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Abstract
Cancer drug response prediction is the fundamental task in precision medicine, which provides opportunities for cancer
therapy. Several methods have been proposed to screen drugs, via building computational models on multi-omics data.
However, the view value missing problem caused by unknown cancers or tumors has not been addressed. For this reason, a
multi-view multi-omics (MvMo) model is proposed to predict cancer drug response values. The proposed MvMo model first
represents the input heterogeneous data in different kinds of embeddings and features, such as token embeddings and latent
features. Then several views are generated to observe interconnections among those representations. Finally, the predictions
are generated based on the outputs of these views. Experimental results on the collected real data show the efficiency of the
proposed method in terms of speed and accuracy.

Keywords Cancer drug response · Prediction · Multi-view learning · Multi-omics data

1 Introduction

Precision medicine provides opportunities to therapy life-
threatening diseases, such as cancer or tumor. The cancer
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heterogeneity among patients causes the challenge of drug
screening, which means a common type of two patient-
specific cancers usually has huge differences of effects on
a drug [3]. Meanwhile, patient-specific cancer can not be
tested on many drugs in clinical settings.

Recently, the non-clinical and clinical databases have
been publicly available, the predictive model becomes a
promising way to screen drugs for specific cancer cell
lines. The databases include but are not limited to cell line
databases, cancer genome databases, chemical compounds
databases, and cancer-drug sensitivity databases. Hence,
several models have been proposed to predict the cancer-
drug-response (CDR) value, via leveraging cell line
information and drug molecular information [28].

Several methods have been proposed to predict CDR
value, via feeding cancer information and drug information
into machine learning model [7]. Such as, Ridge Regression
[13], MOLI [20], and DeepCDR [17]. However, there are
interactions between cancers and drugs, which can not be
directly observed. For this reason, the cell line data and
drug information data can not be treated as two independent
parts of model inputs. Moreover, the CDR values are usually
missing in unknown cancers or tumors, which is also known
as view value missing problem in multi-view learning [6]. A
toy example of the view value missing problem is compared
with the random value missing problem in Fig. 1.

This paper proposes a multi-view multi-omics (MvMo)
model to deal with the two problems, and make more
accurate predictions. The proposed MvMo consists of three
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Fig. 1 Two value-missing examples. The left part is a toy example of
random value missing. The right part is another toy example of view
value missing

stages. Firstly, the multi-omics data and drug molecular
data are represented embeddings or latent features. All
the represented embeddings or features share a common
dimension. Secondly, five views are generated to represent
interactions among embeddings and features. Finally, the
outputs of views are gathered to generate CDR predictions.

The remainder of this paper is organized as follows.
Section 2 addresses this research. Section 3 gives problem
formulation on CDR prediction using multi-omics data.
Section 4 illustrates the proposed MvMo. Section 5
configures the experiment environment. Section 6 shows the
experimental results and analyses. Finally, we conclude in
Section 7.

2 Related work

This section addresses the research by recalling several
CDR prediction studies. According to the nature of
methods, they are divided into three categories as follows.

2.1 Traditional machine learningmethods

Due to the growth of computational power, and the ability
of high-dimensional data processing, machine learning
methods had been applied to CDR prediction by leveraging
omics data integrative analyses [1, 2].

Regression-based methods mapped the inputs to outputs
in a linear or non-linear manner. ENet [31] combined
both L1 and L2 regularization terms to the loss function
of linear regression. GELnet [22] extended the ENet by
incorporating a gene similarity matrix into a regularizor.
RWEN [4] used an iterative weighted elastic regression
network based on gene expression information to predict
drug resistance response. Sotudian and Paschalidis [23]
was a regression model constructed based on ENet, which

abandoned the idea of directly predicting drug response and
instead ranked drug sensitivity through a paired comparison
of drug sensitivity between cell lines. PairwiseMKL [8]
constructed a practical pairwise learning framework based
on kernels, which integrated heterogeneous data sources
into a single model, by learning the weights of kernels
with different information sources and combining the input
kernels. KRR [14] learned associations between drugs and
mapped gene expression information of individual cell lines
to a high-dimensional feature space to predict and rank the
response of each drug to that cell line.

