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a b s t r a c t 

Semi-supervised learning has become a hot learning framework, where large amounts of unlabeled data 

and small amounts of labeled data are available during the training process. The recently proposed Lapla- 

cian least squares twin support vector machine (Lap-LSTSVM) is an excellent tool to solve the semi- 

supervised classification problem. Motivated by the success of Lap-LSTSVM, in this paper, we propose 

a novel Laplacian Lp norm least squares twin support vector machine (Lap-LpLSTSVM). There are sev- 

eral advantages of our proposed method: (1) The performance of our proposed Lap-LpLSTSVM can be 

improved by the adjustability of the value of p. (2) The introduced Lp norm graph regularization term 

can efficiently exploit the geometric information embedded in the data. (3) An efficient iterative strategy 

is employed to solve the optimization problem. Besides, to demonstrate that our proposed method can 

make use of unlabeled data effectively, least squares twin support vector machine (LSTSVM) which only 

uses the same labeled data is used to compare with our proposed method. The experimental results on 

both synthetic and real-world datasets show that our proposed method outperforms other state-of-the- 

art methods and can also deal with noisy datasets. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

In many real-world applications such as natural language pars- 

ng (NLP) [1] , spam filtering [2] , it is challenging to acquire enough

abeled data to train. However, the acquisition of unlabeled data is 

ccessible. In such situations, the performance of traditional super- 

ised algorithms will deteriorate because of the insufficient labeled 

ata. Therefore, semi-supervised learning (SSL) [3] is introduced to 

ddress this problem, which uses a large number of unlabeled data 

long with a few labeled data to train the model. 

Support vector machine (SVM) is an efficient and effective tool 

or the tasks of classification and regression [4] . After the intro- 

uction of SVM, it outperformed a large number of other tools in 

 wide of applications [5,6] . Recently, Marchetti and Perracchione 

7] proposed local-to-global support vector machine (LGSVM), 

hich is based on the approximation theory and local kernel-based 

odels. LGSVM is a global method which is constructed by gluing 
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ocal SVM contributions by support weights. Meanwhile, LGSVM 

mproves the execution time and does not lose the overall clas- 

ification capability. However, the computational complexity of the 

uadratic programming problem (QPP) is enormous. It will take a 

ong training time when the datasets are large. In order to opti- 

ize SVM, in recent years, various algorithms have been proposed. 

angasarian and Wild [8] proposed generalized eigenvalue proxi- 

al support vector machine (GEPSVM), which relaxes the bound- 

ng or proximal planes to be nonparallel in the input space. Li 

t al. [9] proposed L1-norm proximal nonparallel support vector 

achine (L1-NPSVM), which uses a justifiable iterative technique 

o solve a pair of L1-norm optimal problems and has no parame- 

ers to be regularized. In the real world, the same object can be 

escribed from multiple views. SVM can also be combined with 

ulti-view learning. For example, Sun et al. [10] proposed multi- 

iew GEPSVM, which can effectively combine two views by the in- 

roduction of multi-view co-regularization term and the consensus 

n distinct views is maximized. However, multi-view GEPSVM ig- 

ores discriminations between different views and agreement of 

he same view. Therefore, Cheng et al. [11] proposed improved 

ulti-view GEPSVM via inter-view difference maximization and 

ntra-view agreement minimization, and they also designed an ef- 

https://doi.org/10.1016/j.patcog.2022.109192
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.109192&domain=pdf
mailto:xjxie11@gmail.com
mailto:feixiangsun2022@163.com
mailto:qianjiangbo@nbu.edu.cn
mailto:guolijun@nbu.edu.cn
mailto:zhangrong@nbu.edu.cn
mailto:yexlwh@163.com
mailto:zhijinecnu@gmail.com
https://doi.org/10.1016/j.patcog.2022.109192


X. Xie, F. Sun, J. Qian et al. Pattern Recognition 136 (2023) 109192 

f

o

(

s

p  

d

K

c

c

b

a

(

i

t

e

t

c

r

f

M

t

q

w

m

s

t

m

o

m

v

m

t

t

v

n

m

s

c

a

M

s

F

i

a

t

p

Q

(

o

s

t

v

t

p

t

e

s

a

a

b

m

s

t

s

s

t

t

i

T

i

c

b

l

p

m

o

m

t

r

s

s

s

A

s

b

b

e

[

n

L

o

t

p

S

a

L

t

t

2

t

e

A

i

s

d  

X  

t  

b

t

ective iterative algorithm and proved its convergence by the the- 

ry and experiment. 

