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A B S T R A C T

Traditional machine learning methods require the assumption that training and test data are drawn from
the same distribution, which proves challenging in real-world applications. Moreover, deep learning models
require a substantial amount of labeled data for training in classification tasks and limited samples may lead
to overfitting. In many real-world scenarios, there is an insufficient supply of labeled samples within the
target domain for learning. Transfer learning offers an effective solution, allowing knowledge from a source
domain to be transferred to a target domain. Additionally, data augmentation enhances model generalization by
increasing data samples, particularly beneficial when dealing with limited target domain data. In this paper,
we synergistically enhance the model’s performance on classification tasks by integrating transfer learning
techniques with a data augmentation strategy. By conducting numerous experiments across various datasets,
we verified the effectiveness of our proposed approach.
1. Introduction

In recent years, significant success have been achieved in image
classification tasks through the utilization of deep neural networks, par-
ticularly exemplified by convolutional neural networks (Lu and Weng,
2007; Kang et al., 2022). In 2015, the concept of residual networks (He
et al., 2016) was introduced to address the issue of network degradation
resulting from the increased depth of neural networks, and it performed
well in ImageNet classification tasks. While traditional deep neural
network has obtained a great success, an underlying assumption of this
approach is that the training and test data share an identical proba-
bility distribution. In numerous real-world scenarios, this assumption
could be challenging due to the complexities associated with gathering
new instances that exhibit identical attributes, dimensions, and distri-
butions. Furthermore, given the labor-intensive and time-consuming
nature of labeling data, there is an inclination to leverage existing
labeled data instead of procuring new labeled datasets. Nevertheless,
when the distribution of the training data deviates from that of the test
data, the model’s performance on the test data tends to deteriorate.
To tackle this problem, more and more researchers are focusing on
transfer learning (Wang and Deng, 2018). The core objective of transfer
learning is to acquire a model from annotated source domain data and
subsequently extend its applicability to the target domain, which can
be achieved through the reduction of dissimilarities between the source
and target domains.

Transfer learning (Chao et al., 2023b) is a popular machine learning
paradigm, dedicated to scenarios where disparities in the distributions
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of both the task and domain arise between the source and target
domains. Within the framework of transfer learning, a domain en-
compasses the feature space and marginal probability distribution,
while a task encompasses the label space and the target prediction
function. Therefore, diverse scenarios arising from distinct domains or
tasks give rise to various configurations for transfer learning. One is
domain adaptation (Pan and Yang, 2009) and its unsupervised version
unsupervised domain adaptation mainly focuses on covariate shift.
Unsupervised domain adaptation concentrates on the situation that
conditional probability distributions are the same (𝑝𝑆 (𝑦|𝑥) = 𝑝𝑇 (𝑦|𝑥)),
while marginal probability distributions differ (𝑝𝑆 (𝑥) ≠ 𝑝𝑇 (𝑥)). In this
scenario, the primary goal of unsupervised domain adaptation is to
reduce the disparity in marginal distributions between the source and
target domains.

Data augmentation enhances model performance and addresses
the constraint of limited data within the target domain by augment-
ing the samples within the data space. Furthermore, data augmenta-
tion (Shorten and Khoshgoftaar, 2019) has demonstrated its efficacy
in enhancing the models’ capacity for generalization to new, unknown
samples. Given the significant reliance of deep neural networks on ex-
tensive datasets for model training to mitigate overfitting and transfer
learning can alleviate the heavy data burden in the target domain,
this paper tries to synergistically enhance the models’ generalization
capabilities by integrating transfer learning and data augmentation
strategies. The most commonly-used data augmentation methods are
952-1976/© 2023 Elsevier Ltd. All rights reserved.
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color space transform, geometric space transform, kernel filter, random
erasure, etc. Recently, several data augmentation algorithms rooted in
generative models have emerged. These algorithms employ generative
adversarial networks to produce images within the target domain,
effectively augmenting the target domain data.

The main contributions of this paper can be summarized as follows:

1. In this paper, we have regarded data augmentation and transfer
learning as effective strategies to solve the data scarcity prob-
lem of classification tasks in target domain. Subsequently, we
have synergistically integrated these approaches to enhance the
overall classification performance. To the best of our knowledge,
this is the pioneering endeavor to comprehend and harness these
strategies to promote classification performance within target
domains.

2. Prior transfer learning methodologies primarily concentrate on
aligning the distribution between the source and target do-
mains (Farahani et al., 2021), without explicitly considering the
performance on forthcoming unknown target domain data. In
this article, we initially partition the target domain data into
training and test subsets. We conduct data augmentation on train
data and align the source domain data to them, and then test the
accuracy on test data. Consequently, we are able to quantify the
generalization capability of our transfer learning model.

3. We conducted experiments on a total of five datasets, encom-
passing four public datasets as well as a medical image dataset.
By comparing against traditional transfer learning approaches,
we have demonstrated the superiority of our proposed method.

The remainder of this paper is structured as follows: Section 2 provides
an overview of related research. In Section 3, we present the enhanced
transfer learning methodology and delve into the data augmentation
strategy. Section 4 showcases the experimental outcomes and subse-
quently dissects the findings. In Section 5, we provide conclusions and
outline potential directions for future research.

2. Related works

In this section, we will introduce four related studies: convolu-
tional neural network, domain adaptation, maximum mean discrepancy
(MMD), and data augmentation.