Random Forest (RF) is a classifier that ultimately votes
on the output of multiple decision trees and accomplishes
the prediction by capturing the nonlinear relationships
among the data. Riddick et al. [19] incorporated feature
filtering and outlier filtering frameworks into the RF model.
HARF [18] assigns weights to the tree based on the type
of cancer in the sample and achieves a performance lead
compared to the traditional RF method in the case of uneven
drug response. Costello et al. [9] designed an integrated
model that integrates Support Vector Machine (SVM) to
process multi-omics information separately. Finally, the
output of each vector machine is weighted and averaged to
derive the prediction value.

Methods in this category are difficult to capture the
connection between heterogeneous data sources, and the
integration difficulties caused by data heterogeneity have
not been fundamentally solved.

2.2 Recommendation systemmethods

Several researchers assumed that similar cell lines or drugs
would have similar effects in drug response [29]. Therefore,
recommendation systems were applied to predict CDR
values by incorporating other known CDR values of similar
cell lines and drugs. In a recommender framework [26],
a CDR value is regarded as a user-item-preference value.
Hence, lots of recommendation algorithms can be used to
predict CDR values.

Owning to the success of matrix factorization in rat-
ing prediction [27], this technique had been popular in
predicting values within a sparse matrix. CaDRReS [24]
used the matrix factorization to learn the potential associ-
ations between cell lines and drugs. DualNet [30], SRMF
[25], and HNMDRP [29] regularized cell line-cell line
similarity matrix, and drug-drug similarity matrix in their
loss functions to achieve a relative good learning pro-
cess. BMTMKL [9] used multiple kernel functions to
learn multi-omics features, and the output of each kernel
was weighted to generate predictions in consequence of
the last kernel function. KBMF [10] presented a person-
alized ranking drug recommender, by incorporating drug
features and omics data of unknown cell lines. cwKBMF
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[11] was built on the KBMF by extending path-based
features.

Most of the recommendation-based methods extended
the matrix factorization framework by adding similarity
regularization terms, which usually neglected the inherent
features of drugs and cell lines. Meanwhile, the drugs and
cell lines may interact with each other in the molecular level,
which leads to poor explanations [21] on the prediction
results.

2.3 Deep learningmethods

Deep learning methods were generally based on combina-
tions or stacks of Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), and attention mecha-
nisms. MVLR [12] proposed a multi-view multi-task model
based on functional link networks, which treated different
data sources as independent feature sets. CDRScan [5] used
stacked CNNs to map inputted cell line data and molecu-
lar drug data to their corresponding CDR value. MOLI [20]
used triplet loss to receive the integrated outputs of several
different neural networks, where a network was applied to
a kind of input data. DeepCDR [17] utilized graph convolu-
tion network (GCN) to process drug molecular information,
and merged it with cell line multi-omics data to predict CDR
values. DeepDSC [16] used stacked encoders to extract ge-
nomics from gene expression data, and then chemical char-
acteristics of drugs were jointed to generate response values.

There are still relatively few deep learning methods
in drug response prediction. The main reason is that the
deep learning methods are straightforward to overfitting and
usually can not generalize in different data sets due to their
high degree of parameterization.

In summary, the major challenge in drug response predic-
tion lies in the fusion of heterogeneous data from multiple
sources. Technically, the significant differences in the data
structure, dimensionality, signal-to-noise ratio, and com-
plexity of multi-omics data pose a great challenge in rep-
resentation learning. Moreover, these methods commonly
ignore the view value missing problem from unknown cell
lines of cancers or tumors. In this paper, the proposed
MvMo fuses multi-omics data in a multi-view framework
to alleviate the view missing problem and generate accurate
predictions.

3 Problem formulation

Let Nc be the number of cell lines, Nd be the number of
drugs, and symbol R ∈ R

Nc×Nd be the observed cancer-
drug-response (CDR) matrix. Symbol Rc,d ∈ R is the entry
of R. Symbol R̂ ∈ R

Nc×Nd denotes the predicted CDR
matrix.

