over time;
(3) Min-Max Scaling: We applied min–max scaling to the standardized
values, normalizing them into a range between 0 and 1, which is
optimal for neural network training; The primary dataset was divided
into training and testing sets in a 4:1 ratio to ensure ample data for
training while preserving the temporal sequence. For the additional
dataset, we followed a similar preprocessing methodology and divided
it into training and testing sets using an 80:20 ratio, considering its
unique characteristics and the need to validate the model across varied
conditions.

The TCOAT model was implemented using PyTorch v2.0.0 [68]. The
computational resources included a server with an Intel® Xeon® Gold
5218R CPU (2.10 GHz), 256 GB memory, and four Tesla V100-PCIE-
16 GB GPUs. The prediction horizon was set to one day for the primary
dataset, a standard in wind power forecasting [69], with input intervals
of 1, 3, 5, and 7 days. These intervals were chosen to evaluate the
model’s performance over different time scales, reflecting the trade-off
between accuracy and complexity.
10
5.1.1. Comparison baselines
In this section, we present a comprehensive comparison of the

proposed TCOAT model with twenty-two state-of-the-art methods for
multivariate time series forecasting. We summarize the main features
and characteristics of these methods in Table 1, such as the model type,
the components, the advantages, and the disadvantages. The model
type indicates whether the method is based on statistical, machine
learning, or deep learning techniques. The components describe the
main modules or layers of the method that are used to capture the
temporal and collaborative patterns in the data. The advantages high-
light the strengths or benefits of the method for multivariate time series
forecasting. The disadvantages point out the limitations or drawbacks
of the method that may affect its performance or applicability.

5.1.2. Model configurations
We conducted five repeated experiments on the wind power time

series data to evaluate the performance of each method. We used this
approach instead of cross-validation to preserve the temporal order
of the data, which is essential for forecasting tasks. We trained the
models using the Adam optimizer [67] with the mean squared error
(MSE) as the loss function, following previous studies that showed
their effectiveness for wind power forecasting [89]. We applied the
grid search method to optimize the hyper-parameters for each method
over a predefined range of values. The optimal hyper-parameters for
each baseline method obtained by the grid search method are shown
in Table 6.

5.1.3. Evaluation metrics
To evaluate the performance of the proposed TCOAT model and

compare it with other methods, we use three evaluation metrics that
are commonly used in the field of energy prediction. These metrics are
Mean Square Error (MSE), Mean Absolute Error (MAE), and Coefficient
of Variation of Root Mean Square Error (CVRMSE). These metrics can
measure the accuracy and reliability of the prediction models, as well
as reflect the characteristics and challenges of wind power data.

MSE is a scale-dependent metric that measures the average squared
difference between the predicted and actual values. MSE is sensitive to
outliers and large errors, which means that it penalizes large deviations
more than small ones. MSE is defined as follows:

MSE = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2, (28)

here 𝑛 is the number of samples, 𝑦𝑖 is the actual value, and 𝑦̂𝑖 is the

predicted value.
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Table 1
Benchmark methods for wind power forecasting.

Method Type Components Advantages Disadvantages

GAR [70] Linear Autoregressive Simple and fast Cannot capture nonlinear dependencies

AR [71] Linear Autoregressive Simple and fast Cannot capture cross-series dependencies

VAR Linear Autoregressive Can capture cross-series dependencies Cannot capture nonlinear dependencies

DLinear [72] Linear Linear layers with decomposition Can model trend and seasonality
separately

Cannot capture nonlinear dependencies
or interactions between components

NLinear [72] Linear Linear layer with normalization Can reduce the scale of input data Cannot capture nonlinear dependencies
or temporal patterns

FiLM [73] Linear + neural network Linear and Legendre Polynomials
projections with frequency enhancement

Can model trend, seasonality, and
frequency components of time series
data

Cannot capture nonlinear dependencies
or interactions between components

LSTM [74] Neural network LSTM cells with gate units Can learn long-term temporal
dependencies

Prone to overfitting and vanishing
gradients

GRU [75] Neural network GRU cells with simpler gate structure Similar to LSTM but faster and easier to
train

May lose some information due to fewer
gates

ED [76] Neural network LSTM encoder–decoder Can process variable-length input and
output sequences

May suffer from information bottleneck
due to fixed-length hidden state

CNN1D Neural network Convolutional layers 1D Can learn local feature representations
of time series

Cannot capture long-term temporal
dependencies or cross-series
dependencies

CRNN [77] Neural network Convolutional layers + RNN layers Can combine local features and
historical information

May have high computational cost due
to multiple components

CRNNRes [78] Neural network Convolutional layers + RNN layers +
residual connections

Similar to CRNN but can recover specific
information that convolution reduces

May have high computational cost due
to multiple components and residual
connections

LSTNet [79] Neural network Redesigned convolutional and recurrent
structures

Can model long-term dependencies and
periodic patterns in time series data

May have high computational cost due
to multiple components and attention
mechanism

Transformer [80] Neural network Encoder–decoder with attention
mechanisms

Can process variable-length input and
output sequences without recurrent
neural networks

May suffer from information loss due to
positional encoding and fixed-length
hidden state

Informer [81] Neural network Improved Transformer with ProbSparse
attention, distilling, and generative
decoder

Can handle long sequence time-series
forecasting with high efficiency and low
memory consumption

May not be able to capture complex
nonlinear dependencies well due to
linear projection layers

Autoformer [82] Neural network Improved Transformer with
Auto-Correlation attention and series
decomposition

Can model long-term periodic patterns
and dependencies in time series data

May have high computational cost due
to multiple components and attention
mechanisms

FEDformer [83] Neural network Improved Transformer with
frequency-based low-rank attention and
mixture of experts decomposition

Can decompose time series into different
frequency components and learn their
interactions

May have high computational cost due
to multiple components and attention
mechanisms

