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A B S T R A C T

Accurate heat load forecasting is crucial for the efficient operation and management of district heating systems.
This study introduces a novel Sparse Dynamic Graph Neural Network (SDGNN) framework designed to address
the complexities of forecasting heat load in district heating networks. The proposed model represents the
district heating network as a dynamic graph, with nodes corresponding to consumers or heat sources and edges
denoting temporal dependencies. The SDGNN framework comprises three key components: (1) a sparse graph
learning module that identifies the most relevant nodes and edges, (2) a spatio-temporal memory enhancement
module that captures both short-term and long-term dependencies, and (3) a temporal fusion module that
integrates node representations into a comprehensive global forecast. Evaluated on a real-world district heating
dataset from Denmark, the SDGNN model demonstrates superior accuracy and efficiency compared to existing
methods. The results indicate that the SDGNN framework effectively captures intricate spatio-temporal patterns
in historical heat load data, achieving up to 5.7% improvement in RMSE, 7.4% in MAE, and 5.7% in CVRMSE
over baseline models. Additionally, incorporating meteorological factors into the model further enhances its
predictive performance. These findings suggest that the SDGNN framework is a robust and scalable solution
for district heat load forecasting, with potential applications in other domains involving spatio-temporal graph
data.
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1. Introduction

District heating is a centralized system of energy distribution that
provides heat to residential and commercial buildings from a common
source [1]. It is widely adopted in urban areas around the world as a
sustainable and efficient solution for meeting the heating demand [2].
However, the optimal operation and management of district heating
systems depend on accurate forecasting of the heat load, which is
the amount of heat required by the consumers at a given time [3].
Forecasting the heat load is a challenging task due to the complex and
dynamic nature of the district heating network, which involves multiple
factors and uncertainties [4,5].

The very efficacy of these systems relies on balancing the sup-
ply with dynamic demand patterns. Factors like external temperature,
insulation properties of buildings, human behaviors, and other unpre-
dictable events interweave to create a fluctuating demand landscape [6,
7]. Fig. 1 offers a tangible representation of these challenges. The spa-
tial representation (part a) underscores the varied heat load demands
across different house types, emphasizing the critical need to under-
stand and predict individualized consumption patterns. The time series
(part b) and the temporal dynamics (part c) further demonstrate the
intricate interplay of spatial and temporal factors that make forecasting
a formidable task [4].

Various statistical and machine learning methods have been pro-
posed to address the forecasting problem of district heat load. These
methods can be divided into two main categories: univariate and mul-
tivariate. Univariate methods, such as ARIMA, exponential smoothing,
and seasonal decomposition, use only historical heat load data as input
and ignore other relevant factors [8,9]. These methods are simple and
easy to implement, but they often fail to capture the non-stationarity,
non-linearity, and long-term dependencies in the data. Multivariate
methods, such as artificial neural networks (ANNs), support vector
machines, and random forests, use multiple input variables, such as me-
teorological data, calendar information, building data, etc., to forecast
the heat load [10]. These methods are more powerful and flexible than
univariate methods, but they also have some limitations. For example,
they require large amounts of data and computational resources to train
and optimize their parameters. They also tend to ignore or oversimplify
the spatial dependencies and interactions among different consumers or
heat sources in the network. However, both univariate and multivariate
methods are based on traditional forecasting methodologies, such as
linear regression or time-series analyses, which often falter in the face
of the complex and dynamic nature of district heat demand [11].
Furthermore, as data influxes grow exponentially with the integration
of IoT devices and smart meters, the need for more sophisticated predic-
tive tools becomes palpable. Many state-of-the-art models, while adept
at handling vast datasets, falter when confronted with abrupt demand
spikes or novel consumption patterns [6,12]. Others suffer from issues
of scalability or require vast computational resources, rendering them
unsuitable for real-time forecasting in dynamic urban landscapes [13].
These limitations underscore an exigent need for innovative solutions.

In this paper, we propose a novel graph-based learning frame-
work for district heat load forecasting. Our framework leverages the
advantages of graph neural networks (GNNs), which are a class of
deep learning models that can effectively capture both the structural
and temporal information of graph-structured data [14]. We model
the district heating network as a dynamic graph, where each node
represents a time step, and each edge represents a temporal relationship
or dependency between distinct consumer or heat source. Specifically,
we focus on forecasting the thermal demand of individual buildings
connected to a district heating network. Each building’s heat load is
represented as a node in the graph, and the edges capture temporal
dependencies between the heat load patterns of different buildings. We
design a sparse dynamic graph neural network (SDGNN) model (The
2

complete list of acronym used in this paper can be found in Table 1)
Table 1
Abbreviation and description.

Abbreviation Description

ABPA Adaptive Backpropagation Algorithm
ANNs Artificial Neural Networks
BN Batch Normalization
CVRMSE Coefficient of Variation of Root Mean Square Error
DHS District Heating System
FCN Fully Connected Network
FLOPS Floating-point Operations Per Second
GNNs Graph Neural Networks
GPU Graphics Processing Unit
LSTM Long Short-Term Memory
MACs Multiply-Accumulate Operations
MAE Mean Absolute Error
MSE Mean Square Error
PCC Pearson Correlation Coefficient
ReLU Rectified Linear Unit
RMSE Root Mean Square Error
RNNs Recurrent Neural Networks
SCC Spearman’s rank Correlation Coefficient
SDGNN Sparse Dynamic Graph Neural Network
SVMs Support Vector Machines

that can learn from both the node features (such as temporal dependen-
cies between time steps) and the edge features (such as relationships
between heat load meters) of the graph. Our model consists of three
main components: a sparse graph learning component that constructs
a dynamic graph structure from raw data by selecting the most relevant
nodes and edges; a spatio-temporal memory enhancement component
that enriches the node representations by capturing both short-term
and long-term dependencies; and a temporal fusion component that
aggregates the node representations into a global representation for
forecasting. This component employs a reweighting mechanism for
node representations, which is based on their relevance and importance
to the forecasting task. This way, it can capture the global trends
and patterns of the heat load demand across the network and reduce
the noise and redundancy in the data. The primary applications of
the SDGNN model include optimization of district heating operations,
where accurate building-level heat load forecasts enable better man-
agement of heat production and distribution, leading to increased
efficiency and reduced costs. Additionally, the model supports demand
response and control strategies by leveraging building-level heat load
predictions to optimize energy consumption patterns. It also facilitates
anomaly detection, as deviations between predicted and actual heat
loads can help identify potential issues with building equipment or
occupant behavior. The main contributions of our paper are:

• We present a novel graph-based learning framework that can
capture both temporal sequences and spatial relationships in a
unified manner for forecasting the heat demand and supply of
district heating systems.

• We propose a neural network structure that integrates a graph
sparse module, memory enhancement unit, and temporal fusion
component to enhance the performance and efficiency of graph
learning.

• We evaluate our framework on a real-world district heating
dataset from Denmark, and demonstrate that it achieves state-of-
the-art results in terms of forecasting accuracy and computational
complexity, and provides interpretable insights into the heat
dynamics of district heating systems.

The rest of this paper is organized as follows. In Section 2, we
review some related work on district heat load forecasting methods.
In Section 3, we present our proposed SDGNN model in detail. In
Section 4, we conduct extensive experiments to evaluate our model and
compare it with several baselines. We conclude in Section 5 and discuss
some future directions for research.
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2. Related work

The task of district heat load forecasting is a complex and multi-
faceted problem that has garnered significant attention in both academia
and industry. Various methodologies have been explored to address
this issue, ranging from traditional statistical models to advanced
machine learning techniques. Additionally, the emergence of graph-
based models and the incorporation of spatio-temporal memory have
opened new avenues for improving the accuracy and robustness of
forecasts. This section aims to provide a comprehensive review of these
methodologies, discussing their strengths, limitations, and applicability
in the context of district heat load forecasting.

2.1. Heat load forecasting methods

The landscape of load forecasting has experienced a paradigm shift,
signifying a substantial transformation in both methodology and ap-
plication. This evolution is marked by a transition from traditional
time-series econometric models to advanced machine learning and
deep learning techniques. Sarajcev et al. [15] utilize ensemble learning
and aggregate load clustering for short-term forecasting, while Mishra
et al. [16] emphasize the enduring relevance of traditional methods
across various contexts. This divergence underscores a pressing is-
sue: the integration of emerging machine learning algorithms with
well-established statistical models.

Data-driven models, especially regression-based supervised learning
techniques, have gained prominence in heat demand prediction within
District Heating Systems (DHS) [17]. Idowu et al. [18] investigate ma-
chine learning approaches like support vector regression and decision
trees in both residential and commercial settings. Kurek et al. [19]
build upon this by examining forecasting methods for heat demand
in the European Union’s largest District Heating Network, consider-
ing seasonal variations and a 72-hour time horizon. These studies
collectively underscore the expanding versatility of machine learning
techniques. Dixon [20] introduces exponential smoothed Recurrent
Neural Networks (RNNs), tailored to model non-stationary dynamical
systems commonly found in industrial settings. Dixon’s work acts as
a linchpin in harmonizing the strengths of machine learning with
the robustness and interpretability of traditional statistical models.
However, it is essential to recognize that traditional algorithms have
limitations, including susceptibility to low accuracy and high sensitivity
to data noise. To address these challenges, Song et al. [21] introduce a
Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM)
algorithm, adept at capturing the complex dynamics of heating load.
Their work highlights the promise of hybrid models that amalgamate
features of both neural networks and traditional statistical methods to
enhance forecasting accuracy and reliability.

A notable advancement is Huang et al.’s [4] Active Graph Recurrent
Network (Ac-GRN), which not only improves forecast accuracy but also
introduces a layer of explainability. This focus on explainability aligns
with a broader trend in machine learning aimed at making advanced
algorithms more transparent and accountable. This trend is supported
by an exhaustive study [22] that evaluates both the strengths and
weaknesses of machine learning techniques in thermal load forecasting.
The study serves as a critical appraisal of the current state-of-the-art,
emphasizing the need for models that are not only accurate but also
interpretable. Machine learning’s applicability extends to the building
sector, as demonstrated by Bassi et al. [23], who validate gradient
boosting algorithms like LightGBM, CatBoost, and XGBoost. Their work
shows that these algorithms can outperform traditional methods, de-
livering more accurate and reliable forecasts. However, it is crucial to
acknowledge that machine learning models have inherent limitations,
such as the challenge of extrapolating beyond known data ranges. Faber
et al. [24] address this by introducing ‘‘Deep DHC’’, a hybrid method
that synergizes the strengths of decision trees and neural networks. This
3

hybrid approach reflects a growing trend to integrate different machine
learning techniques to offset individual weaknesses and enhance overall
performance. Additionally, the complexities of electric load forecasting
have been amplified by the emergence of decentralized energy gener-
ation and fluctuating work patterns. Borghini et al. [25] address these
challenges using tabnet, a machine learning model that has shown
promise in navigating these complexities. Their work attests to the
adaptability and versatility of machine learning models in tackling
evolving challenges in load forecasting.