Jayadeva et al. [12] proposed twin support vector machine 

TSVM) which seeks a pair of nonparallel hyperplanes and as- 

igns the label of new data depending on which of the two hy- 

erplanes it is closer to, and it is four times faster than the stan-

ard SVM. There are also lots of variants for TSVM, for example, 

umar and Gopal [13] presented smooth twin support vector ma- 

hine (STSVM), which uses smoothing techniques for TSVM, and 

onverts QPP into unconstrained minimization problem and can 

e solved by the well-known Newton-Armijo algorithm. Addition- 

lly, they also presented least squares twin support vector machine 

LSTSVM) [14] in which two modified primal problems are solved 

nstead of two dual problems, and the computational time is lesser 

han the one of standard TSVM. Nevertheless, TSVM is not efficient 

nough to solve large-scale data problems and it obtains the op- 

imal hyperparameters by the grid search method which is time- 

onsuming. Therefore, Pan et al. [15] presented a safe screening 

ule (SSR) for linear TSVM and modified safe screening rule (MSSR) 

or nonlinear TSVM. Most training data can be deleted by SSR and 

SSR and the scale of TSVM is reduced before solving it. Besides, 

he hyperparameters tuning process can be accelerated by the se- 

uential versions of SSR and MSSR. TSVM can also be combined 

ith multi-view learning, for example, Xie and Sun [16] proposed 

ulti-view twin support vector machine (MvTSVM) which can be 

olved by a pair of quadratic programming problems (QPPs). Then, 

hey also extended it to semi-supervised learning and proposed 

ulti-view Laplacian twin support vector machine [17] whose dual 

ptimization problems are also QPPs. After that, they also proposed 

ulti-view support vector machines and multi-view twin support 

ector machines with the consensus and complementarity infor- 

ation [18] , which not only can deal with multi-view classifica- 

ion problems, but also combine the consensus and complemen- 

arity principles. Chen et al. [19] presented a novel twin support 

ector machine for multi-label learning which constructs multiple 

onparallel hyperplanes to exploit the potential multi-label infor- 

ation embedded in the data. 

Manifold regularization (MR) [20] is one of the most efficient 

trategies for SSL. The MR introduces a regularization term to 

apture the geometric information embedded in the data for SSL 

nd traditional machine learning model can be combined with 

R. For example, Sun and Shawe-Taylor [21] proposed sparse 

emi-supervised learning using conjugate functions, which uses 

enchel-Legendre conjugates to rewrite a convex insensitive loss 

ncluding a regularization with unlabeled data. Meanwhile, they 

lso presented a globally optimal iterative algorithm to optimize 

he problem. Belkin et al. [22] include the intrinsic smoothness 

enalty term to SVM and extended SVM to semi-supervised field. 

i et al. [23] proposed Laplacian twin support vector machine 

Lap-TSVM), which is able to exploit the geometric information 

f the marginal distribution embedded in the unlabeled data to 

eek two nonparallel hyperplanes for semi-supervised classifica- 

ion. However, Lap-TSVM needs to solve two QPPs with matrix in- 

ersion, which is time-consuming. In order to reduce the compu- 

ational cost, Chen et al. [24] proposed Laplacian least twin sup- 

ort vector machine (Lap-LSTSVM) for semi-supervised classifica- 

ion, which solves two systems of linear equations and can be 

fficiently performed with conjugate gradient (CG) algorithm. Be- 

ides, they also introduced a meaningful hyperparameter to bal- 

nce the regularization terms. Liu et al. [25] presented nonpar- 

llel support vector machine (NPSVM) with large margin distri- 

ution for pattern classification, which firstly reconstructs large 

argin distribution and then introduces it into NPSVM to process 

mall and medium-scale datasets. Kang et al. [26] proposed struc- 

ured graph learning framework to preserve the local and global 

tructure. The self-expressiveness of data is used to capture global 
2

tructure and adaptive neighbor is used to capture local struc- 

ure. Besides, the rank constraint is considered to achieve graph 

o have exact c connected components and multiple kernel learn- 

ng is presented to avoid the extensive search for suitable kernel. 