2.1. Convolutional neural network

Convolutional neural network could encode the original data to
learn potentially useful features (Rawat and Wang, 2017), and it has
obtained remarkable success in image classification. He et al. (2016)
proposed ResNet in 2015, with shortcut connection, ResNet could
effectively prevent the network degradation problem caused by adding
too many layers to neural network. It incorporates residual networks
into each successive layer of the convolutional neural network. Subse-
quently, it defines the structure of the residual block as follows:

𝐲 =  (𝐱, {𝑊𝑖}) + 𝐱,

where 𝐱 and 𝐲 symbolize the input and output vectors of each block.
The function  (𝐱, {𝑊𝑖}) embodies the residual mapping that is to be
earned for each block. There are over 23 million trainable parameters
n ResNet50 model, it is composed of five stages, each containing a
onvolution block and an identity block. Within both the convolution
2

lock and the identity block, there are three convolutional layers.
2.2. Maximum Mean Discrepancy (MMD)

Maximum Mean Discrepancy (MMD) (Ben-David et al., 2010, 2006)
is commonly used as a loss function in domain adaptation. The main
idea of MMD is that if two random variables possess identical moments
of any order, their distributions are considered consistent. The adoption
of MMD necessitates the selection of a kernel function, which facili-
tates the transformation of source and target data into a reproducing
kernel Hilbert space. Subsequently, the mean discrepancy between the
source and target domains is computed following the mapping process.
Numerous domain adaptation strategies built upon MMD have been
proposed in the literature (Long et al., 2013; Zhu et al., 2019; Ouyang
and Key, 2021). Assigning the symbol 𝑝 to represent the source domain
distribution and the symbol 𝑞 to indicate the target domain distribution,
MMD introduces the subsequent disparity metric:

𝑑(𝑝,𝑞) = ‖E𝑝[𝜙(𝐱𝑆 )] − E𝑞[𝜙(𝐱𝑇 )]‖2 .

Here,  indicates the reproducing kernel Hilbert space (RKHS), 𝜙(⋅)
indicates the kernel function that transforms the initial samples into the
RKHS, and the kernel 𝑘 is given by 𝑘(𝐱𝑆 , 𝐱𝑇 ) = ⟨𝜙(𝐱𝑠), 𝜙(𝐱𝑇 )⟩, where ⟨⋅ ,
⋅⟩ represents the inner product of vectors (Gretton et al., 2012). The
quivalence of distributions between the source domain and the target
omain is achieved when 𝐷 (𝑝, 𝑞) = 0. In practical implementations,
n estimation of MMD is obtained by quantifying the squared distance
etween the empirical kernel mean embeddings, denoted as follows:

̂ (𝑝, 𝑞) = ‖

1
𝑛𝑆

∑

𝐱𝑖∈𝑆

𝜙(𝐱𝑖) −
1
𝑛𝑇

∑

𝐱𝑗∈𝑇

𝜙(𝐱𝑗 )‖2

=
𝑛𝑆
∑

𝑖=1

𝑛𝑆
∑

𝑗=1

1
𝑛𝑠2

𝑘(𝐱𝑆𝑖 , 𝐱
𝑆
𝑗 ) +

𝑛𝑇
∑

𝑖=1

𝑛𝑇
∑

𝑗=1

1
𝑛𝑇 2

𝑘(𝐱𝑇𝑖 , 𝐱
𝑇
𝑗 )

−
𝑛𝑆
∑

𝑖=1

𝑛𝑇
∑

𝑗=1

2
𝑛𝑆𝑛𝑇

𝑘(𝐱𝑆𝑖 , 𝐱
𝑇
𝑗 ).

In this context, 𝑑 (𝑝, 𝑞) acts as an unbiased estimation of 𝑑 (𝑝, 𝑞), with
𝑠 representing the source domain distribution and 𝑡 signifying the
target domain distribution.

2.3. Domain adaptation

The objective of transfer learning is to construct a model capable
of transferring the acquired knowledge from the source domain to the
target domain. A classical survey on transfer learning by Pan and Yang
(2009) introduced the concept of unsupervised domain adaptation,
which posits that the conditional probability distributions are equiv-
alent across domains (𝑝𝑠(𝑦|𝑥) = 𝑝𝑡(𝑦|𝑥)), while the marginal probability
istributions differ (𝑝𝑠(𝑥) ≠ 𝑝𝑡(𝑥)). The labeled source domain data
s represented as 𝑆 = {𝑥𝑆𝑖 , 𝑦

𝑆
𝑖 }

𝑛𝑆
𝑖=1, and the unlabeled target domain

ata is denoted as 𝑇 = {𝑥𝑇𝑗 }
𝑛𝑇
𝑗=1. Under the assumption that the

ource domain and target domain exhibit equivalent conditional dis-
ributions, the ratio of the joint probability distribution between these
wo domains (Patel et al., 2015) can be restated as follows:
𝑝𝑇 (𝑥, 𝑦)
𝑝𝑆 (𝑥, 𝑦)

=
𝑝𝑇 (𝑥)𝑝𝑇 (𝑦|𝑥)
𝑝𝑆 (𝑥)𝑝𝑆 (𝑦|𝑥)

=
𝑝𝑇 (𝑥)
𝑝𝑆 (𝑥)

.