The task of CDR prediction is to predict missing values
in the CDR matrix. The in-matrix missing values is denoted
by symbol R̂. In recommendation systems [24], the CDR
prediction task is formulated as:

R̂ = F(R), (1)

where R presents observed CDR values, and R̂ denotes
unknown CDR values. In reality, new cancers or tumors
are unknown, and are not tested with any drugs. Hence, we
subject (1) to {c1 ∈ R �= c2 ∈ R̂}, where c1 and c2 are cell
lines happens in R and R̂, respectively.

Due to the enrichment of cell line information and
drug molecular information, the CDR prediction can be
formulated as a machine learning problem [5, 29] as well.
Let symbol P ∈ R

Nc×Np be the genetic expression of cell
lines, symbol M ∈ R

Nc×Nm be the mutation positions of
cell lines, symbol J ∈ R

Nc×Nj be the genetic methylation
of cell lines, symbol F ∈ R

Nd×Na×Nf be the molecular
features of drugs. Hence, the task is defined as:

R̂ = F(P , M, J , F ). (2)

Not only the observed CDR values, but also the multi-
omics data should be considered while predicting unknown
values in this paper. Therefore, the CDR prediction problem
is re-formulated as follows:

R̂ = F(R, P , M, J , F ), (3)

where R is the observed cancer-drug interactions, and
P , M, J , F are cell line information and drug features.

Table 1 lists the main notations used in this paper.

4 The proposedMvMo

This section illustrates the proposed MvMo. The proposed
MvMo consists of three stages: input data representation,
view generation, and view combination. Figure 2 gives the
graphical illustration of MvMo.

Firstly, all the input data are represented to a latent space
using embeddings of transformation, since those multi-
omics data and drug feature data are heterogeneous, which
can not be operated with each other to connect with their
corresponding response values. The data representation
operations are shown in the left part of Fig. 2.

Secondly, several views are generated to receive the
embeddings and transformed features, and then the latent
interactions are calculated. The target of those views is
to observe the potential reactions between cell lines and
drugs in terms of embeddings or features. Those views are
displayed in the middle part of Fig. 2.

Finally, those views are combined to connect with the
CDR values. And the backward propagation algorithms are
applied to the model.
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Fig. 2 The graphical illustration of the proposed Multi-view Multi-Omics (MvMo) model

4.1 Molecular data representation

Mutation embedding The mutation data is a sequence of
{0, 1} symbols, and the mutation positions are marked
with symbol 1. Motivated by natural language processing
(NLP), a mutation sequence is regarded as a text, and can
be represented by embeddings. The mutation embedding
process is formulated as follows:

Em = F(M), (4)

where Ne denotes the embedding size, Nx is the maximum
number of mutated positions in a cell line, M ∈ R

Nc×Nm

is the mutation sequences, and Em ∈ R
Nc×Nx×Ne denotes

mutation embeddings.

Genetic expression features The genetic expression fea-
tures consist of a series of continuous values. To operate
the features with other embeddings or features, the size of
these features is condensed to the size of embeddings. The
condense operation is formulated as follows:

Ep = F(P ), (5)

where Ne denotes the feature size, P ∈ R
Nc×Np is the

mutation sequences, and Ep ∈ R
Nc×Ne denotes condensed

expression features.