he disadvantage of structured graph learning framework is that 

ts time complexity is high. Nie et al. [27] proposed multi-view 

lustering and semi-supervised classification with adaptive neigh- 

ors, which performs clustering/semi-supervised classification and 

ocal structure learning simultaneously. There are also lots of ap- 

lications for semi-supervised learning such as structural health 

onitoring. For example, Garrett et al. [28] presented a multires- 

lution classification framework for semi-supervised learning. The 

ultiresolution framework is used to handle nonstationarities in 

he signals and extract features in each localized time-frequency 

egion. Meanwhile, an adaptive graph filter was also proposed for 

emi-supervised classification, Bull et al. [29] proposed a semi- 

upervised Gaussian mixture model for probabilistic damage clas- 

ification, which improves the classification accuracy significantly. 

grawal and Chakraborty [30] investigated an alternative semi- 

upervised approach for damage identification. Unlike the graph- 

ased approach, the classification for their proposed method is not 

ased on edge-weight for the data. As a result, two points nearing 

ach other do not necessarily have the same labels. 

However, the L2 norm is sensitive to the noises and outliers 

31] . Therefore, in this paper, we propose a novel Laplacian Lp 

orm least squares twin support vector machine termed Lap- 

pLSTSVM for semi-supervised classification, and the architecture 

f our proposed Lap-LpLSTSVM is illustrated in Fig. 1 . In contrast 

o Lap-SVM, Lap-TSVM, and Lap-LSTSVM, the contributions of this 

aper are as follows: 

• An Lp norm graph regularization term based on the technique 

of eigenvalue decomposition is introduced to exploit the geo- 

metric information embedded in the data, which can boost the 

generalization ability of our model. 
• The Lp norm is introduced instead of the L1 norm or L2 norm, 

which can achieve the desired performance by choosing the ap- 

propriate value of p. 
• An efficient iterative strategy is designed to solve the optimiza- 

tion problem. 
• The appropriate hyperparameters will be obtained by the strat- 

egy of cross-validation, experimental results show that our pro- 

posed method outperforms other state-of-the-art methods in 

the linear and nonlinear cases. 

The remaining parts of this paper are organized as follows: 

ection 2 briefly describes the background of Lap-SVM, Lap-TSVM, 

nd Lap-LSTSVM. Section 3 introduces the details of our proposed 

ap-LpLSTSVM in the linear and nonlinear cases. Section 4 shows 

he experiments we make and the analysis for the experiments. In 

he last of this paper, we give the conclusions. 

. Related work 

In this paper, all the matrices are written in uppercase. The vec- 

ors and scalars are written in lowercase. For matrix A and vector 

 , we denote A 

� and e � as their transpose, respectively. Meanwhile, 

 

−1 denotes the inverse matrix for matrix A . 

A binary semi-supervised classification problem is considered 

n the d dimensional real space R 

d . The total dataset is repre- 

ented as M = { (x 1 , y 1 ) , . . . (x l , y l ) , . . . , x l+ u } , Let X l = { x i } l i =1 
∈ R 

l×d 

enote the labeled data, Y l = { y i } l i =1 
∈ {−1 , 1 } denote the labels,

 u = { x i } l+ u i = l+1 
denote the unlabeled data. We denote A ∈ R 

m 1 ×d as

he labeled data belonging to “+1 ” class and B ∈ R 

m 2 ×d as the la-

eled data belonging to “−1 ” class, where m 1 + m 2 = l indicates 

he total labeled data. 
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Fig. 1. The framework of our proposed Laplacian Lp norm least squares twin support vector machine (Lap-LpLSTSVM). The red points, blue points and white points represent 

the positive, negative and unlabeled data respectively. With the input data, local neighborhood graph will be constructed by the k nearest neighbors. Lp norm is used to 

measure the distance and Lp norm graph regularization term is used to exploit geometric information embedded in the data to obtain the desired performance with the 

flexible value of p. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.1. Lap-SVM 