Thus, the divergence between the source domain and the target do-
main can be estimated by (𝑝𝑇 (𝑥)∕𝑝𝑆 (𝑥)). Domain adaptation enables
the established knowledge transfer from the labeled source domain
to the unlabeled target domain by uncovering the domain-invariant
structures that bridge disparate domains (Pan and Yang, 2009). In
the past several years, numerous models have been introduced to
address the challenge posed by the divergence between source domain
and target domain distributions. These methods could be categorized
into shallow and deep architectures (Farahani et al., 2021), and deep
domain adaptation methodologies can also be classified into three cate-
gories: discrepancy-based, adversarial-based, and reconstruction-based
approaches.
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1. Discrepancy-based method. The discrepancy-based domain
adaptation normally adopt MMD or the variant of MMD as
loss function. Some kernel functions will be used to project the
source and target domains into a reproducing kernel Hilbert
space, and then the mean discrepancy or its variants are used
to measure the gap between the source and target domains.

2. Reconstruction-based method. An encoder and decoder archi-
tecture is employed to harmonize the distribution between the
source and target domains. Initially, this approach employs a
shared encoder to project samples from both the source and
target domains into a high-dimensional feature space. Subse-
quently, it employs the decoder to reconstruct the target do-
main samples in a way that maximally preserves their original
characteristics.

3. Adversarial-based method. Inspired from the idea of generative
adversarial networks (Goodfellow et al., 2014), this class of
methods encompass two key components: a generator and a
discriminator. The generator is used to encode samples from
both the source domain and the target domain into a shared
feature space and the discriminator is employed to determine
the origin of each sample. When the discriminator cannot dis-
tinguish the origin of the samples well, it means that the source
domain and target domain share an identical distribution after
encoding (Ganin and Lempitsky, 2015).

Maximum mean discrepancy (MMD) (Gretton et al., 2012), Cor-
elation Alignment (CORAL), Kullback–Leibler (KL) divergence, and
ontrastive domain discrepancy are among the most commonly-used
istance metric functions in domain adaptation.

.4. Data augmentation

Since deep neural network relies on a large amount of input data
or model training, increasing the quantity of the data set by data
ugmentation can effectively improve the generalization ability of the
odel (Van Dyk and Meng, 2001). Data augmentation has several

dvantages over other training methods in deep learning. Firstly, it
elps to prevent overfitting by artificially increasing the size of the
raining dataset, which can improve the generalization performance of
he model. Secondly, it can be used to improve the performance of deep
earning models in domains with limited data. Thirdly, it can reduce
he need for manual data labeling, which can be time-consuming and
xpensive. Finally, data augmentation can improve the robustness of
he model to variations in the input data, such as changes in lighting,
rientation, and scale. Nowadays, data augmentation has been widely
sed in deep neural network (Shorten and Khoshgoftaar, 2019; Chao
t al., 2023a). Herein we introduce some data augmentation techniques
s follows:

1. Flipping is the simplest data augmentation strategy, it is gen-
erally divided into horizontal and vertical flipping, but verti-
cal flipping occasionally leads to label changes, so the more
common choice is horizontal flipping.

2. Color space augmentation (Tellez et al., 2019) involves modify-
ing the brightness, contrast, and saturation of an image through
straightforward matrix operations, thereby either augmenting or
reducing these attributes.

3. Cropping changes the size of the input image by a pre-configured
threshold. Depending on the selected cropping threshold, this
transformation might not necessarily preserve the labels of the
data.

4. Rotation within the range of 1 to 20 degrees or −1 to −20
degrees have demonstrated helpful in tasks involving digit recog-
nition. However, as the degree of rotation increases, the trans-
3

formation cannot preserve the original labels of the data.
5. Translation, which involves shifting images horizontally or ver-
tically (left, right, up, or down), serves as a valuable transforma-
tion to mitigate potential positional bias within the data.

6. Noise injection could help deep neural network learn more ro-
bust features. This process involves the introduction of a matrix
comprising random values drawn from a Gaussian distribution.

. Method

Within this section, we provide the proposed enhanced transfer
earning model. We leverage data augmentation to augment the volume
f the target domain data, followed by the application of transfer
earning models to mitigate the divergence between the source domain
nd the target domain. The general process of our enhanced transfer
earning with data augmentation could be depicted as Algorithm 1.

Algorithm 1 Enhanced transfer learning with data augmentation
Input: Source domain, target domain, strategy of data augmen-
tation, backbone network, distance metric function, maximum
iteration number.
Output: Classification model of target domain.

1: Initialize parameters of backbone network.
2: Implementing Data Augmentation Algorithms to Expand the Scale

of Target Domain Data.
3: repeat
4: Using the backbone network as an encoder to map source and

target domain data to a high-dimensional feature space.
5: Computing distributions differences between domains using a

distance metric function in high-dimensional feature space.
6: Backpropagation calculates the parameter gradient and updates

the parameters.
7: until Reach maximum number of iterations

3.1. Data augmentation

For these four public data sets, we implement data augmentation on
train data 𝑡𝑡𝑟. After comparing several data augmentation algorithms’
combination. We finally choose the strategies as follows:

1. Horizontal axis flipping.
2. Noise injection. Add Gaussian noise into images. The Gaussian

distribution is set with kernel size 5 and standard deviation(𝜎)
as 3.

3. Random rotation. Choose a random degree from −5◦ to 5◦.
4. Center cropping. Set the cropping size as raw image size ∗ 0.9.
5. Color space augmentation. Set brightness, contrast and satura-

tion degree from 0.8 to 2.