While ANNs yield promising results, their limitations in long-term
forecasting cannot be overlooked. Mohammed et al. [26] tackle this by
developing an ANN model enhanced with an Adaptive Backpropagation
Algorithm (ABPA). Complementing this, Giamarelos et al. [27] intro-
duce a mixed power-load forecasting scheme that exhibits competitive
accuracy across multiple prediction horizons. These advancements pave
the way for our further research, especially in addressing the limitations
of existing models and in incorporating additional data sources for
more accurate and robust forecasting.

2.2. Graph-based models and spatio-temporal memory in forecasting

This subsection delves into the confluence of graph-based models,
notably Graph Neural Networks (GNNs), and spatio-temporal memory
mechanisms like Long Short-Term Memory (LSTM) in the realm of
forecasting. The discussion is anchored in existing literature and em-
phasizes the synergistic impact of these technologies, especially in the
context of district heat load forecasting.

Graph Neural Networks (GNNs) have revolutionized forecasting
by offering a sophisticated means to model intricate spatial relation-
ships [28]. Unlike conventional machine learning models, which falter
when dealing with irregular data structures, GNNs excel in captur-
ing the spatial dependencies inherent in diverse fields such as traffic
management and mobile networks [29–31]. Utilizing advanced tech-
niques like spatial transformers and graph learning modules, GNNs
dynamically model directed spatial dependencies, thereby capturing
real-time conditions and flow directionality [29,31]. Their adaptabil-
ity to various spatial dependency patterns, facilitated by multi-head
attention mechanisms, further elevates their forecasting accuracy and
reliability [5,30].

Incorporating spatio-temporal memory mechanisms, such as LSTM
and Transformer architectures, significantly augments the predictive
prowess of graph-based models. These mechanisms excel in captur-
ing both long-term and short-term temporal dependencies, thereby
enriching the understanding of data dynamics. For example, in wind
speed forecasting, hybrid models combining convolutional neural net-
works and LSTM have demonstrated superior accuracy by capturing
complex spatio-temporal correlations [32]. Likewise, in solar power
forecasting, graph-convolutional LSTM and Transformer models have
been employed to yield fine-grained predictions by capturing intri-
cate spatio-temporal dependencies [33]. These mechanisms not only
enhance temporal sequence understanding but also enable the inte-
gration of additional contextual factors like weather conditions and
regional distributions, thereby rendering the forecasts more reliable
and actionable [34,35].

The fusion of graph-based models with spatio-temporal memory
mechanisms forms a robust framework for forecasting, enabling a
nuanced understanding of both spatial and temporal dependencies.
This integrated approach has proven particularly effective in diverse
applications, including solar power and traffic flow forecasting. For
instance, graph-convolutional long short-term memory (GCLSTM) and
graph-convolutional transformer (GCTrafo) models have been devel-
oped to achieve forecasts with higher spatial and temporal resolution in
multi-site photovoltaic power forecasting [33]. Similarly, in traffic flow
forecasting, a graph-based temporal attention framework has outper-
formed several state-of-the-art models by leveraging both spatial and
temporal correlations [36]. In epidemic forecasting, the introduction

of CausalGNN has incorporated underlying causal mechanisms into
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Fig. 1. An illustration of the challenges in district heat load forecasting. (a) Spatial representation of different house types and their heat load demands. (b) Time series of heat
load demand for a typical week. (c) Temporal dynamics of heat load demand for different house types.
spatio-temporal embeddings, thereby enhancing forecast robustness
and accuracy [37]. These advancements highlight the indispensable
nature of this integrated approach for tackling complex forecasting
challenges [38].

In the niche area of district heat load forecasting, the synergy
between graph-based models and spatio-temporal memory mechanisms
presents a promising avenue for innovation. However, existing litera-
ture on this domain is scarce and mostly focused on smart grid load
forecasting [39], which is not directly applicable to district heating sys-
tems. Therefore, there is a need for a novel graph-based learning frame-
work that can capture both spatial and temporal information in district
heat load forecasting, and address the challenges of data sparsity,
network complexity, and dynamic changes. In this paper, we propose a
sparse dynamic graph neural network that considers the sparsity of the
graph structure and integrates graph convolutional and attention mech-
anisms to enhance the performance and efficiency of graph learning.

3. Methodology

This section explains the methodology of our study on district heat
load forecasting using the SDGNN model. We begin by defining the
problem and the input and output variables for forecasting. Then, we
give an overview of the SDGNN model and its modules, and describe
how we implemented it.

3.1. Problem formulation

The problem of district heat load forecasting can be formulated as
follows: given a set of historical heat load records  = {𝑿1,𝑿2,… ,𝑿𝑄}
for 𝑄 buildings in a district, where 𝑿𝑞 = {𝑥𝑞,1, 𝑥𝑞,2,… , 𝑥𝑞,𝑇 } is a time
series of heat load values for building 𝑞 at 𝑇 time steps, and a set
of exogenous factors  = {𝒁1,𝒁2,… ,𝒁𝑄} for each building, where
𝒁𝑞 = {𝑧𝑞,1, 𝑧𝑞,2,… , 𝑧𝑞,𝑇 } is a vector of external variables that may affect
the heat load demand for building 𝑞. Our primary goal in this paper is
to predict the future heat load values ̂ = {𝑿̂1, 𝑿̂2,… , 𝑿̂𝑄} for each
individual building 𝑞 at a horizon of 𝜏 time steps ahead. This involves
forecasting heat load values for all heat meters for the upcoming 𝜏 time
steps based on historical observations from the preceding 𝑇 time steps.

{𝑿̂𝑡+1, 𝑿̂𝑡+2,… , 𝑿̂𝑡+𝜏} ← 𝛷(𝑿𝑡−𝑇+1,𝑿𝑡−𝑇 ,… ,𝑿𝑡;𝛷), (1)

where 𝑿̂𝑡+𝑖 is the prediction values of the next 𝑖-steps. 𝛷 denotes the
learnable parameters in the forecasting model  .
4

𝛷

3.2. Model overview

To solve this problem, we propose an SDGNN model for district heat
load forecasting, illustrated in Fig. 2. The history heat load observations
are used to collect the load records of different districts and train
the SDGNN model. The SDGNN model is composed of three modules:
graph learning module, spatio-temporal memory enhancement, and
temporal fusion. The graph learning module constructs the sparse
graph structure and employs the multi-layer graph convolutional neural
network to capture the graph dynamics. The spatio-temporal memory
enhancement captures the spatial and temporal dependencies among
the districts by aggregating the features from the dynamic graph. The
temporal fusion module generates the future heat load predictions by
combining the outputs of the previous modules and skipping some
intermediate layers. The framework aims to achieve accurate and ro-
bust district heat load forecasting by leveraging the spatio-temporal
information and global context of the data. In the following subsections,
we will describe each module in detail.

3.3. Sparse dynamic graph neural network

Fig. 3 illustrates the proposed SDGNN that consists of three main
components: graph learning module, spatio-temporal memory enhance-
ment, and temporal fusion. The heat load observations are the input
data for the model, which are time series of heat load values for
different districts. The patching component is a preprocessing step that
divides the time series into patches of equal length and assigns each
patch a label based on its pattern. The graph construction component
is the core of the model, which builds a dynamic graph for each patch
based on the spatio-temporal dependencies and global context of the
data. The sparse graph learning component learns the temporal depen-
dencies among the districts by constructing a sparse dynamic graph
based on the historical data. The spatio-temporal memory enhancement
component enriches the node features by incorporating the historical
and future information using a global convolutional neural network
and attention mechanism. The temporal fusion component integrates
linear trend features with nonlinear representations to generate the
final output, which is the heat load prediction for each district. The
temporal fusion component also avoids over-nonlinearity and enhances
the stability of the prediction model. In the following, we will describe
the three modules in the graph component in detail.

3.3.1. Sparse graph learning
In district heating systems, the heat demand for a specific time

period often exhibits correlations with past periods characterized by
similar weather conditions, days of the week, and seasonality. Cap-
turing these correlations and patterns is vital for efficient forecasting.
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Fig. 2. The framework of district heat load forecasting using proposed SDGNN model.
Fig. 3. The overview of proposed sparse dynamic graph neural network model.
Graph-based learning offers a promising approach to capture the in-
herent temporal patterns and dependencies within heat load data. Let
 = { ;;} represent a graph structure.  denotes the set of nodes,
with each node 𝒗𝑡 ∈  corresponding to a distinct time point 𝑿𝑡. The set
of edges, denoted as , consists of individual edges represented by 𝒆𝑖,𝑗 ∈
. Each edge serves to establish a temporal relationship or dependency
between the time steps 𝒗𝑖 and 𝒗𝑗 . These intricate relationships can
also be represented by the adjacency matrix . It is important to
note that this graph does not represent the physical layout of the
district heating network. Instead, it captures the temporal relationships
between the heat load demands of individual buildings. For example, if
two buildings tend to have similar heat load patterns over time, perhaps
due to similar occupancy schedules or responses to weather changes,
their corresponding nodes in the graph will have a strong connection.

The sparse graph learning process consists of two phases: the sparse
graph construction and the temporal graph learning. In the sparse
graph construction phase, sequence information is condensed to es-
tablish meaningful node relationships by distilling raw heat meter
observations. Connections between nodes are dynamically and adap-
tively pruned to reflect temporal variations, retaining only the most
correlated links. In the temporal graph learning phase, the obtained
dynamic graph structure is fed into multi-layer graph convolution
networks to capture inter-dependencies between nodes.