Methylation features The methylation features consist of
a series of continuous variables as well. The condense
operation is formulated as follows:
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Table 1 Major notations

Symbol Notation

Nc The number of cell lines

Nd The number of drugs

R Observed CDR matrix, R ∈ R
Nc×Nd

Rc,d Entry of matrix R

R̂ Predicted CDR matrix, R̂ ∈ R
Nc×Nd

R̂c,d Entry of matrix R̂

Nm The number of total mutated positions

M Mutation matrix, M ∈ R
Nc×Nm

Np The number of genes of a cell line

P Expression matrix, P ∈ R
Nc×Np

Nj The number of methylation positions

J Methylation matrix, J ∈ R
Nc×Nj

Na The maximum number of atoms in a molecular

Nf The number atom features

F Drug molecular feature tensor, F ∈ R
Nd×Na×Nf

F (·) A mapping from inputs to outputs

Ne The global embedding size

Nx The maximum number of mutated positions

Em Mutation embedding matrix Em ∈ R
Nc×Nx×Ne

Ep Expression feature matrix Ep ∈ R
Nc×Ne

Ej Methylation feature matrix Ej ∈ R
Nc×Ne

Ec Cell line latent feature matrix Ec ∈ R
Nc×Ne

Ed Drug latent feature matrix Ed ∈ R
Nd×Ne

Ef Molecular embeddings Ef ∈ R
Nd×Na×Nf ×Ne

Ej = F(J ), (6)

where Ne denotes the feature size, J ∈ R
Nc×Nj is the

mutation sequences, and Ej ∈ R
Nc×Ne denotes condensed

methylation features.

Cell line latent features and drug latent features Motivated
by matrix factorization techniques, which factorize the CDR
matrix into cell line latent features and drug latent features.
The size of latent features is set the same as the size of
embeddings. The operation is formulated as:

Ec, Ed = F(R), (7)

where R is the observed CDR values, Ec ∈ R
Nc×Ne is

cell line latent features, and Ed ∈ R
Nd×Ne is drug latent

features.

Drug molecular embeddings The drug molecular consists
of several atoms, and each atom has similarity features,
which is also a sequence of {0, 1} symbols. The molecules
are also represented by embeddings, and are formulated as
follows:

Ef = F(F ), (8)

where F ∈ R
Nd×Na×Nf is the molecular feature tensor, and

Ef ∈ R
Nd×Na×Nf ×Ne denotes mutation embeddings.

Many methods can be applied to condense the above
inputs to a vector/matrix/tensor with a given size, such as
CNN, RNN, and Transformer. However, this paper focuses
on the multi-view framework. Hence, we abandon all those
excellent networks to learn the advantages of the proposed
MvMo model. For (4), (7) and (8), we regard each input as a
list of tokens, and use the tokens to lookup embeddings. For
(5) and (6), a linear layer to used to reduce the dimension
to the embedding size. These simple representations are
prepared to witness the MvMo framework.

4.2 View generation

To observed the interactions between cell line information
and drug information, five views are generated to learn
latent response values.

View 1 observes the interconnections between cell line and
it’s mutation. Given a cell line c, the observations from view
1 is formulated as follows:

O1 ← V 1
(
Em

c,:,:, Ec
c,:

)
, (9)

where O1 ∈ R
Nx denotes the output of view 1, Em ∈

R
Nc×Nx×Ne is mutation embeddings, and Ec ∈ R

Nc×Nm is
the cell line latent features.

View 2 observes the relationship between genome mutation
and drug molecular feature. Given a cancer-drug pair (c, d),
the observations from view 2 is formulated as follows:

O2 ← V 2
(
Em

c,:, E
f
d,:,:,:

)
, (10)

where O2 ∈ R
Na×Nf denotes the output of view 2.

View 3 observes the connections between expression and
methylation. Given a cell line c, the observations from view
3 is formulated as follows:

O3 ← V 3
(
E

p
c,:, Ej

c,:
)

, (11)

where O3 ∈ R denotes the output of view 3.

View 4 observes the factorized cell line latent matrix and
drug latent matrix. Given a cancer-drug pair (c, d), the
product of the two latent features could be regarded as a
predicted CDR value.

O4 = Ec
c,: · Ed

d,:, (12)

where O4 ∈ R denotes the output of view 4.
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View 5 observes the interconnections between drug latent
feature and drug molecular features. The observations are
represented by:

O5 ← V 5
(
Ed

d,:, E
f
d,:,:,:

)
, (13)

where O5 ∈ R
Na×Nf denotes the output of view 5.