Fig. 1 depicts the original image, while Fig. 2 illustrates the images
btained after conducting specific data augmentation operations. Aug
implements horizontal axis flipping; Aug 2 implements random rota-

ion; Aug 3 implements color space augmentation; Aug 4 implements
oise injection. The notation ‘‘Aug 2 + Aug 1’’ indicates the sequential
pplication of Aug 2 after Aug 1, similarly, ‘‘Aug 3 + Aug 1’’ denotes
he sequential application of Aug 3 following Aug 1.

.2. Enhanced transfer learning

Given the source domain data 𝑆 = {(𝐱𝑆𝑖 , 𝐲
𝑆
𝑖 )}

𝑛𝑆
𝑖=1, and the target

domain training data ̂𝑡𝑡𝑟. Resorting to Resnet50 (He et al., 2016) as
he foundational backbone, we extract transferable features from the
aw image data space. The loss function of the convolutional neural
etwork is represented as follows:

𝑁𝑁 = 1
𝑆

𝑛𝑆
∑

𝐽 , (1)

𝑛 𝑖=1



Engineering Applications of Artificial Intelligence 129 (2024) 107602J. Su et al.
Fig. 1. An image sample of image-CLEF data set.

where 𝐽 (⋅, ⋅) indicates the cross-entropy loss. The classification model
for the source domain is acquired through the minimization of the
expected risk linked with the labeled source domain data:

𝑅𝑆 (ℎ) = E(𝑥,𝑦)∼𝑝𝑆 (𝑥,𝑦)[(𝑓 (𝑥), 𝑦)]

=
∑

𝑦∈
∫

(𝑓 (𝑥), 𝑦)𝑃 (𝑥, 𝑦)𝑑𝑥,
(2)

where 𝑃𝑆 (𝑥, 𝑦) represents the joint probability distribution of source
domain, and (𝑓 (𝑥), 𝑦) represents the classification loss. However, for
the transfer learning tasks, our target is to increase the accuracy on
target domain, thus, we could rewrite the above equation as follows:

𝑅𝑇 (ℎ) = E(𝑥,𝑦)∼𝑝𝑇 (𝑥,𝑦)[(𝑓 (𝑥), 𝑦)]

=
∑

𝑦∈
∫

(𝑓 (𝑥), 𝑦)𝑃 (𝑥, 𝑦)𝑑𝑥

=
∑

𝑦∈
∫

(𝑓 (𝑥), 𝑦)
𝑃 (𝑥, 𝑦)
𝑃 (𝑥, 𝑦)

𝑃 (𝑥, 𝑦)𝑑𝑥

= E(𝑥,𝑦)∼𝑝𝑆 (𝑥,𝑦)

[

𝑃𝑇 (𝑥)XXX𝑃𝑇 (𝑦|𝑥)
𝑃𝑆 (𝑥)XXX𝑃𝑆 (𝑦|𝑥)

(𝑓 (𝑥), 𝑦)
]

,

(3)

where 𝑃𝑆 (𝑥, 𝑦) and 𝑃𝑇 (𝑥, 𝑦) represent the joint probability distributions
of source domain and target domain, respectively. In order to minimize
the expected risk 𝑅 (ℎ), it is imperative to simultaneously minimize
the loss function (ℎ(𝑥), 𝑦) and synchronize the marginal distributions
of the source domain and the target domain.

The selection of distance metric functions between source domain
data and target domain data varies based on the specific transfer
learning models employed. By combining the classification loss with
the distance metric function between source domain data and target
domain data, the total loss function can be expressed as follows:

min
𝜃

1
𝑛𝑆

𝑛𝑆
∑

𝑖=1
𝐽
(

𝑓 (𝐱𝑆𝑖 ), 𝑦
𝑆
𝑖
)

+ 𝜆
𝑓𝑐𝑛
∑

𝓁=𝑓𝑐1

𝑑𝑘
(

𝓁
𝑆 ,

𝓁
𝑇
)

, (4)

where the parameter 𝜆 serves as a trade-off coefficient. 𝜆 = 0 means
only considering the cross-entropy loss of classification task and 𝜆 → ∞
means only considering the discrepancy between source and target
domain.

4. Experiments

In this section, we conduct a comparative analysis between our
enhanced transfer learning approach and conventional transfer learning
models across four publicly available datasets, as well as a dataset
comprising pneumonia X-ray images. The transfer learning models
include: DAN (Long et al., 2015), DAAN (Yu et al., 2019), DANN (Ganin
4

Table 1
The statistics of four datasets.

Dataset #Domain #Domain category #Class #Sample

Office31 3 A, D, W 31 2817
Office-Caltech10 4 C, A, D, W 31 2533
Office-Home 4 A, C, P, R 65 15 500
Image-Clef 3 C, I, P 12 1800

Table 2
Introduction of pneumonia X-ray dataset.

Domain Domain category #Positive #Negative #Total

Source domain Normal pneumonia 3418 1020 4438
Target training domain COVID-19 460 246 706
Target test domain COVID-19 116 113 229

and Lempitsky, 2015), BNM (Cui et al., 2020) DeepCORAL (Sun and
Saenko, 2016) and DSAN (Zhu et al., 2020). The four public data sets
are Office-31, Office-Caltech10, Image-CLEF and Office-Home.