DSANet [84] Neural network Convolutional layers + self-attention
module

Can capture global and local temporal
patterns and dependencies in
multivariate time series

May not be able to handle long-term
dependencies well due to fixed-length
input and output

TPA-LSTM [85] Neural network LSTM cells with temporal pattern
attention

Can capture nonlinear interdependencies
among time steps and series

May have high computational cost due
to attention mechanism

StemGNN [86] Graph neural network Graph and Fourier transforms Can capture inter-series and temporal
patterns in multivariate time series data

May not be able to handle long-term
dependencies well due to fixed-length
input and output

GAIN [87] Graph neural network Graph neural networks and collaborative
attention

Can predict time series based on
multivariate time series data with spatial
correlations

May have high computational cost due
to graph convolution and attention
mechanism

MSL [88] Shapelet learning Multiple shapelets learned from
historical observations

Can identify crucial subsequences from
time series data

Cannot capture consecutive temporal
dependencies or cross-series
dependencies
MAE is another scale-dependent metric that measures the average
bsolute difference between the predicted and actual values. MAE is
ess sensitive to outliers and large errors than MSE, which means that
t treats all errors equally. MAE is defined as follows:

AE = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦̂𝑖|, (29)

CVRMSE is a scale-independent metric that measures the normal-
ized root mean square error relative to the mean of the actual values.
CVRMSE can compare the performance of different models or datasets
11
with different scales or units. CVRMSE is defined as follows:

CVRMSE =

√

MSE
𝑦̄

× 100%, (30)

where 𝑦̄ is the mean of the actual values.
The lower the values of these metrics, the better the performance

of the prediction model. However, these metrics also have some lim-
itations. For example, MSE and MAE do not consider the temporal
correlation or order of the time series data, which may affect the
prediction accuracy. CVRMSE may not reflect the absolute error or de-
viation of the prediction model, which may affect the reliability of the
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Table 2
The prediction results of attention combinations on the wind datasets in terms of MSE, MAE and CVRMSE, whereCAUs{𝑖1}, CAUs{𝑖1 , 𝑖2}, or CAUs{𝑖1 , 𝑖2 , 𝑖3} means directional
attentions on 𝑖1 , 𝑖2 , 𝑖3-th aspect. The best results are shown in bold, the second-best results are underlined, and the worst results are in wavy lines; Unit of ℎ: day.

Structure ℎ = 1 ℎ = 3 ℎ = 5 ℎ = 7

MSE MAE CVRMSE MSE MAE CVRMSE MSE MAE CVRMSE MSE MAE CVRMSE

CAUs{0} 89.141020 7.455473 0.466461 190.789688 10.710353 0.682436 178.393216 10.662587 0.659879 185.291901 10.853207 0.672530
CAUs{1} 99.727310

⁓⁓⁓⁓⁓
7.995392 0.493391 192.054016 10.774353 0.684694 185.216174

⁓⁓⁓⁓⁓⁓
10.888910 0.672392 186.275101

⁓⁓⁓⁓⁓⁓
10.987542 0.674314

CAUs{2} 99.623505 7.989298 0.493135 192.668442 10.766847 0.685788 184.245422 10.866638 0.670629 186.175034 10.945656 0.674132

CAUs{0, 0} 88.513838 7.366273 0.464810 175.301437 10.562387 0.654150 173.882065 10.600887 0.651489 180.833363 10.815968 0.664372
CAUs{0, 1} 88.209052 7.390437 0.464018 165.119263 10.396696 0.634868 173.061798 10.564649 0.649958 179.194824 10.889776 0.661714
CAUs{0, 2} 89.789558 7.469786 0.468158 175.727554 10.590677 0.654945 174.546042 10.567832 0.652721 184.640320 10.854650 0.671346
CAUs{1, 1}

⁓⁓⁓⁓⁓⁓
99.849643 7.988314

⁓⁓⁓⁓⁓
0.493694 192.185333 10.786354 0.684928 185.056775 10.878568 0.672104 187.006236 10.943714 0.675636

CAUs{1, 2} 99.733067 7.981781 0.493406 192.554153 10.781023 0.685585 183.836032 10.861772 0.669882 185.007304 10.912992 0.671978
CAUs{2, 2} 99.566441 7.972888 0.492993 192.839142 10.765305 0.686092 183.453433 10.861510 0.669185 185.967438 10.950788 0.673757

CAUs{0, 0, 0} 89.989612 7.463878 0.468668 182.044006 10.739547 0.666612 177.198434 10.657067 0.657642 184.284312 10.859870 0.670701
CAUs{0, 0, 1} 88.768106 7.375317 0.465470 173.187408 10.465259 0.650194 174.519796 10.610096 0.652668 183.695099 10.862698 0.669627
CAUs{0, 0, 2} 88.930673 7.409399 0.465904 170.772614 10.469582 0.645645 177.232968 10.670097 0.657737 184.326543 10.864437 0.670778
CAUs{0, 1, 1} 92.489603 7.592930 0.475118 176.551422 10.598987 0.656478 176.950177 10.611993 0.657190 184.288396 10.828673 0.670708
CAUs{0, 1, 2} 91.179321 7.529140 0.471715 176.916565 10.533190 0.657157 176.860547 10.619254 0.657016 183.853648 10.846724 0.669912
CAUs{0, 2, 2} 92.155937 7.590806 0.474237 175.264099 10.551161 0.654081 176.534933 10.616940 0.656432 184.838598 10.854416 0.671709
CAUs{1, 1, 1} 99.470265 7.963058 0.492755 192.478394 10.781264 0.685450 184.808762 10.869243 0.671653 186.331080 10.939775 0.674415
CAUs{1, 1, 2} 99.296432 7.966491 0.492324 192.737885 10.766327 0.685912 185.194586 10.867844 0.672354 186.137990 10.967845 0.674066
CAUs{1, 2, 2} 99.411821 7.968369 0.492610 192.964767 10.784638 0.686315 184.773367 10.873874 0.671588 186.342183 10.945947 0.674435
CAUs{2, 2, 2} 99.480754 7.962707 0.492781

⁓⁓⁓⁓⁓⁓⁓
193.152878 10.772007

⁓⁓⁓⁓⁓
0.686650

⁓⁓⁓⁓⁓⁓⁓
185.290240 10.873751

⁓⁓⁓⁓⁓
0.672528

⁓⁓⁓⁓⁓⁓⁓
186.541326 10.963457

⁓⁓⁓⁓⁓
0.674792
t
o
T
d

model. Therefore, using multiple evaluation metrics can provide a more
comprehensive and objective assessment of the prediction models.