To alleviate the burden of calculation, we use inner
product to represent their interconnections in (9), (10), (11)
and (13).

4.3 View combination

We gather the outputs from the above five views, and get:

O =
[
O1, O2, O3, O4, O5

]
, (14)

where O ∈ R
1×(Nx+Na∗Nf ∗2+2) denotes the flatten

concatenated view outputs.
The combination task is to link the outputs O to the CDR

value Rc,d . Since this paper focuses on designing a multi-
view framework, two consecutive linear layers receive the
view outputs O to generate predictions.

5 Experimental configuration

This section introduces datasets, performance measure-
ments, comparable methods and model configurations.

5.1 Datasets

The basic statistics of relevant datasets used in this paper are
listed in Table 2.

To investigate the benefits of the proposed MvMo, we
follow the collection procedures in previous studies, such
as NCI-DREAM [9], and DeepCDR [17]. The original
data were downloaded and aggregated from the well-known
bioinformatics databases as follows:

(1) Genomics of Drug Sensitivity in Cancer1 (GDSC) is
the largest public resource for information on drug
sensitivity in cancer cells and molecular markers of
drug response. It provides a large amount of IC50

values matching with cell and drug pairs.
(2) Cancer Cell Line Encyclopedia2 (CCLE) is a cancer

cell line database, which contains large-scale, robust,
well-defined cancer cell line models. We focus
on three cell line multi-omics data: expression,
methylation, and mutation.

1https://www.cancerrxgene.org/
2https://sites.broadinstitute.org/ccle

(3) The Cancer Genome Atlas3 (TCGA) is a large
database of human cancer genetic information, includ-
ing mutations, mRNA expression, miRNA expression
and methylation data.

(4) PubChem4 is the world largest public database of
chemical information. It provides hundreds of drug
structure data.

These datasets contain 494 cell lines, 237 drugs, and
94314 observed response values. About 29% of them
are missing values. The cell line data contains genetic
expression with shape 494 × 697, methylation with shape
494 × 808, and gene mutation with shape 494 × 34673.
The cell line data contains 24 cancer types. The drug data
contains molecular graph data and drug feature data. The
molecular in the drug data has 96 atoms at most and has 75
features at most.

To reduce the biases from model and data, cross-
validation and train/test data split methods were applied
on all the comparable models. Another reason may be the
drug response for a specific-patient is complex, especially
at the molecular level, deep learning models may easily be
stuck in extreme values for a specific dataset. Here, 10-fold
cross-validation were used to split the train/test CDR values.
For each group of cross-validation, three kinds of split
methods were employed. The train/test data were splitted
according to non-overlapping cell lines, non-overlapping
drugs, and random. The TCGA types are used to guarantee
no interacted cell lines between train data and test data. One
of the ten parts of data is left out as test data in turn, which
means each model will be running ten times.

5.2 Performancemeasurements

Many measurements can be applied to assess model
performance. The common used mean absolute error
(MAE), root mean squared error (RMSE), and Pearson
Coefficient Correlation (PCC) [17] are adopted to evaluate
the prediction performance of ln(IC50) values. They are
formulated as follows:

(1) Mean Absolute Error (MAE)

MAE = 1

|T |
∑

(c,d)∈T

|Rc,d − R̂c,d |, (15)

(2) Root Mean Squared Error (RMSE)

RMSE =
√√
√√

1

|T |
∑

(c,d)∈T

(
Rc,d − R̂c,d

)2
, (16)

3https://www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga
4https://pubchem.ncbi.nlm.nih.gov/

https://www.cancerrxgene.org/
https://sites.broadinstitute.org/ccle
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://pubchem.ncbi.nlm.nih.gov/
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Table 2 The basic statistics of the four datasets used in experiments

IC50 Expression Methylation Mutation Drug feature Molecular graph

#Cell lines 494 494 494 494 – –

#Drugs 237 – – – 237 237

#Interactions 94314 – – – – –

#Genes – 697 808 – – –

#Atoms – – – – – 96 (Max)