4.1. Datasets

We adopt four general datasets and one medical dataset to per-
form our algorithm and make comparison with other algorithms. An
overview of the datasets is provided below (see Table 1): Office-
31 (Saenko et al., 2010) serves as a benchmark dataset for domain
adaptation, comprising 4110 images categorized across 31 classes.
Office-31 consists of three distinct domains: A short for Amazon (com-
prising images from amazon.com), W short for Webcam (including
images captured by webcams), and D short for DSLR (containing images
acquired using digital SLR cameras). Given the presence of imbalanced
images within each domain, to ensure unbiased assessment, we eval-
uated six distinct combinations: (A→D, A→W, D→A, D→W, W→A,
W→D). It is noteworthy that in the notation 𝑋 → 𝑌 , 𝑋 represents the
source domain, and 𝑌 represents the target domain.

Office-Caltech-10 (Gong et al., 2012) is a standard dataset utilized
for domain adaptation study. It comprises the 10 common categories
present in both Office-31 and Caltech-256 (C). Office-Caltech-10 en-
compasses four domains: Caltech, Amazon, Webcam, and DSLR. We
conducted evaluations on six distinct combinations: (𝐂 → 𝐀, 𝐂 → 𝐖,
𝐂 → 𝐃, 𝐀 → 𝐂, 𝐖 → 𝐂, 𝐃 → 𝐂).

Office-Home (Venkateswara et al., 2017) serves as a standard
dataset for domain adaptation purposes. The dataset includes an av-
erage of about 70 images per class, while certain classes may have up
to 99 images. Office-home contains four domains: Art (which contains
images consisted of art pictures in the form of sketches, paintings,
and decorations), Clipart, Product (which contains images consisted
of background-free object), Real-World-images (which contains images
acquired by camera). We evaluated twelve different combinations (𝐀 →
𝐂, 𝐀 → 𝐏, 𝐀 → 𝐑, 𝐂 → 𝐀, 𝐂 → 𝐏, 𝐂 → 𝐑, 𝐏 → 𝐀, 𝐏 → 𝐂, 𝐏 → 𝐑, 𝐑 → 𝐀,
𝐑 → 𝐂, 𝐑 → 𝐏).

Image-CLEF-DA, a benchmark dataset for domain adaptation, is
structured around 12 shared categories across three distinct domains.
Each category contains 50 images and each domain contains 600
images. The dataset comprises three distinct domains: Caltech-256 (C),
ImageNet ILSVRC 2012 (I), and Pascal VOC 2012 (P). We conducted
experiments across six distinct combinations: (𝐂 → 𝐈, 𝐂 → 𝐏, 𝐈 → 𝐂,
𝐈 → 𝐏, 𝐏 → 𝐂, 𝐏 → 𝐈) (see Fig. 3).

We also focus on medical image field, and implement our enhanced
transfer learning on a pneumonia X-ray dataset. Detailed information
about this dataset can be found in Table 2.

To simulate the real-world scenarios, We use all the source domain
data as training source domain data, and split target domain data into
30% as training data and 70% as test data. For the normal transfer
learning models, we utilize the training source domain data alongside
the training target domain data to compose the training set, while the
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Fig. 2. Examples obtained after specific data augmentation operation.
Fig. 3. Examples of image-CLEF data set.
Table 3
The parameter settings.
Parameter Base LR Weight decay LR gamma LR decay Momentum n epoch Random seed

Value 0.003 0.0005 0.0003 0.75 0.9 20 1
Table 4
The accuracy (%) on Office-31 dataset through unsupervised domain adaptation (ResNet50), the version ‘‘+DA’’ indicates the
enhanced transfer learning method with data augmentation operations.
Method A→W A→D D→A D→W W→A W→D Avg

Resnet (He et al., 2016) 68.4 68.9 62.5 96.7 60.7 99.3 76.0

DAN (Long et al., 2015) 83.7 78.9 67.5 98.0 67.4 99.5 82.5
DAN+DA 85.0 83.7 66.7 98.7 67.9 100.0 83.7

DAAN (Yu et al., 2019) 71.9 76.6 64.5 98.0 64.3 99.6 79.1
DAAN+DA 74.4 77.7 64.6 97.8 64.3 100.0 79.8

DANN (Ganin and Lempitsky, 2015) 82.3 83.0 67.1 98.0 68.9 100.0 83.2
DANN+DA 87.1 83.4 67.5 98.4 68.8 99.7 84.2

BNM (Cui et al., 2020) 90.0 87.2 71.2 99.2 71.5 99.6 86.4
BNM+DA 90.1 88.3 72.0 99.0 71.5 99.6 86.7

DeeepCoral (Sun and Saenko, 2016) 79.3 81.9 65.4 98.0 66.1 99.6 81.7
DeeepCoral+DA 79.5 81.3 64.8 97.8 65.9 99.7 81.5

DSAN (Zhu et al., 2020) 87.4 85.5 74.3 98.8 70.9 100.0 86.1
DSAN+DA 89.9 87.0 74.9 98.1 70.5 100.0 86.7
5
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Table 5
The accuracy (%) on the Office_caltech_10 dataset through unsupervised domain
adaptation (ResNet50), the version ‘‘+DA’’ indicates the enhanced transfer learning
method with data augmentation operations.