5.2. Parameter sensitivity analyses

TCOAT consists of the following four key components: a LTR, CAUs,
a Temporal Fusion Layer, and a STR. The LTR module uses a GRU as
its RNN unit, with a hidden size of 64 and a layer count of 1, and
the STR module has a residual window size of 3. In this study, these
components have fixed hyperparameters, while the CAUs have variable
hyperparameters that affect the model performance. CAUs are attention
mechanisms that can extract directional information from the input
data and generate directional attention representations. The direction
can be batch (B), window size (T), or multivariate time series (D). To
investigate how the choice of different CAUs affects wind power fore-
casting performance, we conducted several experiments with different
numbers and combinations of CAUs, using a combination quantity of
less than 4. We concatenated the outputs of the CAUs to form the
final attention representation. We denoted the attention combinations
as CAUs{𝑖1}, CAUs{𝑖1, 𝑖2}, or CAUs{𝑖1, 𝑖2, 𝑖3}, where 𝑖1, 𝑖2, 𝑖3 indicate
he dimensions that the CAUs focus on. We used three metrics: mean
quare error (MSE), mean absolute error (MAE), and coefficient of
ariation of root mean square error (CVRMSE). We considered four
rediction horizons: 1 day ahead (ℎ = 1), 3 days ahead (ℎ = 3), 5
ays ahead (ℎ = 5), and 7 days ahead (ℎ = 7). The results, shown in
able 2, indicate that using multiple CAUs can improve the prediction
erformance compared to using a single CAU, as multiple CAUs can
apture more information and diversity from the input data. Moreover,
he results show that selecting an appropriate attention direction can
lso improve the prediction performance. For example, CAUs{0,1} has
he best results for ℎ = 3, ℎ = 5, and ℎ = 7, which means that using
ttention on the batch and window size directions is more effective
han using attention on other directions. The results also show that the
rediction performance is relatively stable across different prediction
orizons, which indicates that the proposed model can handle long-
erm forecasting tasks well. The CAUs combinations can be applied
o various time series forecasting tasks that involve multidimensional
nput data.

To determine the optimal combination of CAUs for the proposed
odel, we performed experiments on the wind power dataset with
ifferent combinations of CAUs and different prediction horizons (ℎ =
, 3, 5, and 7). Other parameters were kept constant for all experiments.
e combined CAUs from different dimensions, ranging from one to
12
hree CAUs per combination. The final attention representation was
btained by concatenating the outputs of all CAUs in a combination.
able 2 shows the results of the experiments. The combinations are
enoted as CAUs{𝑖1}, CAUs{𝑖1, 𝑖2}, or CAUs{𝑖1, 𝑖2, 𝑖3}, where 𝑖1, 𝑖2, 𝑖3

indicate the dimensions that the CAUs focus on. From the table, we
can see that CAUs{0} perform better than CAUs{1} and CAUs{2} when
used alone. This means that 0-direction attention can capture more
effective information than 1-direction or 2-direction attention, and
the attention representations are different for each direction. How-
ever, when combined with other CAUs, CAUs{0} can enhance the
performance of other directions. This indicates that combining different
directions can improve the quality of the attention representation. For
short-term prediction (ℎ=1), multiple CAUs that include 0-direction
(such as CAUs{0,1}, CAUs{0,2}, CAUs{0,1,1}, CAUs{0,1,2}, etc.) have
similar performance to CAUs{0}. For mid-term prediction (ℎ=3,5 and
7), multiple CAUs that include 0-direction have better performance
than CAUs{0}. This suggests that incorporating more directions can
help the model capture the underlying energy generation patterns bet-
ter. As CAUs{0,1} can achieve the best performance for all prediction
horizons, we choose 0 and 1 as the optimal directional combination of
CAUs for the proposed model.

5.3. Comparison with baselines on multi-horizon prediction

In this subsection, we compare TCOAT with other methods on dif-
ferent time horizons for wind power forecasting. We use three metrics:
MSE, MAE, and CVRMSE. We consider four time horizons: 1 day ahead
(ℎ = 1), 3 days ahead (ℎ = 3), 5 days ahead (ℎ = 5), and 7 days ahead
(ℎ = 7). The results in Table 3 shows that:

• Linear models (GAR, AR, and VAR) have similar performance for
ℎ=1, indicating that they can capture short-term trends in wind
power. However, their performance deteriorates as ℎ increases,
showing that they have difficulty in forecasting the future over
multiple horizons. VAR has the worst performance among all
models at ℎ=7. GAR is the most stable among them, but it still
performs poorly for ℎ=3, ℎ=5, and ℎ=7, which means that the
linear model cannot capture the complex patterns of wind power
generation.