#Features – – – – 75 (Max) –

#Genetic locus – – – 34673 (Max) – –

#TCGA type 24 24 24 24 – –

Data source GDSC CCLE CCLE CCLE PubChem PubChem

(3) Pearson Correlation Coefficient (PCC)

PCC =
∑

(c,d)∈T

(
Rc,d − R̄

) ∗
(
R̂c,d − ˆ̄R

)

√
(
∑

(c,d)∈T

(
Rc,d − R̄

)2
√

∑
(c,d)∈T

(
R̂c,d − ˆ̄R

)2
,

(17)

where T is the testing set, Rc,d is a real value, R̂c,d is a
predicted value, R̄ is the mean value in the testing set, and
ˆ̄R is the mean value of predicted CDR values.
The number of trainable parameters, GPU memory

consumption, and training time per batch are used to
compare the model size and training speed.

5.3 Competitionmodels

(1) Matrix Factorization (MF) [27] is a famous technique
in predicting user-item-rating value in recommender
systems. Here, it’s used to predict CDR values, i.e.,
ln(IC50).

(2) Multiple Linear Regression (MLR) [13] linearly
makes connections between every input elements with
the output elements. The input elements consist of
genetic expression, methylation, gene mutation and
drug features.

(3) CDRScan [5] published several versions.5 The
three versions with relative good performance were
employed as comparable methods. CDRScan-Master
applies two stacked CNNs on molecular fingerprints
and genomic mutations to represent drugs and can-
cer profiles, respectively. The representations are fed
into the third stacked CNN. Compared with CDRScan-
Master, CDRScan-Shallow has few CNN layers in the
third stacked CNN, but has more linear layers oper-
ations. CDRScan-FullConnected replaced the third
stacked CNN using full connected layers. For con-
venience, CDRScan-Master, CDRScan-Shallow, and

5http://github.com/summatic/CDRScan

CDRScan-FullConnected are presented by CDRScan-
M, CDRScan-S, and CDRScan-FC, respectively.

(4) DeepCDR [17] leverages CNNs and graph convolu-
tional networks (GCNs) to process multi-omics data of
cell lines and chemical features of drugs, respectively.
The codes are available at github.com.6

5.4 Model configuration

For fair competition on all models, the batch size is set to 64.
The Adam optimizer [15] is adopted to train all the models.
All the compared models are implemented in PyTorch
1.8.2 (LTS), and are ran four graphics processing units of
NVIDIA Tesla V100. Moreover, the comparable models
have achieved the same accuracy as their corresponding
literature. All the size of latent features and the size of
embeddings are set to 20.

The MF is solely based on interaction data, i.e., IC50.
The MLR, DeepCDR, CDRScan use all the molecular
level data as input and corresponding observed IC50 as
target. All these methods are running on the same 10-fold
cross-validation.

6 Results and analyses

This section gives the results and provides insights from
the experimental findings. The performance competition is
provided in the perspective of prediction performance and
model complexity.

6.1 Comparisons

For fair competition, all the comparable methods were ran
on common tasks. The experimental results are shown in
Fig. 3. The major observations from the results are listed
below:

6http://github.com/kimmo1019/DeepCDR

http://github.com/summatic/CDRScan
http://github.com/kimmo1019/DeepCDR
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(a) MAE (b) RMSE (c) PCC

(d) MAE (e) RMSE (f) PCC

(g) MAE (h) RMSE (i) PCC

Fig. 3 Box-plots of seven methods in terms of MAE, RMSE and PCC. (a-c) split based on non-overlapping cell lines. (d-f) split based on
non-overlapping drugs. (g-i) random split

(1) When observing at the three metrics on three
groups of data, the proposed MvMo has the best
performance for all metrics when compared with other
methods.

(2) When observing at the three metrics on three groups of
data, MLR gets the worst performance.