Sparse graph construction. As shown in Fig. 4, the sparse graph
construction process operates along two primary dimensions: temporal
sparsity and relationship sparsity. Temporal sparsity is intended to
compress the sequence information obtained from raw data, thereby
reducing the number of graph nodes. Conversely, relationship sparsity
is centered on distilling and refining the edges between nodes, repre-
senting the associations between each time step. To achieve temporal
5

Fig. 4. The visualization of the proposed sparse graph construction.

sparsity, we employ a patching strategy to preprocess heat meter
observations before incorporating them into the graph learning com-
ponent [40]. Let 𝑃 be a constant that denotes the patch length. Using
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this strategy, every continuous set of 𝑃 time steps of observations is
grouped into a single time slot represented as:

{ ⋯
⏟⏟⏟

⋯

,𝑿𝑠,𝑿𝑠+1,… ,𝑿𝑠+𝑃−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑿̃𝑛

,𝑿𝑠+𝑃 ,𝑿𝑠+𝑃+1,… ,𝑿𝑠+2𝑃−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑿̃𝑛+1

, ⋯
⏟⏟⏟

⋯

},
(2)

where 𝑿̃ ∈ R𝑃×𝑄 denotes heat load values for a time slot, while
∈ R1×𝑄 represents the heat load for a single time step. 𝑠 ∈ [1, 𝐿]

is a time step and 𝑛 ∈ [1, 𝑁] denotes a time slot. 𝑁 = ⌈𝑇 ∕𝑃 ⌉ is defined
as the ceiling of the division of 𝑇 by 𝑃 , denoting the total number of
patches obtained after processing. The set of patched observations can
be represented as  = {𝑿̃1, 𝑿̃2,… , 𝑿̃𝑁} ∈ R𝑁×𝑃×𝑄. If 𝑇 is not an exact
multiple of 𝑃 , we apply padding using the final value 𝑿𝑡 to ensure an
even division. To extract representations from each time slot, a linear
transformation is utilized to encode the temporal information within
the patched tensor. This process can be expressed as follows:

̃ = Encoder(𝑾 𝑒𝑛𝑐 ; ), (3)

where ̃ ∈ R𝑁×𝑄 denotes the final output resulting from the temporal
sparsity process. 𝑾 𝑒𝑛𝑐 represents the learnable weight parameters.
Temporal sparsity effectively reduces the count of input tokens from
𝑇 to approximately 𝑇

𝑃 , leading to a decrease in memory consumption
nd computational complexity within the graph learning components.
his reduction process optimizes both training time and memory usage.

The objective of relationship sparsity is to selectively prune relation-
hips between nodes within the graph. This is accomplished using the
-Nearest Neighbor approach. Specifically, during the graph structure
onstruction, node similarities are calculated through the dot product
f the input ̃ , as expressed in:

 = ̃⊤
⋅ ̃

√

𝑁
, (4)

here  ∈ R𝑁×𝑁 is the similarity matrix. 𝑁 denotes the number of
ime slots. ⊤ represents the transpose operation. The resulting similarity
atrix is subsequently normalized using the softmax function:

̃
𝑖,𝑗 =

exp(𝑖,𝑗 )
∑𝑁

𝑛=1 exp(𝑖,𝑛)
, (5)

here exp(⋅) represents the exponential function. ̃ 𝑖,𝑗 is an element of
he normalized similarity matrix ̃ ∈ R𝑁×𝑁 . For each node, the top-𝑘
aximum values in the weight matrix ̃ are selected. 𝑘 represents the
sparsity of the edges in the graph, and it is calculated as 𝑘 = 𝜖 ⋅𝑁2.
orresponding entries in the adjacency matrix  set to 1, with all others
et to 0. This approach simplifies the graph structure without reliance
n predefined relationships. As the input time window 𝑿𝑡−𝑇+1∶𝑡 varies,
he relationships between nodes also evolve, resulting in a dynamic
djacency matrix  that changes with time variations.

The generated graph can be expressed as 𝑇 = {𝑇 ;𝑇 ;𝑇 }. Within
his graph, 𝑇 ∈ R𝑁 represents the set of nodes. Each node 𝒗𝑡 ∈ 𝑇

orresponds to a distinct time slot. 𝑇 ∈ R𝑘 is the set of edges, where
ach edge 𝒆𝑖,𝑗 ∈ 𝑇 establishes the temporal relationship or dependency
etween the time slots 𝑣𝑖 and 𝑣𝑗 . This temporal connectivity also can
e represented by the adjacency matrix 𝑇 .
Temporal graph learning . The temporal graph learning compo-

ent applies graph convolution operations to the patched inputs and
he dynamic adjacency matrix. The graph convolution operations use
earnable weights, biases, and activation functions to update the node
eatures. The graph convolution operations can be expressed as follows:

𝑔
1 ∗𝐺 ̃ = 𝑫− 1

2 ⋅ ̂𝑇 ⋅𝑫− 1
2 ⋅ ̃ + 𝒃𝑔1 , (6)

where ∗𝐺 signifies the graph convolution operation. ̃ ∈ R𝑁×𝑄 denotes
he input data after temporal sparsity. ̂𝑇 = 𝑇 + 𝑰𝑢 refers to the
djacency matrix with self-loops. 𝑰𝑢 is a unit matrix. 𝑫 denotes the

∑

 and 𝑫 = 0 for 𝑖 ≠ 𝑗. 𝑾 𝑔 and 𝒃𝑔 are the
6

iagonal matrix, 𝑫𝑖,𝑖 = 𝑗 𝑖,𝑗 𝑖,𝑗 1 1
earnable weights and bias, respectively. To aggregate information from
broader set of neighbors and enhance the capability of the model to

apture intricate relationships within the graph, two graph convolution
omponents are stacked to produce the final representations:
𝑔 = 𝑾 𝑔

2 ∗𝐺 ( 𝑴𝑔(𝛾)⊙ 𝜎(BN(𝑾 𝑔
1 ∗𝐺 ̃ )) ), (7)

where 𝑹𝑔 ∈ R𝑁×𝑄 is the generated representation in graph learning
component. 𝜎(⋅) represents the Rectified Linear Unit (ReLU) activation.
𝑴𝑔(⋅) denotes dropout mask, 𝛾 is dropout rate. BN(⋅) represents batch
ormalization layer employed to stabilize and expedite the training
rocess. 𝑾 𝑔 is the learnable weighting matrix. ⊙ denotes hadamard
roduct.

The temporal graph learning component learns the temporal depen-
encies among the districts by updating their node features based on
heir historical data and their dynamic graph structure. The temporal
raph learning component outputs a set of node representations that
an capture the spatio-temporal information and global context of the
ata.

.3.2. Spatio-temporal memory enhancement
The spatio-temporal memory enhancement module integrates both

spatio-temporal convolution component and a global attention mech-
nism. While graph neural network captures intrinsic topological rela-
ionships within graph structures, it may not comprehensively accounts
or intricate temporal dynamics and nuanced spatial variations. In
ontrast, spatio-temporal convolution excels in modeling both spatial
nd temporal dependencies, which is crucial when dealing with dy-
amically evolving graph structures and temporally varying node or
dge attributes. The integration of spatio-temporal convolution par-
ially alleviates the inherent limitations of conventional graph learning.
urthermore, this combined approach not only enhances the model’s
xpressiveness, enabling the extraction of more intricate features, but
lso provides a form of regularization, potentially preventing over-
itting [41]. The generated representation is formulated as follows:

𝑐 = 𝑴 𝑐 (𝛾)⊙ 𝜎(𝑾 𝑐
2 ∗ 𝜎(𝑾 𝑐

1 ∗ 𝑹𝑔)⊤), (8)

here 𝑹𝑐 represents the output from the spatio-temporal convolution.
𝑐 denotes learnable parameters of the convolution kernel. ∗ is the

onventional convolution operation. 𝑴 𝑐 (𝛾) denotes the dropout mask
enerated based on a dropout rate of 𝛾.

The spatio-temporal convolution can capture both spatial and tem-
oral dependencies inherent in the data, but its ability to focus on
pecific temporal patterns or crucial events may be limited. To ad-
ress this shortcoming and emphasis critical temporal sequences and
eatures, we integrate a global attention mechanism, enhancing the
odel’s sensitivity to key spatio-temporal variations:
𝛼1 = softmax(𝑾 𝛼1

2 ⋅ 𝜎(𝑾 𝛼1
1 ⋅𝑹𝑐 ) + 𝒃𝛼1 ), (9)

𝛼2 = softmax(𝑾 𝛼2
2 ⋅ 𝜎(𝑾 𝛼2

1 (𝑹𝑐 ⊙ 𝑺𝛼)⊤) + 𝒃𝛼2 ), (10)

𝛼,𝑜 = 𝑴𝛼(𝛾)⊙ ((𝑹𝑐 ⊙ 𝑺𝛼1 )⊤ ⊙ 𝑺𝛼2 ), (11)

here 𝑹𝛼,𝑜 represents the generation of the global attention mecha-
ism. 𝑺𝛼 denotes the attention score, while softmax(⋅) is the softmax
unction used to normalize these scores. 𝑾 𝛼 is the weight matrix, and
𝛼 corresponds to the bias term. 𝑴𝛼(𝛾) indicates the dropout mask with
he dropout rate 𝛾.

.3.3. Temporal fusion component
Excessive nonlinearity can lead to unstable training dynamics, with

scillating loss and challenging convergence [42]. To address this
hallenge, the temporal fusion component utilizes a skip connection
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architecture. This architecture effectively integrates the raw input in-
formation with the enhanced representation derived from the spatio-
temporal memory enhancement phase, resulting in the final predic-
tion. Prior to this stage, we initially construct a decoder comprising
dual embedding layers, each designed with a fully connected network
(FCN). The embedding structures aims to map the condensed feature
representation back to the desired target output shape:

𝑶 = FCN𝑠𝑝𝑎𝑡(FCN𝑡𝑒𝑚𝑝(𝑹𝛼,𝑜)), (12)

where 𝑶 ∈ R𝜏×𝑄 denotes the generation of decoder. FCN𝑠𝑝𝑎𝑡(⋅) and
CN𝑡𝑒𝑚𝑝(⋅) are embedding layers to decode the feature matrix in vari-
ble and temporal dimension, respectively. To incorporate exogenous
eteorological factors, the decoder’s output can be expressed as:

= FCN𝑠𝑝𝑎𝑡( FCN𝑡𝑒𝑚𝑝([𝑹𝛼,𝑜 ∥ Emb()]) ), (13)

here  represents the input meteorological factors, and [⋅ ∥ ⋅] denotes
he concatenation operation. Emb(⋅) signifies a linear transformation
sed for embedding the exogenous inputs to align with the shape of
𝛼,𝑜.

Subsequently, a skip connection architecture is employed to inte-
rate information derived from both the linear representation of the
riginal heat load observations and the condensed feature representa-
ion arising from the spatio-temporal memory enhancement module:

̂ 𝑡+1∶𝑡+𝜏 = 𝑶⊕ (𝑾 𝑜 ⋅𝑿𝜇∶𝑡 + 𝒃𝑜), (14)

here 𝑿̂𝑡+1∶𝑡+𝜏 ∈ R𝜏×𝑄 is the prediction values for the next 𝜏 steps,
denotes the element-wise addition operation. 𝑿𝜇∶𝑡 represents the

ast 𝜇 time steps observations. 𝑾 𝑜 and 𝒃𝑜 are trainable parameters
responsible for linearly transforming the input data to align with the
target output shape.