Method C→A C→D C→W A→C D→C W→C Avg

DAN 95.1 91.9 96.2 92.9 91.5 93.0 93.4
DAN+DA 96.3 94.2 96.8 93.6 91.5 93.7 94.3

DAAN 94.8 93.1 94.1 92.0 90.1 91.3 92.5
DAAN+DA 96.1 94.0 97.8 92.3 90.7 91.3 93.7

DANN 94.5 89.6 95.6 94.2 92.1 93.1 93.1
DANN+DA 96.2 90.8 96.8 94.4 92.6 93.8 94.1

BNM 95.3 94.2 98.4 95.0 94.2 94.7 95.3
BNM+DA 96.9 96.3 98.3 95.3 95.3 95.4 96.3

DeeepCoral 94.8 91.4 97.3 91.9 91.2 92.1 93.1
DeeepCoral+DA 95.1 95.0 97.1 92.4 91.4 92.6 94.0

DSAN 95.6 90.8 96.8 94.7 95.5 94.9 94.7
DSAN+DA 96.5 93.1 97.8 96.5 96.0 95.6 95.9

test target domain data is used as the test set. For the enhanced transfer
learning models, initially, we apply data augmentation operations to
the training target domain data, thereby generating augmented training
samples. Subsequently, we compile the training set by combining the
source domain data and the augmented training target domain data.
This training set is then used for model training and subsequently
evaluated for performance on the test target data.

4.2. Compared methods

To verify the effectiveness of the enhanced transfer learning ap-
proach, we conducted comparisons with the subsequent conventional
transfer learning models.

Deep Adaptation Network (DAN) (Long et al., 2015) is a
discrepancy-based method, which constructs a total kernel by using
multiple kernel functions, and automatically select the optimal kernel
function. By incorporating an MK-MMD-based multi-layer adaptation
regularizer into the fully connected layers, this approach has the
capacity to acquire transferable features that effectively mitigate the
cross-domain disparities.

DANN (Ganin and Lempitsky, 2015) constitutes an adversarial-
based technique. The fundamental architecture of DANN comprises
three key components: a feature extractor, a classifier, and a discrimi-
nator. Remarkably, the feature extractor and classifier essentially form
a conventional classification model. DANN is inspired by Generative
Adversarial Network (Goodfellow et al., 2014). Instead of fake samples,
fake features, which are sufficient to make the target and source
domains indistinguishable, are generated.

Dynamic Adversarial Adaptation Network (DAAN) (Yu et al.,
019) is an adversarial-based method, which could dynamically ad-
ust the boundary and conditional distribution relationship. The basic
etwork is the same as DANN network, besides, DAAN introduces
onditional domain discriminant block and dynamic adjustment factor
nto the network.
Batch Nuclear-Norm Maximization (BNM) (Cui et al., 2020)

ould effectively avoid prediction degradation in the situation where
odels are learned with insufficient labels. BNM is a method to max-

mize the nuclear-norm of the batch output matrix. This simultaneous
ptimization strategy serves to enhance both the discriminability and
iversity of the predicted outcomes.
DeepCORAL (Sun and Saenko, 2016) utilizes the second-order co-

ariance of features from both the source and target domains to quan-
ify the distribution discrepancy. By combining the loss function and
he CORAL distance within the classification model, a domain adaptive
odel based on the CORAL distance can be constructed.
Deep Subdomain Adaptation Network (DSAN) (Zhu et al., 2020)

vercomes the constraint of aligning global distributions by leveraging
he inter-subdomain relationships across distinct domains. It employs
6

he network outputs as pseudo-labels for the target domain data.
Table 6
The accuracy(%) on the Image-ClEF dataset through unsupervised domain adaptation
(ResNet50), the version ‘‘+DA’’ indicates the enhanced transfer learning method with
data augmentation operations.

Method c→i c→p i→c i→p p→c p→i Avg

DAN 90.7 78.6 94.3 98.9 91.4 91.2 90.8
DAN+DA 90.9 79.6 94.4 98.9 91.9 91.5 91.2

DAAN 86.6 75.7 91.6 78.4 89.5 90.5 85.3
DAAN+DA 89.3 75.6 92.7 79.3 90.1 91.2 86.4

DANN 90.2 78.1 94.6 78.4 91.6 90.7 87.2
DANN+DA 91.3 79.9 95.1 79.1 92.2 91.7 88.3

BNM 91.7 78.9 95.5 78.1 93.8 92.7 88.4
BNM+DA 92.5 78.9 95.1 78.7 94.9 92.7 88.8

DeeepCoral 88.0 77.6 93.1 78.6 90.2 90.0 86.2
DeeepCoral+DA 88.8 77.7 93.4 78.4 90.4 90.3 86.5

DSAN 90.8 79.9 95.3 78.1 92.9 91.9 88.1
DSAN+DA 91.9 80.1 95.5 79.6 94.1 93.7 89.2

4.3. Experimental settings

Baseline Methods: For Office-31 dataset, we compared enhanced
transfer learning models with standard deep neural network model
and normal transfer learning models: deep convolutional neural net-
work (He et al., 2016), DAN (Long et al., 2015), DAAN (Yu et al., 2019),
DANN (Ganin and Lempitsky, 2015), DeepCORAL (Sun and Saenko,
2016), BNM (Cui et al., 2020), DSAN (Zhu et al., 2020). For other three
datasets, all of the compared methods except standard deep neural
network are used. The results of standard deep neural network are
collected from Zhu et al. (2020), and other results are all obtained from
our experiments.