• Linear model variations (DLinear, NLinear, Film) that use data
decomposition, normalization, or frequency augmentation do not
outperform linear models significantly. They have low perfor-

mance across all horizons, especially Film for ℎ=1. These results
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Table 3
Performance comparison in wind power prediction. The best results are shown in bold, the second-best results are underlined, and the worst results are in wavy lines; Unit of ℎ:
ay.
Model ℎ = 1 ℎ = 3 ℎ = 5 ℎ = 7

MSE MAE CVRMSE MSE MAE CVRMSE MSE MAE CVRMSE MSE MAE CVRMSE

GAR 107.059937 8.215399 0.511209 195.129089 10.990736 0.690154 194.998367 11.071337 0.689922 196.631302 10.923676 0.693161
AR 107.059929 8.215398 0.511209 204.643738 11.020720 0.706780 194.907990 11.067622 0.689762

⁓⁓⁓⁓⁓⁓⁓
224.185181 11.160784

⁓⁓⁓⁓⁓
0.740135

VAR 105.499558 8.212302 0.507470 202.201935 11.232389 0.702550 212.181076 11.247817 0.719678 201.425186 11.308241 0.701560

DLinear 107.187714 8.220581 0.511514 197.490189 10.928032 0.694317 194.596939 10.983214 0.689212 210.039108 10.954163 0.716404
NLinear 116.757805 8.325392 0.533860 217.222214

⁓⁓⁓⁓⁓⁓
11.563727 0.728177 201.441467 11.394403 0.701228 198.787476 11.360843 0.696951

FiLM 187.586472 10.981367 0.676683 203.167282 11.365602 0.704225 202.799408 11.402464 0.703587 196.467117 11.200686 0.692872

LSTM 96.815292 7.866727 0.483804 188.990631 10.925255 0.679211 182.677216 10.412541 0.667770 193.943436 10.845874 0.688407
GRU 93.298294 7.603762 0.477223 181.482742 10.877367 0.665583 183.816483 10.884043 0.669849 183.036743 10.920844 0.668770
ED 102.191811 8.224937 0.499451 196.289063 11.245865 0.692202 180.293564 10.302210 0.663399 188.735062 11.100488 0.679101

CNN1D 107.348450 8.322651 0.511897 197.096039 11.057461 0.693623 195.252823 11.025487 0.690372 195.186615 10.887697 0.690610
CRNN 102.104042 8.214901 0.499236 188.390350 11.224201 0.678132 201.627731 11.528132 0.701552 193.406128 10.950719 0.687453
CRNNRes 97.259697 7.990826 0.487249 184.929138 11.125570 0.671873 207.420944 11.604235 0.711559 193.970245 10.977121 0.688455
LSTNet 98.855507 8.002940 0.491230 194.352371 11.185124 0.688779 198.950027 11.189010 0.696878 193.321854 10.918596 0.687303

Transformer 115.212799 9.050337 0.530316 195.356232 11.351683 0.690555 198.036163
⁓⁓⁓⁓⁓⁓
11.829300 0.695276 195.490723

⁓⁓⁓⁓⁓⁓
11.473658 0.691148

Informer 107.352913 8.652519 0.511908 188.467255 11.225601 0.678270 193.255280 11.726625 0.686832 190.404556 11.395064 0.682097
Autoformer 107.609352 8.323877 0.512519 204.596619 11.392544 0.706698 209.537201 11.800620 0.715180 199.185165 11.436871 0.697648
FEDformer 112.737099 8.535225 0.524588 204.154694 11.474975 0.705935 209.762802 11.534991 0.715565 197.095367 11.273081 0.693978

DSANet 112.407669 8.503561 0.523821 187.524765 10.814522 0.676572 213.651184 10.928378 0.722167 187.359970 10.795478 0.676622
TPA-LSTM 111.674713 8.578475 0.522110 180.052689 10.761929 0.662956 197.486984 10.864628 0.694311 179.853745 10.951759 0.662930
StemGNN

⁓⁓⁓⁓⁓⁓⁓
213.951080

⁓⁓⁓⁓⁓⁓
11.006669

⁓⁓⁓⁓⁓
0.722673

⁓⁓⁓⁓⁓⁓⁓
219.605392 11.081501

⁓⁓⁓⁓⁓
0.732160

⁓⁓⁓⁓⁓⁓⁓
217.613831 11.054159

⁓⁓⁓⁓⁓
0.728833 217.612076 11.054134 0.728830

GAIN 100.697830 8.158662 0.495787 183.303040 10.738844 0.668913 198.245804 11.172346 0.695644 190.160355 10.933922 0.681660
MSL 111.519417 8.463414 0.521747 216.158707 11.015688 0.726392 214.340485 10.992064 0.723331 217.488617 11.032725 0.728998
TCOAT 88.209052 7.390437 0.464018 165.119263 10.396696 0.634868 173.061798 10.564649 0.649958 179.194824 10.889776 0.661714
indicate that these linear models are not suitable for wind power
forecasting because they cannot handle the short-term variations
and long-term dependencies of wind power.

• Recurrent neural networks (RNNs) such as LSTM, GRU, and ED
generally achieve second-best or third-best results across vari-
ous horizons. Notably, the GRU model consistently showed the
best performance among these RNNs, effectively capturing the
temporal dependencies in wind power data. This is indicative
of the strength of its gating mechanism and its ability to lever-
age historical information for current data predictions. However,
when compared to our proposed TCOAT model, both LSTM and
GRU models, despite their merits, exhibit limitations. The LSTM,
known for its ability to handle long-term dependencies, falls short
in terms of predictive accuracy and flexibility when dealing with
the complex, non-linear patterns characteristic of wind power
forecasting. This is evident from the performance metrics in Ta-
ble 3, where TCOAT consistently outperforms LSTM, especially
in terms of MSE, MAE, and CVRMSE across all forecast horizons.
The LSTM model’s limitations in inference power and reliance
on substantial training data quality and quantity become appar-
ent when juxtaposed with the advanced capabilities of TCOAT.
Our model incorporates the novel integration of dynamic atten-
tion mechanisms, collaborative attention units for assimilating
multi-dimensional data, and a temporal fusion layer for effective
long-term and short-term pattern analysis. These contribute to its
performance and address the gaps observed in traditional LSTM
models. This comparative analysis underscores the novelty and
effectiveness of the TCOAT model in wind power forecasting,
offering a more accurate, reliable, and nuanced approach than
existing LSTM-based methods.