The chosen loss function for optimizing the model parameters 𝑾 is
the Mean Square Error (MSE), which quantifies the disparity between
predicted and actual data. To circumvent overfitting, an 𝐿2 regular-
ization term is included. The combined loss function 𝐿(𝑾 ) is formally
described as follows:

𝐿(𝑾 ) = E𝑿

[

1
𝑄

𝑄
∑

𝑖=1
‖𝑿̂(𝑖)

𝑡+1∶𝑡+𝜏 −𝑿(𝑖)
𝑡+1∶𝑡+𝜏‖

2
2

]

+ 𝜆‖𝑾 ‖

2
2, (15)

where 𝑄 denotes the total number of heat meters, and 𝜆 is the reg-
larization parameter. The loss for each meter is calculated sepa-
ately, aggregated, and then averaged, constituting a comprehensive
oss measure across all heat meter observations. The pseudo-code that
escribes the process of training SDGNN with meteorological factors
i.e. SDGNN*) is presented in Algorithm 1.

.4. Illustrative example

To further clarify the operation of the SDGNN model, we present
step-by-step walkthrough using a simplified example. Consider a

cenario where we have daily heat load data from three buildings (A,
, and C) over a month (30 days). Our goal is to forecast the heat load
or each building for the next 𝜏 day. Table 2 shows an example of the
eat load data for the first 7 days.

tep 1. Patching. We divide the 30 days into patches of length 𝑃 = 3
ays, resulting in 10 patches. Each patch contains a 3-day sequence of
eat load values for each building, as shown in Table 3.

tep 2. Sparse graph learning.

• Temporal Sparsity: Each patch from Table 3 becomes a node in
our dynamic graph by linear embedding. This reduces the number
of nodes from 30 to 10.
7

Algorithm 1: Pseudo-code for training SDGNN* in a batch
instance
Input: The historical observations of district heat meters

(𝑿1∶𝑇 ,𝑿𝑇+1∶𝜏 ), initialize model 𝛩
Output: The trained model 𝛩
// Feed forward and backward updating

1 Trainer(𝑿1∶𝑇 , 1∶𝑇 , 𝑿𝑇+1∶𝜏 , 𝛩):
2 foreach patch 𝑛 in 𝑁 do
3 𝑿̃𝑛 ∈ R𝑃×𝑄 ← group the heat load observations by

Eq. (2)
4 ̃𝑛 ∈ R1×𝑄 ← encoder each segment of data by Eq. (3)
5 ̃ = [̃1 ∥ ⋯ ∥ ̃𝑁 ] ∈ R𝑁×𝑄 ← aggregate data patches
6 ̃ ∈ R𝑁×𝑁 ← calculate and normalize the similarity matrix

by Eq. (4) and Eq. (5)
7 𝑇 ← graph construction based on ̃ and ̃
8 𝑹𝑔 ← capture the graph dynamics by Eq. (6) and Eq. (7)
9 𝑹𝑐 ← extract intricate features by Eq. (8)
0 𝑹𝛼,𝑜 ← enhance spatio-temporal representation using global

attention mechanism by Eq. (9)–(11)
1 [𝑹𝛼,𝑜 ∥ Emb(𝟏∶𝑻 )] ← combine the linearly embedded

meteorological factor features
2 𝑶 ← output alignment using fully connected networks by

Eq. (13)
3 𝑿̂𝑇+1∶𝜏 ← make prediction using 𝑶 and 𝑿𝑢∶𝑇 by Eq. (14)
4 Loss  ← 𝑿̂𝑇+1∶𝜏 and 𝑿𝑇+1∶𝜏 using MSE by Eq. (15)
5 Backward using Adam optimizer
6 return 𝛩

Table 2
An example of heat load data for a month.

Day Building A Building B Building C

1 10 15 8
2 12 17 9
3 11 16 10
⋮ ⋮ ⋮ ⋮
30 9 14 7

Table 3
An example of patch data for the first three days.

Patch Building A Building B Building C

1 {10, 12, 11} {15, 17, 16} {8, 9, 10}
2 {11, 13, 12} {16, 18, 17} {9, 10, 11}
⋮ ⋮ ⋮ ⋮
10 {12, 14, 9} {17, 19, 14} {10, 11, 7}

Table 4
An example of the heat load predictions for the next three hours.

Day Building A Building B Building C
Day Building A Building B Building C

31 11 16 9
32 13 18 10
⋮ ⋮ ⋮ ⋮
30+𝜏 12 17 11

• Relationship Sparsity: We calculate the similarity between these
patches using attention scores and the 𝑘-nearest neighbor algo-
rithm. Let us assume that if Building A and C exhibit more similar
heat load demands in Patch 1, we keep the connection between
them and remove the connection with Building B. The algorithm
would establish strong connections between their corresponding
nodes in the graph.

• Temporal Graph Learning: The model uses graph convolution
to learn how heat load patterns propagate through the network.
For instance, if a cold front hits Building A in Patch 1, the model
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a

might learn to predict increased heat load demands for Buildings
A and C due to their assumed connection in the graph.

tep 3. Spatio-temporal memory enhancement. The spatio-temporal mem-
ory enhancement component further analyzes the graph’s spatial and
temporal relationships. Imagine building B consistently experiences
higher heat load than buildings A and C. The convolution would
highlight this spatial difference and focus more on the high demand
period.

Step 4. Temporal fusion. The decoder transforms the learned features
back into the original hourly heat load format. The skip connection
combines this output with a linear transformation of the most recent
heat load values. This ensures the final prediction considers both long-
term patterns captured by the SDGNN and the immediate trends in the
data.

By processing the data through these steps, the SDGNN model gen-
erates a 𝜏-day ahead heat load forecast for each of the three buildings,
as shown in Table 4.

4. Experiment

4.1. Experimental setup

To ensure consistency across all models, a uniform dataloader was
employed, segmenting data into 70% (766 data points) for training,
10% (109 data points) for validation, and the remaining 20% (219
data points) for testing. The dataloader employed window lengths
as 𝑇 ∈ {15, 30, 45} days, with a batch size of 16. Forecasting was
carried out over continuous spans as 𝜏 ∈ {3, 5, 7} time steps, corre-
sponding to half a week, a workweek, and a full week, respectively.
Each model was trained using the Adam optimizer with the MSE
as the loss function. The MSE served as the loss function. To en-
hance robustness, we performed each experiment five times using
different random seeds, and the reported results represent the aver-
age values. The grid search method was applied to identify optimal
hyperparameters. Specific settings for each model can be found in
Table 10.

All models were implemented in the PyTorch v1.12.1 framework.
Experiments were conducted on a server equipped with an Intel(R)
Xeon(R) Gold 6226R CPU (2.90 GHz), 128 GB of RAM to handle large
datasets and computational requirements, and a NVIDIA RTX A6000
48 GB GPU.

4.2. Data and processing

We collected two types of data for this study: weather data and dis-
trict heating consumption data. The weather data, obtained from https:
//opendatadocs.dmi.govcloud.dk, includes four variables that may in-
fluence the heat consumption patterns of buildings. These variables
encompass outdoor temperature, solar radiation intensity, wind speed,
and relative humidity. The district heating consumption data were
sourced from Zenodo at https://doi.org/10.5281/zenodo.6563114, con-
taining hourly readings of smart heat meters from 3127 residential
buildings in Aalborg, Denmark, over a three-year period (2018–2020).
This data also includes contextual information such as dwelling type,
construction year, and energy efficiency level of each building. We
excluded 105 buildings that were unoccupied or lacked dwelling type
information. Our focus was on single-family houses, terraced houses,
and apartments, which make up 3021 buildings in the dataset. This
dataset was previously utilized by us in another study [4], where we
applied different methods for heat load prediction. In this study, we
aim to improve the prediction accuracy and efficiency by employing a
novel deep learning approach.

We divided the data into three sets: training, validation, and test.
The training set comprised 70% of the data, the validation set 10%,
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and the test set the remaining 20%. We used the training set to train
our model and update its parameters, the validation set to tune the
hyperparameters and select the best model, and the test set to evaluate
the final performance of our model and compare it with other models.
While the dataset does not explicitly provide the physical layout of
the district heating network, the location of each building within
the district is implicitly considered as a spatial attribute. This spatial
information, although not directly represented in the graph structure,
influences the individual building heat load patterns and consequently,
the learned temporal dependencies between buildings in our model.

The descriptive statistics and correlation coefficients of the heat
load data and meteorological variables are summarized in Table 5. This
table provides key insights into the input data used for our model. The
statistics cover three types of buildings: single-family houses, terraced
houses, and apartments, along with a general category for all buildings.
The table also includes detailed statistics for four meteorological vari-
ables: outdoor temperature, solar radiation intensity, relative humidity,
and wind speed. These variables are used as auxiliary inputs for the
model. Table 5 shows that single-family houses constitute the majority
of the dataset (81.4%), followed by terraced houses (15.7%) and apart-
ments (2.9%). The descriptive statistics indicate significant variability
in the heat load across different building types, with single-family
houses exhibiting the highest mean heat load. Among the meteorolog-
ical variables, outdoor temperature and solar radiation intensity show
strong negative correlations with the heat load, as indicated by the
Pearson and Spearman correlation coefficients. Relative humidity and
wind speed also exhibit significant correlations, albeit to a lesser extent.

For the data processing, we employ a sliding window approach
to generate input–output pairs for each smart meter. As illustrated
in Fig. 5, for daily heating load prediction, each time point 𝑥 is
ggregated from 24 h of heating load, this approach uses the past 𝑇

time steps of data to predict the heat load for the next 𝜏 time steps.
This window size is chosen based on our empirical observation that
heat load patterns tend to repeat daily. The sliding window approach
effectively captures the temporal dependencies and seasonal variations
in the heat load data. By incrementally shifting the window for each
input–output pair, we can generate data pairs for each smart meter.
Fig. 5 provides a detailed visualization of this process, showing how
heat load observations and meteorological factors are used as inputs
across 𝑇 time steps to predict the heat load for the next 𝜏 time steps.
This method is applied consistently across all three data sets: training,
validation, and test.

4.3. Baselines

To evaluate the efficacy of the proposed SDGNN, we selected eight
end-to-end prediction models for comparison. These include traditional
statistical methods, conventional deep learning methods, static graph-
based learning methods, and dynamic graph-based learning methods.
The descriptions of these baselines are as follows:

(1) HI [43]: This model emphasizes the significance of recent data
points in a time series and uses them directly for predictions.

(2) LSTM [44]: A recurrent neural network variant with mem-
ory cells and three distinct gates, adept at capturing long-term
dependencies in sequential data.

(3) TSFM [45]: A vanilla transformer model designed for time series,
proficiently capturing and highlighting key temporal patterns
with its attention mechanism.

(4) TGAT [46]: This model combines a graph attention component
with static graph relationships, enabling adaptive capture of
temporal dependencies in time series prediction.