Implementation Details: On all the tasks, a mini-batch stochastic
gradient descent (SGD) approach is employed, and the batch size is
set to 32. For the pattern recognition tasks, we choose to employ
the Residual network (He et al., 2016). Following the methodology of
CDAN (Long et al., 2018), we incorporated a bottleneck layer denoted
as 𝑓𝑐𝑏 with 256 units after the final average pooling layer to facilitate
transfer representation learning. The outputs of the bottleneck layer
𝑓𝑐𝑏 serves as the inputs for the discrepancy function between the source
domain data and the target domain. For the parameter settings, see
Table 3.

4.4. Results on public datasets

We conducted our enhanced transfer learning approach on four
datasets, and denote all the transfer learning tasks as source domain
→ target domain.

The outcomes of unsupervised domain adaptation on Office-31
dataset are presented in Table 4. It can be seen that enhanced transfer
learning models achieve better performance except BNM model with
DA. In 𝐀 → 𝐖, 𝐀 → 𝐃, 𝐃 → 𝐀 transfer learning tasks, the
erformance improvement is obvious. It might be because that in these
asks, the source domain exhibits a higher degree of similarity with
he target domains. Enhanced transfer learning methods harness this
imilarity through data augmentation and domain adaptation, leading
o improved performance. Comparing enhanced transfer learning and
raditional convolutional neural network, the promotion is significant.
he enhanced transfer learning performs comparable with the tradi-
ional transfer learning methods on 𝐃 → 𝐖 and 𝐖 → 𝐀 cases.
here might be several reasons for the observed results. In these tasks,
he data distribution disparities between source and target domains
ay be smaller, allowing traditional transfer learning methods to

ffectively capture existing similarities. Another possible explanation is
hat excessive data augmentation in some cases can lead to overfitting,
indering the model’s ability to generalize to the target domain.

The outcomes of unsupervised domain adaptation for the Office-
altech10 dataset are displayed in Table 5. It is obvious that the average
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Table 7
The accuracy (%) on the Office-home dataset through unsupervised domain adaptation (ResNet50), the version ‘‘+DA’’ indicates the enhanced transfer learning method with data
augmentation operations.

Method A→C C→A A→P P→A A→R R→A C→P P→C C→R R→C P→R R→P Avg

DAN 51.0 57.5 67.9 55.9 74.9 65.6 65.8 47.5 67.7 54.4 75.2 79.6 63.5
DAN+DA 51.4 58.3 68.5 57.0 75.8 68.4 65.7 48.1 67.7 54.5 75.5 80.1 64.5

DAAN 48.2 52.9 64.4 54.2 73.8 66.2 61.6 43.2 64.3 52.0 72.9 78.3 60.9
DAAN+DA 48.6 55.0 65.7 54.5 73.3 66.2 62.0 43.3 65.3 52.0 73.4 79.7 61.6

DANN 49.6 54.3 65.0 55.1 73.4 67.4 63.2 48.7 65.1 55.1 74.1 79.0 62.5
DANN+DA 50.3 55.0 66.3 55.7 75.1 66.8 64.2 49.8 66.2 56.3 74.6 80.5 64.3

BNM 52.1 60.0 69.5 58.3 75.5 67.5 70.1 49.0 71.3 54.4 77.7 80.3 65.4
BNM+DA 52.3 61.7 72.1 60.4 77.0 70.1 67.9 51.2 71.3 55.6 78.7 80.6 66.6

DeeepCoral 51.0 56.7 66.3 55.5 74.5 68.2 64.0 47.2 67.1 54.4 75.0 79.6 63.2
DeeepCoral+DA 51.2 57.3 66.3 56.8 74.5 68.4 64.8 50.1 67.4 54.7 74.7 78.7 67.0

DSAN 52.6 60.1 70.0 61.8 74.5 71.7 67.5 54.7 68.0 59.1 77.4 82.3 66.6
DSAN+DA 53.2 60.4 69.7 62.8 74.7 72.2 67.2 55.0 68.4 59.5 78.1 82.3 67.0
accuracy obtained by the enhanced transfer learning models surpass
those of the normal transfer learning models. All enhanced transfer
learning models achieve better accuracy than normal transfer learning
model, especially on 𝐂 → 𝐀, 𝐂 → 𝐃 and 𝐂 → 𝐖 tasks.

The outcomes of unsupervised domain adaptation for the Image-
CLEF dataset are presented in Table 6. We can find that all the average
accuracy in enhanced transfer learning models are higher than normal
transfer learning models.

The outcomes of unsupervised domain adaptation for the Office-
Home dataset are displayed in Table 7. It is evident that the en-
hanced transfer learning models consistently exhibit superior perfor-
mance. Notably, DeepCORAL combined with data augmentation leads
to substantial improvements in average accuracy, with gains exceeding
3%.

4.5. Results on medical dataset

We combine transfer learning models with several different data
augmentation strategies. The source domain for this study is the normal
pneumonia dataset, while the target domain consists of the COVID-19
dataset. In the method section, we introduced several data augmenta-
tion strategies. In current section, we proceed to compare three distinct
data augmentation strategies. The details of our data augmentations are
listed as follows:

DA1 is based on geometric space transformation, which mainly
includes three aspects: random rotation, center cropping and horizontal
flipping. Herein the rotation angle range is set from −15◦ to +15◦, the
ropping size is set to 0.9 times the original size, and the horizontal
lipping is enforced with a probability 0.5.