• CNN- and RNN-based models (CNN1D, CRNN, CRNNRes, and
LSTNet) perform better than linear and linear variants models,
but worse than RNN-based models. CNN1D has a similar perfor-
mance to GAR, which means it does not extract useful features
from input sequences effectively. CRNN models use both local
features and historical information to enhance prediction accu-
racy, unlike pure convolutional neural networks that only rely
on local features. For short-term horizon prediction tasks (ℎ=1),
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CRNNRes models are more stable than CRNN models, indicating
that the residual connection helps to capture the low horizon
features. However, CRNNRes performs worse than CRNN for ℎ=5
and ℎ=7 prediction tasks. This may be because the residual
window is not large enough to support long-term forecasting with
sufficient residual information. LSTNet adds a skip window to
CRNNRes, which splits the input sequence into small segments
and models them using GRU. The performance of LSTNet is
similar to CRNNRes, which means that skipping windows does
not help to learn useful representations. Overall, the hybrid RNN
models (i.e., CRNN and CRNNRes) are not as effective as the
RNN model alone, which suggests that convolutional models are
not sufficiently accurate to represent temporal dependencies by
capturing regional features.

• Self-attention-based models (Transformer, Informer, Autoformer,
and Fedformer) have slightly better results than linear models but
worse than RNN models. Among them, Informer has the best per-
formance but only slightly better than Transformer. Autoformer
and Fedformer are only better than Transformer when ℎ=1 but
slightly worse than Transformer when ℎ=3, ℎ=5 or ℎ=7. This
suggests that their attention mechanism and series decomposition
are not effective in finding periodic patterns and dependencies in
wind power data.

• CNN-RNN and attention models as the two core components of
the hybrid attention model (DSANet and TPA-LSTM) perform bet-
ter than CNN-RNN models. TPA-LSTM achieves the second-best
performance among all methods at ℎ=3 and ℎ=7, demonstrat-
ing that its temporal pattern attention can capture long-term
dependencies by two core components.

• Graph attention-based models (StemGNN and GAIN) use a graph
attention mechanism to model the spatial correlation of wind
power data. StemGNN has the worst performance among all
methods at all horizons, indicating that its graph attention mech-
anism cannot learn meaningful representations. GAIN improves
over StemGNN by using a collaborative attention mechanism,
which can enhance the spatial–temporal features. GAIN performs
better than CNN- or RNN-based methods, but still worse than
RNN-based methods.

• MSL learns shapelets from historical data to represent wind power
patterns. Its performance is low at all horizons, suggesting that

shapelets are not effective features for wind power forecasting.
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Fig. 5. The visualized comparisons on the real values with the other three methods. Unit of ℎ: day.
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In the wind power prediction experiment conducted in the Greece
ataset, four time horizons were considered: 1 day ahead, 3 days
head, 5 days ahead, and 7 days ahead. From a single time horizon
erspective, the GRU model emerged as the best-performing baseline
ethod. However, TCOAT outperformed all methods to achieve the

est results across all metrics and time horizons, particularly in lower
ime horizons. To provide a comprehensive performance measure, the
verage of the four time horizons was calculated for each method’s
SE, MAE, and CVRMSE. In this context, TCOAT demonstrated signif-

cant improvements. Specifically, when compared with the GRU model
the top-performing baseline method among the twenty-two state-of-

he-art methods evaluated - TCOAT achieved a maximum reduction of
.62%, 2.59%, and 2.85% in MSE, MAE, and CVRMSE, respectively.
his highlights the effectiveness of TCOAT in enhancing the accuracy
f wind power prediction. This demonstrates that its novel components
LTR, CAUs, STR, and temporal fusion) can effectively capture the
emporal dependencies and collaborative patterns in wind power data
cross different time scales. Moreover, TCOAT is more robust to the
ncrease of horizon than other methods.

Fig. 5 shows the comparison of the actual and predicted wind
ower by TCOAT, GRU, and MSL. TCOAT performs the best in tracking
he wind power variations, especially when the prediction horizon ℎ
s medium (3), as it can identify part of the peak-trough trend in
ig. 5(b), while the two other benchmarks fail to respond. However,
s ℎ increases, all the methods tend to underestimate the peak values
nd lose accuracy. GRU can capture the time-dependent relationship
t ℎ=1 by using the RNN component to learn features from historical
nformation, but it fails to predict the peaks and valleys of the time
eries accurately at ℎ=3, ℎ=5, and ℎ=7. TCOAT leverages a long-term
attern framework to capture long-term representations, a directional
ollaborative attention mechanism to focus on relevant features, and
short-term pattern framework to capture short-term representations,
hich enables it to produce more accurate and realistic predictions.

Fig. 6 displays the normalized results from actual and predicted
alues. The Pearson correlation (PCC) between the actual value and
he predicted value of different models is also annotated in the figure.
he prediction error increases as the observation size increases, which

s consistent with Fig. 5. This indicates the difficulty of predicting wind
ower accurately during high fluctuation periods, especially for long-
erm forecasting. Most of the data points are above the diagonal line,
14
hich means that the prediction model tends to overestimate the actual
alues when they reach the peak. This could be due to the instability of
he wind power data during high fluctuation periods, which makes it
ard for the prediction model to find stable patterns. The wind power
ata has a high standard deviation and a low autocorrelation during
igh fluctuation periods, which indicates a high degree of randomness
nd unpredictability. It could also be due to the prediction model’s
imitation in capturing the sudden changes in the data, which leads to a
remature reaction in forecasting the peak values. Nevertheless, TCOAT
till outperforms other methods in terms of Pearson correlation coef-
icient (PCC), which reflects the linear relationship strength between
he actual and predicted values. PCC is an important indicator of the
rediction model’s performance, as it measures how well the model can
apture the trend and pattern of the data. TCOAT has a higher PCC than
ther methods for all four forecasting horizons.