(5) GDGCN [47]: It employs a dynamic graph structure, comple-
mented by a parameter-sharing mechanism and a distinctive
temporal graph block for spatio-temporal time series prediction.

https://opendatadocs.dmi.govcloud.dk
https://opendatadocs.dmi.govcloud.dk
https://opendatadocs.dmi.govcloud.dk
https://doi.org/10.5281/zenodo.6563114
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Table 5
The descriptive statistics and correlation coefficients of heat meters and meteorological factors. STD denotes the standard deviation, while PCC and SCC represent the Pearson
correlation coefficient and Spearman’s rank correlation coefficient, respectively.

Type Symbol Percent Counts Min Max Medium Mean STD PCC SCC

Target data

Single-family house 81.4 2459 0 462.328 42.975 49.685 37.341 – –
Terraced house 15.7 474 0 317.153 21.227 27.458 24.475 – –
Apartment 2.9 88 0 420.911 20.953 29.533 33.387 – –
All buildings 100 3021 0 462.328 37.11 45.61 36.526 – –

Meteorological

Outdoor temperature – 1 −7.883 23.712 8.45 9.159 6.138 −0.953*** −0.966***
Solar radiation intensity – 1 1.804 391.483 94.046 126.14 106.669 −0.709*** −0.738***
Relative humidity – 1 45.758 99.892 84.252 82.422 10.93 0.370*** 0.424***
Wind speed – 1 1.15 12.829 4.685 4.996 2.059 0.102*** 0.101***

*** indicates the 𝑝-value less than 0.001, signifying a highly significant correlation.
Fig. 5. The visualization of data organization.
(6) AGCRN [48]: This dynamic graph model takes into account both
node-specific patterns and inter-dependencies within time series
data, enabling the simultaneous learning of spatial and temporal
correlations.

(7) StemGNN [49]: A spectral–temporal dynamic graph neural net-
work captures inter-series links and temporal patterns in the
spectral domain, merging graph and discrete Fourier transforms
to process multivariate time series.

(8) GWNet [50]: It stands for GraphWaveNet, a model that com-
bines wavelet transformations with graph convolution for effec-
tive spatial–temporal forecasting.

4.4. Evaluation metrics

Following prior studies [4,5], we employ three metrics to evaluate
the performance of all methods for district heat load prediction, includ-
ing Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and
Coefficient of Variation of Root Mean Square Error (CVRMSE). Specif-
ically, MAE measures the average absolute discrepancies, RMSE gives
prominence to larger errors, and CVRMSE offers a relative assessment
of model errors, facilitating comparisons across diverse datasets or
scales. Such metrics are widely adopted in district heat load forecasting
for their capacity to capture the error distribution and account for
varying heat demand magnitudes [4]. The formulas for these metrics
are provided below:

RMSE(𝑿̂,𝑿) =

√

√

√

√

√

1
𝑄 × 𝐿test

𝑄
∑

𝑖=1

𝐿test
∑

𝑗=1
(𝑋̂𝑖,𝑗 −𝑋𝑖,𝑗 )2, (16)

MAE(𝑿̂,𝑿) = 1
𝑄 × 𝐿test

𝑄
∑

𝑖=1

𝐿test
∑

𝑗=1
|𝑋̂𝑖,𝑗 −𝑋𝑖,𝑗 |, (17)

CVRMSE(𝑿̂,𝑿) =
RMSE(𝑿̂,𝑿)

𝑿̄
, (18)

where 𝑋̂ represents the predicted values, 𝑋 represents the actual
values, and 𝑋̄ signifies the mean of the actual values. 𝑄 denotes the
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count of heat meters, and 𝐿test is the number of test samples. A lower
metric value indicates superior model accuracy.

4.5. Comparison on multi-step prediction

Table 6 presents the multi-step forecasting performance of the
proposed SDGNN in comparison to 8 baseline models on district heat
load observations. Evaluations are conducted based on three distinct
metrics, encompassing three input window sizes denoted as 𝑇 , and
three prediction steps. The results demonstrate that the SDGNN exhibits
superior performance across the majority of metrics and horizons.
Specifically, it surpasses other models with maximum improvements
of up to 5.7%, 7.4%, and 5.7% over comparable models in terms of
RMSE, MAE, and CVRMSE, respectively. This performance highlights
the capability of SDGNN to efficiently capture intricate spatio-temporal
patterns in historical heat load data.

As the window size 𝑇 increases from 15 to 45, the prediction
accuracy of most models tends to remain stable or slightly improve.
This suggests that having a larger historical data window can help
capture more relevant spatio-temporal patterns, enhancing forecasting
accuracy. However, it is important to note that the improvement is not
consistent across all models. Simply increasing the window size is not
guaranteed for better performance, especially when the model’s inher-
ent architecture may not efficiently handle large-scale sequence data.
Additionally, for short-term steps (e.g., 3 and 5), the SDGNN model
consistently outperforms most of its counterparts, achieving optimal ac-
curacy in all configurations. However, in scenarios with a limited input
window size for long-term multi-step forecasting, SDGNN’s perfor-
mance lags behind models like GDGCN. This phenomenon underscores
the inherent challenges of multi-step forecasting, especially as the
forecast step extends. While the proposed SDGNN has strengths, there
is room for improvement to address the complexities of long-term
multi-step forecasting.

Among the baseline models, GDGCN and AGCRN perform better
than the others, but they still lag behind the SDGNN models in most
scenarios. This implies that using a dynamic graph structure to capture
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Table 6
The multi-step performance comparison across three metrics and step lengths for district heat load observations with various window sizes 𝑇 . The colors gray, green,
and yellow denote the first, second, and third-best results, respectively. SDGNN* indicates that SDGNN considers meteorological factors.

𝑇 Steps Metrics HI LSTM TSFM TGAT GDGCN AGCRN StemGNN GWNet SDGNN
(ours)

Imp.
(%)

SDGNN*
(ours)

Imp.
(%)

15

3
RMSE 9.468 20.324 9.762 11.254 8.152 9.051 9.072 11.060 7.984 +2.1 7.717 +5.3
MAE 5.952 12.982 6.706 8.114 5.298 5.535 6.340 7.301 5.107 +3.6 5.047 +4.7

CVRMSE 0.289 0.620 0.298 0.343 0.249 0.276 0.277 0.337 0.243 +2.1 0.235 +5.3

5
RMSE 10.382 20.729 10.038 12.151 8.751 9.124 9.288 12.448 8.597 +1.8 8.249 +5.7
MAE 6.647 13.395 6.989 9.003 5.808 5.754 6.511 8.749 5.594 +2.8 5.404 +6.1

CVRMSE 0.319 0.636 0.308 0.373 0.269 0.280 0.285 0.382 0.264 +1.8 0.253 +5.7

7
RMSE 11.210 20.460 10.216 12.340 9.192 9.402 9.576 13.011 9.209 -0.2 8.574 +6.7
MAE 7.241 13.165 7.095 9.181 6.072 6.158 6.824 9.207 6.031 +0.7 5.762 +5.1

CVRMSE 0.347 0.633 0.316 0.382 0.284 0.291 0.296 0.402 0.285 -0.2 0.265 +6.7

30

3
RMSE 9.468 21.989 9.927 12.829 8.424 8.509 9.396 10.751 8.002 +5.0 7.845 +6.9
MAE 5.952 14.105 6.867 9.109 5.526 5.415 6.298 7.231 5.102 +5.8 5.024 +7.2

CVRMSE 0.289 0.671 0.303 0.391 0.257 0.259 0.287 0.328 0.244 +5.0 0.239 +6.9

5
RMSE 10.382 22.974 10.144 12.975 8.785 9.052 9.488 12.577 8.608 +2.0 8.312 +5.4
MAE 6.647 14.862 7.035 9.233 5.798 5.700 6.452 8.739 5.585 +2.0 5.392 +5.4

CVRMSE 0.319 0.705 0.311 0.398 0.270 0.278 0.289 0.386 0.264 +2.0 0.255 +5.4

7
RMSE 11.210 21.824 10.063 13.895 9.484 9.425 9.602 12.366 9.117 +3.3 8.557 +9.2
MAE 7.241 14.382 6.990 9.728 6.389 6.192 6.734 8.964 5.978 +3.5 5.738 +7.3

CVRMSE 0.347 0.675 0.311 0.430 0.293 0.292 0.297 0.383 0.282 +3.3 0.265 +9.2

45

3
RMSE 9.468 21.862 10.054 18.844 8.463 8.560 9.053 11.488 7.983 +5.7 7.823 +7.6
MAE 5.952 13.899 7.026 12.883 5.678 5.515 6.326 7.731 5.107 +7.4 5.015 +9.1

CVRMSE 0.289 0.667 0.307 0.575 0.258 0.261 0.276 0.350 0.243 +5.7 0.239 +7.6

5
RMSE 10.382 21.821 10.051 17.593 8.708 8.931 9.422 11.832 8.597 +1.3 8.294 +4.8
MAE 6.647 14.056 6.942 12.886 5.832 5.758 6.591 8.213 5.597 +2.8 5.391 +6.4

CVRMSE 0.319 0.670 0.309 0.540 0.267 0.274 0.289 0.363 0.264 +1.3 0.255 +4.8

7
RMSE 11.210 21.710 9.990 18.737 9.419 9.356 9.648 12.409 9.108 +2.7 8.642 +7.6
MAE 7.241 14.155 6.939 14.889 6.389 6.237 6.761 8.699 5.991 +4.0 5.719 +8.3

CVRMSE 0.347 0.672 0.309 0.580 0.291 0.289 0.298 0.384 0.282 +2.7 0.267 +7.6
inter-dependencies seems to be effective in multi-step forecasting. The
HI model, which emphasizes recent data points, typically performs in
the middle or lower tier of baseline models. This suggests that while
giving weight to recent data points can be beneficial, it might not be
sufficient to capture the complex spatio-temporal patterns inherent in
district heat load observations. Across various configurations, LSTM’s
performance is consistently worse. This indicates that while LSTM can
capture temporal sequences effectively, it struggles with the spatial
aspect inherent in the district heat load data. While TSFM outperforms
LSTM in most cases, it does not consistently rank among the top-
tier models. The strength of TSFM lies in their attention mechanisms,
emphasizing significant temporal patterns. Nevertheless, the district
heat load observations demand an intricate balance of spatial and
temporal considerations, while it captures temporal dependencies to a
degree, it may struggle to integrate spatial correlations.

By incorporating meteorological factors into SDGNN results in the
modified model SDGNN*, which consistently demonstrates marked
improvements in performance over the original SDGNN. The enhance-
ments in metrics such as CVRMSE and RMSE reach up to 9.2% com-
pared to the optimal baseline methods. This underscores the im-
portance of integrating meteorological information in district heat
load forecasting and highlights the robustness and adaptability of the
SDGNN framework. The significant performance gains with SDGNN*
validate the model’s ability to effectively fuse exogenous information,
enhancing its predictive capabilities.