DA2 adopts color space transformation, which mainly includes three
spects: brightness, contrast, and saturation. For these three param-
ters, the value range is set to 0.5 to 2. For any original image, a
eal value is randomly selected from this range as the color space
ransformation parameter.

DA3 uses both color space transformation and geometric space
ransformation. It combines DA1 and DA2. However, the random ro-
ation angle range in geometric space transformation is set from −5◦ to

5◦. In addition, an additional noise injection operation is added.
Table 8 presents the comparison of different data augmentation

strategies. We come to the following conclusions: the enhanced trans-
fer learning could effectively improve the model’s performance on
pneumonia X-ray data set.

The choice of data augmentation strategy will greatly affect the final
performance of the models. Enhanced transfer learning with DA1 per-
forms exceptionally well in PPV, likely due to two primary factors. DA1
emphasizes geometric space transformations, such as random rotation,
center cropping, and horizontal flipping, improving the model’s under-
standing of image spatial characteristics. In medical imaging, where
pathology orientation can vary, random rotation enables the model
7

Table 8
The accuracy (%) on the pneumonia X-ray dataset (ResNet50), the version ‘‘+DA’’
indicates the enhanced transfer learning method with data augmentation operations.

Method ACC PPV TPR TNR F1−score

DAN 88.29 ± 0.52 84.20 94.66 81.76 89.12
DAN+DA1 90.56 ± 1.48 87.46 95.00 86.01 91.07
DAN+DA2 90.39 ± 0.87 87.30 94.82 85.84 90.91
DAN+DA3 91.79 ± 1.83 89.45 95.00 88.50 92.14

DANN 87.77 ± 0.87 83.33 94.82 80.53 88.71
DANN+DA1 89.96 ± 0.87 87.68 93.28 86.55 90.39
DANN+DA2 89.43 ± 0.78 86.48 93.79 84.96 90.00
DANN+DA3 90.12±1.00 86.52 95.34 84.78 90.71

DAAN 89.17 ± 0.52 88.78 90.00 88.31 89.38
DAAN+DA1 90.66 ± 0.69 91.13 90.34 90.97 90.73
DAAN+DA2 90.04 ± 0.52 89.63 90.86 89.20 90.24
DAAN+DA3 89.87 ± 1.20 90.85 88.97 90.80 89.90

DeepCoral 88.29 ± 0.52 84.52 94.13 82.30 89.07
DeepCoral+DA1 90.31 ± 0.83 89.28 91.89 88.67 90.57
DeepCoral+DA2 90.39 ± 0.74 88.78 92.76 87.96 90.73
DeepCoral+DA3 90.13 ± 1.48 88.09 93.10 87.08 90.53

DSAN 91.53 ± 0.70 94.14 88.79 94.33 91.39
DSAN+DA1 92.49 ± 0.34 97.68 87.24 97.88 92.17
DSAN+DA2 92.31 ± 0.61 96.59 87.93 96.81 92.06
DSAN+DA3 92.49 ± 0.34 95.57 89.31 95.75 92.34

to analyze pathology from different angles, enhancing its ability to
accurately detect and predict positive cases. Furthermore, DA1’s prac-
tice of center cropping images at 90% of their original size effectively
reduces noise and unnecessary information along the image edges.
This noise reduction sharpens the model’s focus on relevant regions, a
critical factor for accurate predictions, particularly in medical imaging.
By conducting experiments on different data augmentation strategies,
we proved that different data augmentation strategies improve the
performance of our enhanced transfer learning models. Moreover, it
is a feasible data augmentation strategy to inject noise to image data.
By injecting noise, the generalization ability of the models have been
improved. Although the proposed method demonstrated effectiveness
and superiority over compared methods, more exploration can be
conducted, such as statistical analysis (Wang and He, 2016; Demšar,
2006) can be added to further enhance the credibility of the results.

5. Conclusion

This paper treat both transfer learning and data augmentation as the
solutions to limited target domain data problems, and then designed
the enhanced transfer learning methods with data augmentation to
improve the image classification performance. The experimental results
obtained on several real-world datasets and a medical image dataset
verified the effectiveness of the proposed method.
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Although deep learning has achieved a great success (Liu et al.,
2015), the training of deep learning models requires a large amount
of high-quality data and powerful computational resources. The col-
lection and annotation of data need to invest a lot of human and
resource costs (Wang and He, 2016), the enhanced transfer learning
with data augmentation approach proposed in this paper, on the one
hand, expands the target domain dataset by constructing an effective
data augmentation strategy so as to improve the generalizability of the
model; on the other hand, by transferring the knowledge of similar
domains to the target domain of interest, it can effectively solve the
scarce data problem, which save great time and resource costs. Thus
the proposed method is helpful to the digital economy.

It is noted that some ongoing challenges need further study, partic-
ularly the adaptive data augmentation strategy. Current methods rely
on fixed rules and transformations, but the best approach can vary
across different contexts. Further research is necessary to automate the
selection and fine-tuning of augmentation strategies for optimal per-
formance. Moreover, for future work, few-shot learning (Wang et al.,
2020; Sun et al., 2019), semi-supervised learning (Chao and Sun,
2012; Sun and Shawe-Taylor, 2010; Chao and Sun, 2018), and active
learning (Beluch et al., 2018) are all potential solutions to the limited
data problem, and how to ensemble some of them to further promote
the performance is worth further research. While this work focuses on
image classification task, more tasks should be explored to get a deeper
insight into the limited target domain data problem.
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