.4. Model ablation study

We designed the TCOAT model to capture the complex temporal
nd collaborative patterns in wind power data. To evaluate how each
omponent contributes to the accuracy of the model, we conducted an
blation study by comparing TCOAT with six variants that remove one
r more components. We tested the models on four different prediction
orizons (ℎ = 1, 3, 5, 7) and reported the results in Table 4.

The results show that TCOAT outperforms all the variants on all
metrics and horizons, demonstrating the effectiveness of its novel com-
ponents. Each component plays an important role in improving the
performance of the model, and removing any component leads to a sig-
nificant drop in performance. We discuss the impact of each component
in detail below.

• LTR: This component captures the long-term changes in wind
power generation by using a recurrent neural network to learn
features from historical information. Removing LTR (w/o LTR) re-
sults in poor performance, especially for longer horizons. This in-
dicates that LTR can capture the long-term dependencies in wind
power data and help the model make more accurate predictions.

• CAUs(DT): This component generates a new time series based on
the characteristics of the input time series and the importance
of each moment for future prediction. Removing CAUs(DT) (w/o
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Fig. 6. The correlation visualizations of TCOAT predictions and three other benchmark predictions; Unit of ℎ: day.
Table 4
Model ablation study. The best results are shown in bold, the second-best results are underlined, and the worst results are in wavy lines; Unit of ℎ: day.

Model ℎ = 1 ℎ = 3 ℎ = 5 ℎ = 7

MSE MAE CVRMSE MSE MAE CVRMSE MSE MAE CVRMSE

TCOAT 88.209052 7.390437 0.464018 165.119263 10.396696 0.634868 173.061798 10.564649 0.6499585 179.194824 10.889776 0.661714
w/o LTR 99.306294 7.966326 0.492349 191.195865 10.802640 0.683161 179.499512 10.703563 0.661937 188.020944 10.940787 0.677814
w/o CAUs(DT) 93.373634 7.655972 0.477412 175.767138 10.559080 0.655006 173.306039 10.590805 0.650401 186.674304 10.944325 0.675381
w/o CAUs(SA) 99.292628 7.961520 0.492314 188.348081 10.984047 0.678013 183.273358 10.936804 0.668858 187.303388

⁓⁓⁓⁓⁓⁓
10.957723 0.676519

w/o CAUs
⁓⁓⁓⁓⁓⁓
99.980958

⁓⁓⁓⁓⁓
8.004636

⁓⁓⁓⁓⁓
0.494018

⁓⁓⁓⁓⁓⁓⁓
193.564978

⁓⁓⁓⁓⁓⁓
10.947162

⁓⁓⁓⁓⁓
0.687379 183.344696 10.955248 0.668988 187.314881 10.949467 0.676537

w/o STR 98.671052 7.856977 0.490581 181.633734 10.621680 0.665434
⁓⁓⁓⁓⁓⁓⁓
184.227639

⁓⁓⁓⁓⁓⁓
10.637395

⁓⁓⁓⁓⁓
0.670584

⁓⁓⁓⁓⁓⁓⁓
189.200436 10.840509

⁓⁓⁓⁓⁓
0.679934
CAUs(DT)) also leads to poor performance, except for a slight
improvement at ℎ = 3. This indicates that CAUs(DT) can enhance
the temporal fusion structure by transforming the input time
series in different directions.

• CAUs(SA): This component assigns weights to directional trans-
formation data in a certain direction dimension and ensures a bal-
anced alignment. Removing CAUs(SA) (w/o CAUs(SA)) performs
worse than w/o CAUs(DT), suggesting that CAUs(SA) can learn
meaningful attention representation from different directions and
improve the performance of the model.

• CAUs: This component is composed of CAUs(DT) and CAUs(SA).
Removing the entire CAUs module (w/o CAUs) results in a sig-
15

nificant drop in performance, indicating that CAUs can capture
the collaborative patterns in wind power data and help the model
make more accurate predictions.

• STR: This component captures the short-term variations of wind
power generation by using a convolutional neural network to
learn features from local information. Removing STR (w/o STR)
also results in a significant drop in performance, showing that STR
can capture the short-term dependencies in wind power data and
help the model make more accurate predictions.

Therefore, the ablation study confirms that each component of
TCOAT is effective and necessary for predicting wind power generation.
The TCOAT model structure design considers not only the wind power
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Table 5
Performance comparisons on wind power prediction. The best results are shown in
bold, the second-best results are underlined, and the worst results are in wavy lines;
Unit of ℎ: day.

Model MSE MAE CVRMSE

GAR 10.971498 2.755303 0.924539
AR 10.926890 2.717245 0.922657
VAR 12.407728 2.897383 0.983192

DLinear 10.545882 2.720891 0.906428
NLinear 10.913733 2.703481 0.922102
FiLM

⁓⁓⁓⁓⁓⁓
12.570126

⁓⁓⁓⁓⁓
2.945149

⁓⁓⁓⁓⁓
0.989605

LSTM 9.837881 2.570797 0.875473
GRU 9.806232 2.630778 0.874064
ED 10.171904 2.734773 0.890211

CNN1D 11.293797 2.768536 0.93802
CRNN 10.473486 2.738216 0.903312
CRNNRes 11.132644 2.718664 0.931304
LSTNet 11.104560 2.703753 0.930128

Transformer 10.523831 2.774823 0.90548
Informer 10.515368 2.742601 0.905116
Autoformer 10.175673 2.563494 0.890376
FEDformer 12.323840 2.871534 0.979862

DSANet 10.310382 2.739258 0.896251
TPA-LSTM 12.195922 2.942518 0.974764
StemGNN 10.460149 2.762231 0.902736
GAIN 10.537903 2.751385 0.906085
MSL 10.367334 2.782756 0.898723
TCOAT 9.559267 2.553933 0.862987

influences but also the short-term and long-term time dependence and
collaborative attention in the time series.