4.6. Sensitivity analysis

To analyze the impact of different parameter or variable values on
our model’s performance, we conduct a sensitivity analysis by adjust-
ing one parameter or variable at a time and observing the resultant
performance changes. The input window size 𝑇 is fixed at 45, and the
prediction step 𝜏 is set to 3. Fig. 6 shows the sensitivity analysis results
for three key parameters: patch length 𝑃 , sparsity 𝑘, and the length of
𝜇.
10
Fig. 6(a)-(c) display the sensitivity analysis results for the patch
length 𝑃 , which denotes the length of time slots in the temporal sparsity
process. In Fig. 6(a), both MAE and RMSE are used as metrics for
model accuracy. The results indicate slight fluctuations in accuracy
across different patch lengths. The patch length of 3 results in the
lowest MAE, while patch lengths of 1 and 7 achieve the lowest RMSE,
with patch length 3 having the second-best RMSE. Due to the minimal
fluctuation in MAE and RMSE values across different patch lengths,
sparsifying the graph based on patch perspective is deemed feasible.
Fig. 6(b) illustrates the number of graph nodes, representing the count
of time slots following temporal sparsity. This inverse relationship
aligns with the patching strategy, where larger patches result in fewer,
more aggregated nodes within the graph. Fig. 6(c) shows the training
time cost and GPU memory usage across different patch lengths. The
training time cost sharply decreases as the patch length increases from
1 to 3 and then stabilizes at around 0.29 seconds for patch lengths
greater than 4. GPU memory usage also decreases with increasing patch
length, settling at approximately 2.5G for patch lengths 5 and be-
yond. This reduction in computational resources with increased patch
length can be attributed to the decreased complexity of the graph,
with fewer nodes requiring less memory and computational costs. We
chose a patch length of 3 for the experiment because it optimally
balances granularity, accuracy, and computational resource utilization
in processing.

Fig. 6(d)-(e) illustrate the relationship between the degree of spar-
sity in the graph and the prediction accuracy metrics MAE and RMSE.
In Fig. 6(d), the errors show minor fluctuations as the sparsity in-
creases, indicating the model’s stability in accuracy across varying
degrees of graph sparsity. Fig. 6(e) shows the number of edges in
the graph significantly reduces as the sparsity increases from 0.1 to
1. This reduction implies a more concise and efficient graph rep-
resentation, particularly beneficial for computational efficiency and
resource conservation. Therefore, the sparsity is set at 0.1 for the exper-
iment. Utilizing fewer relationships in the graph ensures computational
efficiency while maintaining commendable accuracy.
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Fig. 6. Sensitivity analysis for different model parameters. (a)-(c) Sensitivity analysis of patch length 𝑃 . (d)-(e) Sensitivity analysis of sparsity 𝑘. (f) Sensitivity analysis of the
length of 𝜇.
Fig. 6(f) explores the effect of different values of 𝜇 (context window)
on prediction accuracy. Both RMSE and MAE initially decrease sharply
as 𝜇 increases from 1 to 5, indicating improved prediction accuracy
with longer context windows. The metrics achieve their lowest values
at 𝜇 = 7. Beyond this point, the sensitivity diminishes, and the accuracy
stabilizes, suggesting that additional context beyond this point does not
significantly enhance accuracy. This could be because the model has
already detected the primary heat load patterns, and further context
either becomes superfluous or introduces redundancy. These insights
highlight the importance of tuning 𝜇 to an optimal length to extract
the maximum predictive efficacy from the model. All corresponding
experiments are conducted using the optimal window size settings for
the proposed SDGNN.

4.7. Ablation analysis

Table 7 presents an ablation analysis that demonstrates the relative
contributions of each component to the overall performance of the
proposed SDGNN model. We evaluated five variants of our SDGNN
model. w/o TS removes the temporal sparsity. w/o Graph removes the
total sparse graph learning unit. w/o Conv removes the spatio-temporal
convolution component. w/o Attn removes the global attention mecha-
nism, while w/o Skip removes the skip connection architecture before
output.

Across different step values, the SDGNN model consistently exhibits
robust performance, consistently ranking either first or within the top
three across all metrics. The temporal sparsity intends to compress
the graph’s nodes to reduce complexity without sacrificing accuracy.
The similar performance of SDGNN with and without this process
indicates its effective node sparsification, maintaining accuracy with
fewer computations. The graph structure in SDGNN is designed to
capture spatial dependencies inherent in the data. When this graph
component is removed, there is a slight degradation in the model’s
performance in certain scenarios. This behavior underscores the im-
portance of the graph structure. However, in some cases, the removal
of the graph leads to better accuracy. This could be attributed to the
11
graph embedding process emphasizing not only useful patterns but also
inadvertently accentuating noise, potentially impacting the prediction
accuracy. In the absence of the convolution component, performance
slightly declines, emphasizing the crucial role of the convolutional layer
in refining spatio-temporal features. In long-term forecasting, attention
mechanisms can introduce unnecessary complexity and computational
overhead, potentially overemphasizing noise. Models without attention
often yield more stable predictions, prioritizing broad trends over short-
term fluctuations. Notably, bypassing the skip connections significantly
decreases performance across all metrics. This decline highlights the
essential role of skip connections in maintaining efficient gradient flow
and retaining key features.

4.8. Study of dynamic graph structure

To investigate the dynamics of the proposed graph learning com-
ponent, we randomly select a heat meter to visualize the evolving
dynamic graph. As shown in Fig. 7, the internal structure of the
graph undergoes transformations across different epochs for the same
data segment. During the period spanning Epoch 10 to 50, the model
tends to establish expansive connections, reflecting its exploration of
potential relationships within the data. This dynamic evolution signifies
the model’s adaptation to heat load patterns and the establishment
of temporal dependencies. As the model evolves, it likely identifies
and prunes less pertinent connections. After Epoch 50, the model
attains a stable representation of the relationships, resulting in minimal
alterations to the graph structure.

Fig. 8 illustrates the model’s sensitivity to different data instances,
with each instance representing a single time series segment from the
same heat meter. The variations in the graph structure highlight the
model’s capacity to adapt its representation to distinct temporal char-
acteristics. This adaptability ensures the model can accurately capture
the sparse and dynamic relationships inherent in diverse time series
segments.
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Table 7
The ablation analysis of the proposed SDGNN. Gray and green represent the best and second-best results,
respectively.

Steps Metrics SDGNN w/o Patch w/o Graph w/o Conv w/o Attn w/o Skip

3
RMSE 7.9828 7.9782 7.9874 8.0078 7.9846 16.2531
MAE 5.1073 5.1161 5.1174 5.1262 5.1196 11.7689

CVRMSE 0.2434 0.2433 0.2436 0.2442 0.2435 0.4956

5
RMSE 8.5970 8.5971 8.6023 8.6141 8.6061 17.3060
MAE 5.5968 5.6073 5.6094 5.6077 5.6055 12.3263

CVRMSE 0.2640 0.2640 0.2641 0.2645 0.2642 0.5314

7
RMSE 9.1082 9.1122 9.1156 9.1153 9.1033 18.9640
MAE 5.9909 5.9961 6.0014 5.9986 5.9877 13.5059

CVRMSE 0.2818 0.2819 0.2820 0.2820 0.2816 0.5866
Fig. 7. The dynamic graph changes across epochs.
Fig. 8. The dynamic graph changes across batch instances.
12
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Fig. 9. The visualizations comparing the real values with the SDGNN predictions and the three other benchmark predictions; Unit of 𝜏: day.
Fig. 10. The visualizations among real values, SDGNN predictions, and SDGNN* predictions and prediction error; Unit of 𝜏: day.
4.9. Study of prediction performance

Fig. 9 presents the actual heat load values in comparison with
the predictions made by SDGNN, HI, StemGNN, and GDGCN. SDGNN
maintains promising performance in tracking the progress of heat load
across different prediction steps 𝜏, especially during low-demand peri-
ods when the prediction step 𝑡𝑎𝑢 is set to 3 or 5. As the prediction step 𝜏
increases, distancing further from known data points, uncertainties and
complexities in data trends intensify. The capability of the prediction
model to capture peak values gradually decreases. When compared to
the HI model, which emphasizes recent data points, SDGNN demon-
strates a more balanced approach, ensuring accuracy across various
time spans without over-relying on recent data. GDGCN and StemGNN
also closely match the actual data. This observation emphasizes the
effectiveness of dynamic graph structures in heat load forecasting.

To further compare SDGNN and SDGNN*, we visualize heat load
predictions for various prediction step lengths (i.e., 3, 5, and 7) in
Fig. 10. The input window size remains fixed at 45. These results
demonstrate that SDGNN*, which incorporates meteorological factors,
closely aligns with real heat load observations compared to SDGNN,
particularly during the highlight period. This performance disparity
is particularly noticeable when the prediction step 𝜏 is set to 3 or
5. By incorporating meteorological factors, SDGNN* demonstrates im-
proved accuracy in capturing stable load variations, particularly during
medium and low-demand periods. However, during periods of high
heat load demand, the difference in accuracy between SDGNN* and
SDGNN appears minimal. A possible reason for this observation is
that heat load might be influenced by a combination of factors during
high-demand periods, such as user behavior, equipment efficiency,
building insulation, etc. Consequently, the additional meteorological
information incorporated into SDGNN* may not provide a significant
advantage over SDGNN in these specific steps. This phenomenon high-
lights the intricate nature of district heat load in long-term multi-step
forecasting and high-demand periods.

4.10. Evaluation of results

To ensure the physical plausibility of our energy consumption pre-
dictions, we compare the distributions of the predicted and actual heat
load values. This comparison helps validate that our model accurately
captures the variability and patterns in the energy demand. Fig. 11
presents scatter plots of the actual vs. predicted heat load values for the
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three building types, including single-family houses, terraced houses,
and apartments, across three prediction steps. Each subplot includes
scatter plots showing the correlation between predicted and actual
values, as well as the PCC to quantify the accuracy of the predictions.
The window size 𝑇 is fixed at 45, and the prediction step 𝜏 is set to 3.

• Single-family houses: For single-family houses, the PCC values for
steps 1, 2, and 3 are 0.984, 0.977, and 0.950 respectively, indicat-
ing a high degree of correlation between the predicted and actual
heat loads. The scatter plots show a strong linear relationship,
confirming that the predicted values closely match the actual
distribution. This validates the model’s ability to capture the heat
load patterns for single-family houses effectively.

• Terraced houses: For terraced houses, the PCC values for steps 1, 2,
and 3 are 0.983, 0.974, and 0.939 respectively. The scatter plots
and corresponding PCC values demonstrate that the predicted
heat loads are closely aligned with the actual values, with slight
deviations becoming more noticeable at step 3. This indicates that
while the model performs well, the accuracy slightly decreases
with longer prediction horizons.