(3) According to the box results of each method on non-
overlapping cell line dataset and non-overlapping drug
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(a) Trainable parameters (b) Memory usage (c) Training time

Fig. 4 Comparisons of seven methods in terms of trainable parameters, memory usage and training time. The small values mean low time
complexity or space complexity. The MvMo has relative few parameters and training time

dataset, MLR, MF, DeepCDR and MvMo are stable,
but CDRScan methods fiercely shakes.

(4) The CDRScan methods gain relative stable results on
the random split dataset.

There are several potential reasons for the poor
performance of MLR:

(1) The relationship between multiple characteristic infor-
mation and drug response is not linear.

(2) MF has the second-best prediction performance and
has excellent training time and space complexity.

(3) There is a strong correlation between multi-omics
and drug structure data. MLR cannot capture this
relationship.

(4) Due to the high degree of heterogeneity of those
molecules, it is difficult to find intrinsic patterns solely
using linear functions.

Compared with MvMo, MF ignores the intrinsic
characteristics of drugs and cell lines, the predictions are
generated based on the learned latent features. This reveals
the impact of molecular data.

For CDRScan-FC, more linear layers bring better
stability but may affect the model’s ability to capture
nonlinear features. For CDRScan-S, fewer convolutional
units reduce the accuracy. Compared with CDRScan,
DeepCDR simplifies the processing of omics data, which
can fuse more omics data. DeepCDR achieves third-best
performance, somehow owning to the benefits from GCN
on drug molecular representation. There is still a gap
between DeepCDR and MF. A possible reason for this
improvement is that latent interactions are much more
important than feature representation only.

MvMo shows the best performance in all three metrics.
It uses an embedding component to encode the input data,
which compresses the high-dimensional input data into a
low-dimensional feature space and filters out fluctuations.
This allows MvMo to quickly and efficiently complete the
extraction of low- and high-order latent interactions.

6.2 Complexity analyses

To investigate the complexity of comparable methods, we
demonstrate the indicators of parameter number, memory
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(a) non-overlapping cell line split.
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Fig. 5 The visualized correlations between observed CDR values and predicted CDR values in terms of three train/test split methods
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usage, and training time per batch of methods in Fig. 4, the
batch size of them to be consistent.

As shown in Fig. 4, MF and MLR significantly reduce
the number of parameters. Compared with MF and MLR,
the inevitable traversal operation in the CNN layer leads
to higher time complexity on DeepCDR and CDRScan.
CDRScan-S has the most trainable parameters due to the
reduction of convolutional units. The data mapping of
Embedding increases the parameters of MvMo, but the
dimensionality reduction it brings allows MvMo to fuse
more data with low time and space complexity and achieve
more accurate predictions.

6.3 Prediction analyses

Three groups of validation experiments on the proposed
MvMo were visualized using scatter plots, see Fig. 5. The
CDR values of new cell lines are visualized in Fig. 5(a).
The CDR values of new drug are visualized in Fig. 5(b).
The CDR values of known cell lines and known drugs are
visualized in Fig. 5(c). Since the plots of 10-fold predictions
make the presentation so long, we randomly chose one
result from each group of 10-fold datasets.

When observing the PCC values in the three subfigures,
they are very close. The proposed MvMo has an ability
in overcoming view value missing problem. The PCC
values show significant correlations between real values
and predicted values, which reflects the high predictive
accuracy of the MvMo method. A possible reason is that
higher concentrations indicate poor performance. There are
more ineffective responses than effective ones for all the
datasets.

7 Conclusions

This paper focused on the cancer-drug-response prediction
using multi-omics data in a multi-view framework, which
was named MvMo. The response values on new cancers
or new tumors were predicted, via the observations
from several views on multi-omics data. Technically, the
proposedMvMo represented those heterogeneous input data
into equal-dimensionality embeddings or features, so the
latent interaction between cell line and drug representations
can be made. Experimental results on the real CDR datasets
reveal the proposed MvMo in alleviating the view value
missing problem and show the benefits of the proposed
MvMo in terms of prediction accuracy as well.

In the future, we would like to investigate the detailed
combination positions of drug molecules and proteins,
which could provide the interpretability of cancer-drug
reactions at the molecular level.
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