5.5. Generalization study

This subsection evaluates the generalization ability of our proposed
TCOAT model by utilizing an auxiliary dataset, known as WSTD2. We
compare TCOAT with twenty-two state-of-the-art methods for wind
power forecasting, using three metrics: MSE, MAE, and CVRMSE. We
consider a single time horizon: 1 day ahead (h = 1).

Before comparing TCOAT with other methods, we conducted some
experiments to find the optimal settings for our model. We fixed the
prediction horizon (h) and the output window size (H) at 1, the batch
size (B) at 32, and the CAUs settings at 0, 1, and varied the window
size (T) from 1 to 25. We used the same evaluation metrics and
experimental settings as before, running each experiment five times
and reporting the average results. The results indicated that the best
performance was achieved when 𝑇 = 22, so we set 𝑇 to 22 for
subsequent experiments. Next, we fixed the prediction horizon (h), the
output window size (H), and the window size (T) to 1, 1, and 22,
respectively, and varied the batch size (B) from 20 to 27. The results
showed that the best performance was achieved when B = 27, so we
et B to 27 for the final comparison with other methods.

We group the methods into nine categories based on their main
echniques: linear models, linear model variations, recurrent neural
etworks (RNNs), CNN- and RNN-based models, self-attention-based
odels, CNN-RNN and attention models, graph attention-based mod-

ls, shapelet learning model, and our proposed model. The results in
able 5 show that:

• Linear models (GAR, AR, and VAR) perform poorly, indicating
that the wind power data has complex nonlinear and temporal
patterns that cannot be captured by simple linear models. Among
them, AR slightly outperforms GAR and VAR, suggesting that the
wind power data has some autocorrelation structure.

• Linear model variations (DLinear, NLinear, FiLM) perform slightly
better than linear models, indicating that the wind power data has
16

some nonlinear patterns that can be captured by adding nonlinear
activation functions or feature-wise linear modulation. However,
FiLM performs the worst among all methods, suggesting that this
technique is not suitable for wind power data.

• RNNs (LSTM, GRU, and ED) perform well, achieving the second
and third-best results among all methods. This indicates that the
wind power data has strong temporal dependencies that can be
captured by RNNs.

• CNN- and RNN-based models (CNN1D, CRNN, CRNNRes, and
LSTNet) perform worse than RNNs, indicating that the wind
power data does not contain much spatial information that can
be captured by CNNs. CRNNRes performs worse than CRNN,
suggesting that the residual module does not find effective fea-
tures. CNN1D, CRNNRes, and LSTNet have similar performance,
suggesting they have similar limitations in modeling wind power
data.

• Self-attention-based models (Transformer, Informer, Autoformer,
and Fedformer) outperform the linear models but not the RNNs,
indicating that the wind power data has some long-range de-
pendencies that can be captured by self-attention, but also some
short-term dependencies that are better captured by RNNs. Among
them, Autoformer achieves the best MSE and the second-best MAE
among all methods, indicating that it can learn effective features
from the wind power data. Informer performs slightly worse
than Autoformer, and Transformer slightly worse than Informer,
suggesting that information attention and probabilistic time series
modeling techniques are beneficial for wind power forecasting.
Fedformer performs poorly, suggesting that the feature-enhanced
dual transformer architecture is not suitable for wind power data.

• CNN-RNN and attention models, the two core components of
the hybrid attention model (DSANet and TPA-LSTM), perform
differently. DSANet outperforms the CNN- and RNN-based models
but not the RNNs, indicating that the dual self-attention network
can capture both local and global dependencies in wind power
data. TPA-LSTM performs poorly, similar to FiLM and Fedformer,
indicating that the temporal pattern attention technique is not
effective for wind power data.

• Graph attention-based models (StemGNN and GAIN) perform sim-
ilarly, outperforming the linear models, CNN- and RNN-based
models, and self-attention-based models, but not the RNNs. This
indicates that the graph attention technique can capture the
spatial–temporal dependencies in wind power data. StemGNN
performs slightly better than GAIN, suggesting that the spatial–
temporal embedding technique is beneficial for wind power fore-
casting.

• MSL, which learns shapelets from the wind power data, outper-
forms the self-attention-based models and graph attention-based
models, but still lags behind the RNNs. This indicates that the
shapelet learning technique can capture some local patterns in
wind power data, but not the global patterns.

• TCOAT, our proposed model, achieves the best results on all
metrics, demonstrating the generalization ability of TCOAT. Com-
pared to the best baseline GRU, TCOAT improves the MSE, MAE,
and CVRMSE by 2.5%, 0.4%, and 1.26%, respectively.

In summary, we have shown that TCOAT can generalize well to
different wind power datasets, and outperform the existing methods for
wind power forecasting. This indicates that TCOAT can effectively cap-
ture the complex nonlinear and temporal patterns in wind power data,
and provide accurate and reliable forecasts for wind power generation.

6. Conclusion and future work

Wind power forecasting stands as a pivotal task for the effective
integration and management of wind energy systems. Accurate fore-
casting not only optimizes the operation and maintenance of wind

turbines but also mitigates the uncertainty and risk associated with
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power supply, thereby amplifying both the economic and environ-
mental advantages of wind power generation. In this research, we
introduced Temporal Collaborative Attention (TCOAT), a data-driven
approach designed to capture the intricate temporal and spatial de-
pendencies inherent in wind power generation data. TCOAT employs
attention mechanisms to dynamically adjust the weights of each input
variable and time step based on their contextual relevance for forecast-
ing. Furthermore, the model incorporates collaborative attention units
to assimilate both directional and global information from the input
data. It also employs self-attention and cross-attention mechanisms
to explicitly model the interactions and correlations among different
variables or time steps. Additionally, TCOAT features a temporal fusion
layer that effectively integrates long-term and short-term information
through concatenation and mapping operations, as well as hierarchical
feature extraction and aggregation.