• Apartments: For apartments, the PCC values for steps 1, 2, and
3 are 0.984, 0.975, and 0.939 respectively. The scatter plots
illustrate a strong linear correlation, indicating that the model’s
predictions are well-aligned with the actual heat load distribu-
tions. However, similar to terraced houses, the predictions for
apartments show a slight decrease in accuracy at step 3.

Therefore, Fig. 11 demonstrates that the model effectively captures
the overall distribution and variability of the energy demand across dif-
ferent building types and prediction steps. The high PCC values indicate
that the model’s predictions are highly correlated with the actual heat
load values, validating its accuracy and reliability in forecasting energy
consumption.

5. Conclusions and future work

This paper proposed a novel sparse dynamic graph neural network
(SDGNN) for district heat load forecasting, a pivotal concern in the
realm of urban energy management. SDGNN can capture the complex
and dynamic spatio-temporal patterns in heat load data by learn-
ing a sparse and adaptive graph structure. SDGNN also incorporates
meteorological factors as exogenous inputs to enhance its predictive
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Fig. 11. Scatter plots comparing the actual and predicted heat load values for different building types.
performance. We conducted extensive experiments on a real-world
dataset and compared SDGNN with several state-of-the-art baselines.
The results showed that SDGNN outperformed the baselines in terms
of accuracy, efficiency, and robustness. We also performed sensitivity,
ablation, and visualization analyses to demonstrate the effectiveness
and interpretability of SDGNN.

The experiments revealed several key findings that support the su-
periority of SDGNN over other models. First, SDGNN achieved superior
performance across the majority of metrics and horizons, surpassing
other models with maximum improvements of up to 5.7% in RMSE,
7.4% in MAE, and 5.7% in CVRMSE. Second, SDGNN demonstrated
a balanced blend of computational efficiency and predictive perfor-
mance, ranking competitively in efficiency metrics and outperforming
other models in accuracy metrics. Third, SDGNN exhibited robustness
and stability across different parameter or variable values, indicat-
ing its adaptability to diverse data characteristics. Fourth, SDGNN
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showed its capability to efficiently capture intricate spatio-temporal
patterns by learning a sparse and dynamic graph structure that evolves
across epochs and instances. Fifth, SDGNN enhanced its predictive
performance by integrating meteorological factors as exogenous inputs,
achieving marked improvements over the original SDGNN.

The theoretical contributions of this work lie in the innovative
integration of dynamic graph structures to capture inter-dependencies,
emphasizing the importance of balancing spatial and temporal consid-
erations. From a practical standpoint, these advancements hold signif-
icant implications for urban planners and energy managers, offering
them a robust tool for more accurate and efficient heat load forecasting.

For future work, we plan to extend SDGNN to handle multivari-
ate time series forecasting, where multiple types of energy loads are
considered simultaneously. We also intend to explore other ways of in-
tegrating exogenous information, such as user behavior, building char-
acteristics, and equipment efficiency, into SDGNN. Additionally, we
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will explore incorporating multiple meteorological data sources to bet-
ter capture local variations in weather conditions, such as wind speed
and solar radiation, which will improve the model’s generalizability
to different climate zones and larger district heating systems. More-
over, we aim to apply SDGNN to other domains that involve spatio-
temporal data, such as traffic flow forecasting, air quality prediction,
and epidemic modeling.
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Appendix A. Additional experiments

The effectiveness of our proposed method, SDGNN, was validated
using the JERICHO-E-usage dataset [51], available at https://doi.org/
10.6084/m9.figshare.c.5245457.v1. This dataset includes hourly en-
ergy consumption patterns from 38 regions in Germany throughout
2019, with district space heating consumption data categorized by
different energy types (e.g., residential, industrial, commerce). The data
resolution was aggregated from hourly to daily for consistency with
the district heating data in Aalborg, Denmark. The data was divided
into 70% for training, 10% for validation, and 20% for testing. The
input window size 𝑇 is set as 45. The experimental results are presented
in Table 8, which evaluates the methods across three metrics (RMSE,
MAE, CVRMSE) and three different time horizons (3, 5, 7 steps) for
district heat load observations in these three categories.

The experiment results demonstrate that SDGNN consistently out-
performed other methods, achieving the best performance in most
cases. Specifically, SDGNN had the lowest RMSE, MAE, and CVRMSE
across multiple time horizons and categories. The superior performance
of SDGNN demonstrates its robustness and effectiveness in capturing
temporal dynamics and generalizing across different heat load pre-
diction tasks. In comparison, due to the limited training data, the
performance of almost graph-based models is generally modest. The
GDGCN perform relatively well due to their ability to capture both
linear and nonlinear heat load patterns. The lightweight nature of
HI model allowed it to adapt quickly to the available data without
overfitting, making it effective for short-term predictions where re-
cent data trends are more indicative of future patterns. Overall, the
results highlight the robustness and superiority of SDGNN, especially
in handling long-term dependencies and generalizing across different
scenarios despite data limitations.
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Appendix B. Comparison on computational efficiency

Table 9 compares the efficiency and performance of various models
on district heat load observations. To maintain consistency in the
evaluation, each model was subjected to a fixed step, denoted as 𝜏 = 3,
and a window size of 𝑇 = 15. These settings ensure a standardized com-
parison across all models. The assessment utilizes metrics that cover
both computational efficiency (e.g., MACs, FLOPS, latency, training
time, and GPU memory usage) and predictive performance (e.g., RMSE,
MAE, and CVRMSE).

The metric of Multiply-Accumulate Operations (MACs) is used to
measure the computational cost of each model. A lower MACs value
implies enhanced efficiency. TSFM achieves the lowest computational
cost at 0.001G, followed closely by LSTM and our SDGNN model.
In terms of Forward FLOPS, TSFM demonstrates high computational
efficiency, followed by LSTM and SDGNN. Forward latency evaluates
the speed at which a model completes a forward pass, with a lower
value being preferable. LSTM exhibits the fastest latency, closely fol-
lowed by TSFM and SDGNN. In contrast, both AGCRN and StemGNN
demonstrate significantly higher latency durations. Moreover, LSTM
demonstrates the fastest training speed, and TSFM is the most memory-
efficient model. In contrast, GDGCN and AGCRN have considerably
higher memory usage and require more time cost.

A balance exists between computational efficiency and predictive
capability. While LSTM is computationally efficient, its prediction ac-
curacy lags behind that of other models. The proposed SDGNN model
offers a balanced blend of computational efficiency and predictive per-
formance, outperforming other models in accuracy metrics and ranking
competitively in efficiency metrics. Notably, models such as AGCRN
and GDGCN, despite their robust predictive strengths, are associated
with considerable computational costs, diminishing their suitability for
real-time applications.

Appendix C. Convexity and boundedness of the loss function

We consider the loss function 𝐿(𝑾 ) defined in Eq. (15), where 𝑾
s the weight matrix of SDGNN. We prove that 𝐿(𝑾 ) is convex and
ounded by showing that it satisfies the following properties:

(1) First-Order Condition: The loss function 𝐿(𝑾 ) satisfies the
irst-order condition for convex functions, which states:

(𝜃𝑾 1 + (1 − 𝜃)𝑾 2) ≤ 𝜃𝐿(𝑾 1) + (1 − 𝜃)𝐿(𝑾 2), (19)

or all 𝜃 ∈ [0, 1] and any two weight matrices 𝑾 1 and 𝑾 2.
To prove this, we use the fact that 𝐿(𝑾 ) is a linear combination of

onvex functions, namely MSE. Since a linear combination of convex
unctions is also convex, we can apply the first-order condition to each
erm separately and then add them up to obtain the desired result.

(2) Second-Order Condition: The Hessian matrix ∇2𝐿(𝑾 ) is pos-
tive semi-definite, which also indicates convexity. To prove this, we
se the fact that 𝐿(𝑾 ) is twice differentiable with respect to 𝑾 , and
e calculate the Hessian matrix as follows:
2𝐿(𝑾 ) = 2(∇2MSE(𝑿̂,𝑿)), (20)

here 𝑿̂ = 𝑓 (𝑿;𝑾 ) is the output of SDGNN given the input data matrix
. Using the chain rule and the definitions of MSE, we can simplify the
essian matrix as:
2𝐿(𝑾 ) = 4(

𝜕𝑓
𝜕𝑾

)𝑇 (
𝜕𝑓
𝜕𝑾

), (21)

where 𝑿̄ = 𝑚𝑒𝑎𝑛(𝑿) is the mean value of the input data matrix. Since
both terms are positive semi-definite matrices, their sum is also positive
semi-definite, which proves the second-order condition.

(3) Bounding Norms: We impose an upper bound 𝑀 > 0 on the
Frobenius norm of the weight matrix, ‖𝑾 ‖𝐹 ≤ 𝑀 , to show that the
oss function is bounded.

To prove this, we use the fact that MSE is bounded functions, since
hey are non-negative and have finite upper bounds. For example,

https://doi.org/10.6084/m9.figshare.c.5245457.v1
https://doi.org/10.6084/m9.figshare.c.5245457.v1
https://doi.org/10.6084/m9.figshare.c.5245457.v1
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Table 8
The multi-step performance comparison across three metrics and step lengths for district heat load observations in three category
collections on the JERICHO-E-usage dataset. The colors gray and green denote the first, second-best results, respectively. The MAE and
RMSE values have been scaled down by 1𝑒6 for easier comparison.