To evaluate the performance of TCOAT, we conducted extensive
experiments on two real-world wind power datasets from different
regions with distinct climate conditions. Our empirical results, com-
pared with twenty-two state-of-the-art methods, show that TCOAT
surpasses them in terms of both accuracy and robustness, especially for
short-term and very short-term forecasting horizons. A model ablation
study further confirms the effectiveness of each component of TCOAT,
while a parameter sensitivity analysis reveals the influence of various
hyperparameters on the model’s performance. The experiment using
the second dataset as an additional dataset verifies the generality of
the proposed model.

However, TCOAT also has some limitations and challenges that need
to be addressed in future work. First, TCOAT does not provide any
uncertainty quantification or probabilistic forecasts, which may affect
the decision-making and risk management of wind power integration.
Second, the current implementation of TCOAT does not consider the
real-time scenario, which adapts to the changing dynamics or patterns
of wind power generation over time, and thus may require periodic
retraining or updating of the model. Third, we have only tested our
method on the predictions using onshore datasets, while more complex
remote or offshore wind farms need to be considered for testing, such as
those that consider the sea state conditions. Furthermore, data privacy
and security issues may also arise when sharing or transferring data
across different parties or regions.

For future work, we aim to address these limitations and generalize
our method to other forms of renewable energy, such as solar and
hydropower, and to explore multi-source or multi-region forecasting.
We also intend to enrich our model by incorporating external factors
like grid load or market price, with the goal of enhancing forecasting
accuracy and reliability. Moreover, we plan to delve into more ad-
vanced attention mechanisms, such as transformer or graph attention,
to further improve the model’s representation learning and feature
extraction capabilities.
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Appendix
Hyper-parameter setting

The parameters setting of the proposed method and benchmarks are
listed in Table 6.
Table 6
Hyper-parameter settings.

Model Parameter Option range

LSTM
Hidden size {24 , 25 , 26 }GRU

ED

DLinear Decomposition kernel size 3–9 (2 per step)
FiLM The dimension of the model {24 , 25 , 26 }

CNN1D CNN kernel size 3–9 (2 per step)
CNN out channels {22 , 23 , 24 , 25 , 26 }

CRNN GRU hidden size {24 , 25 , 26 }
GRU layers 1–3 (1 per step)

CRNNRes Residual window size 1–7 (1 per step)
Residual ratio 0.1–0.5 (0.1 per step)

LSTNet
Skip window size 1–7 (1 per step)
Skip GRU hidden size {24 , 25 , 26 }
Skip GRU layers 1–3 (1 per step)

Transformer Encoder layers 1–3 (1 per step)
Informer Decoder layers 1–3 (1 per step)
Autoformer The label length 1–10 (1 per step)
FEDformer The numbers of heads {22 , 23 , 24 }

The dimension of the model {24 , 25 , 26 }

DSANet

CNN kernel size 3–9 (2 per step)
CNN out channels {22 , 23 , 24 , 25 , 26 }
Attention layers 1–3 (1 per step)
The numbers of heads {22 , 23 , 24 }
The dimension of the model {24 , 25 , 26 }

TPA-LSTM
GRU hidden size {24 , 25 , 26 }
GRU layers 1–3 (1 per step)
Residual window size 1–10 (1 per step)

StemGNN Block size 1–10 (1 per step)
Leaky rate 0.1–0.3 (0.1 per step)

GAIN GAT hidden size {24 , 25 , 26 }
The number of heads of GAT {20 , 21 , 22 , 23 , 28 }

MSL Shapelet size {22 , 23 , 24 , 25 , 26 }

Abbreviation

The meanings of abbreviations are listed in Table 7.
Table 7
Abbreviations and meanings.

Abbreviation Meaning

AM Attention Mechanism
ANN Artificial Neural Network
AR Autoregressive
ARMA Auto Regressive Moving Average
ARIMA Auto Regressive Integrated Moving Average
CAU Collaborative Attention Unit
CNN Convolutional Neural Network
CNN1D One-Dimensional CNN
CRNN Convolutional Recurrent Neural Network

(continued on next page)
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Table 7 (continued).
Abbreviation Meaning

CRNNRes Residual Convolutional Recurrent Neural Network
CVRMSE Coefficient of Variation of Root Mean Square Error
DNN Deep Neural Network
DSANet Dual Self-Attention Network
DT Directional Transformation
ED Encoder–Decoder
ENTSO-E European Network of Transmission System Operators of Electricity
FEDformer Feature-Enhanced Dual Transformer
FiLM Feature-Wise Linear Modulation
GAIN Gated Multi-scale Aggregation Network
GRU Gated Recurrent Unit
Informer Information Attention-based Network
LSTM Long Short-Term Memory
LSTNet Long- and Short-Term Network
LTR Long-term Temporal Representation
MAE Mean Absolute Error
ML Machine Learning
MSE Mean Square Error
MSL Multivariate Shapelet Learning
MTS Multi-Temporal Scale
NWP Numerical Weather Prediction
PM Persistence Model
RNN Recurrent Neural Network
RF Random Forest
SA Symmetric Attention
SGD Stochastic Gradient Descent
StemGNN Spatial-Temporal Embedding with Multi-Graph CNN
STR Short-term Temporal Representation
TCOAT Temporal Collaborative Attention
TPA Temporal Pattern Attention with LSTM
WPF Wind Power Forecasting
WSTD2 Wind Spatio-Temporal Dataset2
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