Type Steps Metrics HI LSTM TSFM TGAT GDGCN AGCRN StemGNN GWN SDGNN

Re
sid

en
ce

3

RMSE 17.104 49.367 32.362 45.462 18.607 24.823 34.353 31.932 13.613
MAE 10.489 42.441 24.247 37.919 13.109 18.917 24.954 23.913 8.842

CVRMSE 0.403 1.163 0.763 1.071 0.438 0.585 0.809 0.752 0.321

5

RMSE 18.020 48.999 41.634 40.717 22.015 22.763 33.960 27.371 14.241
MAE 11.185 42.062 33.530 32.573 16.329 16.933 24.641 19.647 9.324

CVRMSE 0.428 1.165 0.990 0.968 0.523 0.541 0.807 0.651 0.339

7

RMSE 18.345 48.645 40.445 41.609 27.166 24.361 33.577 28.606 14.606
MAE 11.458 41.688 32.238 33.586 21.405 18.270 24.215 20.322 9.510

CVRMSE 0.440 1.167 0.970 0.998 0.652 0.584 0.805 0.686 0.350

In
du

st
ry

3

RMSE 1.330 4.061 1.793 1.668 1.077 1.484 2.659 1.148 0.614
MAE 0.811 3.199 1.073 1.070 0.726 0.952 1.537 0.734 0.366

CVRMSE 0.416 1.269 0.560 0.521 0.337 0.464 0.831 0.359 0.192

5

RMSE 1.256 4.052 1.765 1.661 1.106 1.507 2.305 1.350 0.625
MAE 0.759 3.193 1.065 1.072 0.748 1.001 1.336 0.790 0.376

CVRMSE 0.393 1.269 0.553 0.520 0.346 0.472 0.722 0.423 0.196

7

RMSE 0.738 4.047 1.784 1.630 0.999 1.563 2.390 1.331 0.635
MAE 0.455 3.190 1.072 1.065 0.691 1.033 1.371 0.829 0.385

CVRMSE 0.231 1.269 0.559 0.511 0.313 0.490 0.749 0.417 0.199

Co
m

m
er

ce

3

RMSE 4.999 15.113 8.025 7.925 4.072 5.260 9.440 4.679 2.535
MAE 3.386 12.925 5.526 5.552 3.153 3.891 6.525 3.462 1.655

CVRMSE 0.387 1.169 0.621 0.613 0.315 0.407 0.730 0.362 0.196

5

RMSE 4.663 15.064 8.137 8.156 4.002 5.623 10.306 4.886 2.584
MAE 3.114 12.891 5.602 5.709 3.115 4.133 7.309 3.722 1.680

CVRMSE 0.362 1.169 0.631 0.633 0.310 0.436 0.799 0.379 0.200

7

RMSE 2.910 15.040 13.875 6.510 4.211 5.064 9.345 4.956 2.591
MAE 1.908 12.879 11.506 4.842 3.295 3.659 6.497 3.507 1.710

CVRMSE 0.226 1.168 1.077 0.505 0.327 0.393 0.726 0.385 0.201
Table 9
The comparison of efficiency and performance for proposed and baseline methods. The step 𝜏 and window size 𝑇 are fixed at 3 and 15, respectively. Gray,
green, and yellow denote the first, second, and third-best results.

Model Forward MACs
(GMACs)

Forward FLOPS
(GFLOPs)

Forward
latency (ms)

Training
time cost (s)

GPU memory
usage (GB)

RMSE MAE CVRMSE

HI – – – – – 9.468 5.952 0.289
LSTM 0.005 0.27 1.48 0.29 1.99 20.324 12.982 0.620
TSFM 0.001 0.002 2.68 0.30 1.72 9.762 6.706 0.298
TGAT 0.17 0.35 13.82 1.18 2.01 11.254 8.114 0.343

GDGCN 0.15 19.55 26.65 26.29 27.66 8.152 5.298 0.249
AGCRN 1.67 117.42 858.52 45.61 27.28 9.051 5.535 0.276

StemGNN 111.67 389.66 513.81 62.29 24.32 9.072 6.340 0.277
GWNet 1.68 82.84 26.4 18.94 13.40 11.060 7.301 0.337

SDGNN (ours) 0.01 0.02 3.99 0.32 2.16 7.984 5.107 0.243
f

f
t

∇

w
𝑾
a

MSE has an upper bound of ‖𝑿̂ − 𝑿‖

2
𝐹 ∕𝑛𝑚𝑛𝑛, where 𝑛𝑚 and 𝑛𝑛 are

he dimensions of the data matrix. Therefore, by applying the triangle
nequality and using the fact that ‖𝑓 (⋅; ⋅)‖𝐹 ≤ ‖𝑾 ‖𝐹 , we can obtain an

upper bound for the loss function as:

𝐿(𝑾 ) ≤ 1
𝑛𝑚𝑛𝑛

‖𝑿̂ −𝑿‖

2
𝐹 ≤ 𝐶‖𝑾 ‖

2
𝐹 , (22)

where 𝐶 > 0 is a constant that depends on the data matrix 𝑿. By
imposing the upper bound 𝑀 > 0 on the Frobenius norm of the weight
matrix, we can ensure that the loss function is bounded by 𝐶𝑀2.

By satisfying these properties, we can conclude that the loss function
is convex and bounded, which ensures the existence and uniqueness of
the optimal solution.

Appendix D. Convergence of gradient descent

We consider the gradient descent algorithm for minimizing the loss
function 𝐿(𝑾 ), which updates the weight matrix as follows:

𝑾 = 𝑾 − 𝜂 ∇𝐿(𝑾 ), (23)
16

𝑡+1 𝑡 𝑡 𝑡 L
where 𝑡 is the iteration index, 𝜂𝑡 > 0 is the learning rate, and ∇𝐿(𝑾 𝑡) is
the gradient of the loss function at iteration 𝑡. We prove that gradient
descent converges to the optimal solution in a finite number of steps
by showing that it satisfies the following conditions:

(1) Lipschitz Continuity: The gradient of the loss function ∇𝐿(𝑾 )
is Lipschitz continuous with Lipschitz constant 𝐿 > 0, which means
that:

‖∇𝐿(𝑾 1) − ∇𝐿(𝑾 2)‖𝐹 ≤ 𝐿‖𝑾 1 −𝑾 2‖𝐹 , (24)

or any two weight matrices 𝑾 1 and 𝑾 2.
To prove this, we use the fact that the gradient of the MSE loss

unction is Lipschitz continuous. For example, using the chain rule and
he definition of MSE, we can write:

𝑀𝑆𝐸(𝑿̂,𝑿) = 2(
𝜕𝑓
𝜕𝑾

)𝑇 (𝑿̂ −𝑿), (25)

here 𝑓 (⋅; ⋅) is the SDGNN function. Since 𝑓 (⋅; ⋅) is a linear function of
, we can easily see that its partial derivative with respect to 𝑾 is also
linear function of 𝑾 , and hence Lipschitz continuous. By assuming

ipschitz continuity with Lipschitz constant 𝐿 > 0, we can ensure that
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𝐿

s
t
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f

𝑽

Table 10
Hyper-parameter settings.

Model Parameter Option range

LSTM Hidden dimension {24 , 25 , 26 }

TSFM Attention heads {22 , 23 , 24 }
Embedding dimension {23 , 24 , 25 }

TGAT

Attention heads {22 , 23 , 24 }
Embedding dimension {25 , 26 , 27 }

Hidden dimension {23 , 24 , 25 }
Layers 1–5 (1 per step)

Residual channels {23 , 24 , 25 , 26 }
GDGCN Dilation convolution channels {23 , 24 , 25 }
GWNet Skip connection channels {24 , 25 , 26 }

Number of layers 1–5 (1 per step)

GDGCN Spatial embedding dimension 5–20 (5 per step)
Temporal embedding dimension 5–20 (5 per step)

GWNet Hidden dimension {23 , 24 , 25 }
The numbers of blocks 1–5 (1 per step)

AGCRN

Embedding dimension 1–5 (1 per step)
Hidden dimension {24 , 25 , 26 }
Number of layers 1–3 (1 per step)

Order of Chebyshev polynomials 1–3 (1 per step)

StemGNN Encoder layers 1–3 (1 per step)
The numbers of blocks 1–3 (1 per step)

SDGNN

Hidden dimension of GCN {24 , 25 , 26 }
GCN out channels {24 , 25 , 26}

Kernel size 3–9 (2 per step)
CNN out channels {23 , 24 , 25 , 26 }
w
e

𝑡

H
o
𝑛

A

R

gradient descent is stable under a suitable choice of the learning rate
0 < 𝜂𝑡 < 2∕𝐿.

(2) Strong Convexity: The loss function 𝐿(𝑾 ) is 𝜇 > 0-strongly
onvex, which means that:

(𝜃𝑾 1 + (1 − 𝜃)𝑾 2), (26)

is less than the convex combination of 𝐿(𝑾 1) and 𝐿(𝑾 2) by a positive
amount that depends on the distance between 𝑾 1 and 𝑾 2, which
means that:
𝐿(𝜃𝑾 1 + (1 − 𝜃)𝑾 2) < 𝜃𝐿(𝑾 1)+

(1 − 𝜃)𝐿(𝑾 2) −
𝜇
2
‖𝑾 1 −𝑾 2‖

2
𝐹 ,

(27)

for all 𝜃 ∈ [0, 1] and any two weight matrices 𝑾 1 and 𝑾 2.
Since a linear combination of strongly convex functions is also

trongly convex, we can apply the strong convexity condition to each
erm separately and then add them up to obtain the desired result.

(3) Nesterov’s Acceleration: We apply Nesterov’s accelerated gra-
ient descent technique, which improves the convergence rate by using
momentum term that incorporates the previous weight update, as

ollows:

𝑡+1 = 𝛾𝑡𝑽 𝑡 + 𝜂𝑡∇𝐿(𝑾 𝑡), (28)

𝑾 𝑡+1 = 𝑾 𝑡 − 𝑽 𝑡+1, (29)

where 𝑡 is the iteration index, 𝜂𝑡 > 0 is the learning rate, 𝛾𝑡 > 0 is the
momentum coefficient, ∇𝐿(𝑾 𝑡) is the gradient of the loss function at
iteration 𝑡, 𝑽 𝑡 is the velocity vector at iteration 𝑡, and 𝑽 0 = 0.

To prove that Nesterov’s acceleration improves the convergence
rate, we use the fact that it reduces the Lipschitz constant of the
gradient by a factor of (1 − 𝛾𝑡)2, which leads to a faster decrease of
the loss function value. We also use the fact that it preserves the strong
convexity of the loss function, which ensures that the optimal solution
is unique and stable.

(4) Complexity Analysis: Under these conditions, we can use the
big-𝑂 notation to analyze the computational complexity of each it-
eration and the total number of iterations required to reach an 𝜖 >
0-optimal solution, which means that:

𝐿(𝑾 ) − 𝐿(𝑾 ∗) < 𝜖, (30)
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𝑡

where 𝑡 is the iteration index, 𝜖 > 0 is the desired accuracy, and 𝑾 ∗ is
the optimal solution.

To perform the complexity analysis, we use the fact that each
gradient computation takes 𝑂(𝑛𝑚𝑛𝑛𝑛ℎ) time, where 𝑛𝑚, 𝑛𝑛, and 𝑛ℎ are
the dimensions of the data matrix, the hidden layer, and the output
layer, respectively. We also use the fact that each weight update takes
𝑂(𝑛2ℎ) time, where 𝑛ℎ is the dimension of the hidden layer. Therefore,
each iteration takes 𝑂(𝑛𝑚𝑛𝑛𝑛ℎ + 𝑛2ℎ) time. To calculate the total number
of iterations required to reach an 𝜖-optimal solution, we use the fact
that Nesterov’s acceleration achieves a convergence rate of 𝑂(1∕𝑡2),

here 𝑡 is the iteration index. Therefore, by solving for 𝑡 in terms of
psilon, we obtain:

= 𝑂(1∕𝑠𝑞𝑟𝑡(𝜖)). (31)

ence, by multiplying the time complexity per iteration by the number
f iterations, we obtain the total time complexity as 𝑂((𝑛𝑚𝑛𝑛𝑛ℎ +
2
ℎ)∕𝑠𝑞𝑟𝑡(𝜖)).

ppendix E. Hyper-parameter settings

See Table 10.
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