Lap-SVM [32] is a semi-supervised extension of SVM, which ex- 

loits the geometry of probability distribution with the regulariza- 

ion term. In one word, if two data x 1 , x 2 are close in the intrinsic

eometry P x (x ) , the condition probability distributions P Y | X (y | x 1 )
nd P Y | X (y | x 2 ) are similar. The regularized minimization function 

n Lap-SVM is formulated as 

f ∗ = arg min f∈ H k 
1 
l 

∑ l 
i =1 V (x i , y i , f ) + c 1 ‖ f‖ 

2 
K + c 2 ‖ f‖ 

2 
I , (1) 

here f is the decision function, c 1 controls the complexity of 

unction f in the reproduction kernel Hilbert space (RKHS) H k , l is 

he number of labeled data, V is loss function such as squared loss 

r hinge loss, c 2 controls the complexity of the function in the in- 

rinsic geometry of marginal distribution. ‖ f‖ 2 I is empirically esti- 

ated from the labeled and unlabeled data using the graph Lapla- 

ian. We have 

 f‖ 

2 
I = 

1 

2 

n ∑ 

i =1 

n ∑ 

j=1 

W i j ( f (x i ) − f (x j )) 
2 

= 

1 

2 

( 
n ∑ 

i =1 

d i f 
2 (x i ) + 

n ∑ 

j=1 

d j f 
2 (x j ) 

−2 

n ∑ 

i =1 

n ∑ 

j=1 

W i j f (x i ) f (x j )) 

= 

n ∑ 

i =1 

d i f 
2 (x i ) −

n ∑ 

i =1 

n ∑ 

j=1 

W i j f (x i ) f (x j ) 

= f � (D − W ) f, (2) 

here L = D − W is the Laplacian matrix. D is the diagonal matrix

nd D ii = 

∑ l+ u 
j=1 W i j . W can be obtained by k nearest neighbors. 

 i j = 

{ 

exp 

(
−
∥∥x i − x j 

∥∥2 
/ 2 δ2 

)
if x i , x j are neighbors, 

0 otherwise. 
(3) 
3 
 f || 2 K is a regularization term of functions concerning RKHS. There- 

ore, Lap-SVM is denoted as 

in f∈H k 

∑ l 
i =1 max (1 − y i f (x i ) , 0) + c 1 α� Kα + c 2 f 

� L f, (4) 

here α is the coefficient over finite dimensional space, K is the 

ernel matrix with K(x i , x j ) as its (i, j) th element. By introducing

he slack variable ξi , the unconstrained problem can be written as 

 constrained one, 

min α∈ R n ,ξ∈ R l 
∑ l 

i =1 ξi + c 1 α
� Kα + c 2 α

� K LK α
s.t. y i ( 

∑ n 
j=1 αi k (x i , x j ) + b) ≥ 1 − ξi , i = 1 , . . . , l, 

ξi ≥ 0 , i = 1 , . . . , l. 

(5) 

hen the dual problem for Eq. (5) is shown as 

max β∈ R l 
∑ l 

i =1 βi − 1 
2 
β� Qβ

s.t. 
∑ l 

i =1 βi y i = 0 , 

0 ≤ βi ≤ 1 , i = 1 , . . . , l, 

(6) 

here Q = Y J L K(2 c 1 I + 2 c 2 KL ) −1 J � L Y , J L ∈ R 

l×n is the matrix [ I, O ]

here I ∈ R 

l×l is the identity matrix and O ∈ R 

l×u is a rectangular

atrix with all zeros. Y ∈ R 

l×l is a diagonal matrix composed by 

abels y i , i = 1 , . . . , l. The Preconditioned Conjugate Gradient (PCG) 

lgorithm [32] can be employed to calculate the parameters of hy- 

erplanes. Then the labels of the unlabeled data can be calculated 

y 

 j = sign ( 
∑ l+ u 

i =1 α
∗
i 
K(x i , x j ))( j = l + 1 , . . . , l + u ) . (7) 

.2. Lap-TSVM 

Lap-TSVM extends TSVM to the semi-supervised case. The goal 

f Lap-TSVM is to exploit the underlying geometric information 

mbedded in the data to generate a better classifier. In order to 

chieve this purpose, in the linear case of Lap-TSVM, it aims at 

eeking the following two nonparallel hyperplanes 

f 1 (x ) = w 

� 
1 x + b 1 = 0 , (8) 

f 2 (x ) = w 

� 
2 x + b 2 = 0 , (9) 
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here w 1 , w 2 ∈ R 

d are normal vectors and b 1 , b 2 ∈ R are bias. The

mpirical risk of Lap-TSVM is implemented by the following L2 and 

1 norm loss functions 

 1 ( f ) = 

∑ m 1 

i =1 
( f 1 (A i )) 

2 + c 1 
∑ m 2 

i =1 
max (0 , 1 + f 1 (B i )) , (10) 

 2 ( f ) = 

∑ m 2 

i =1 
( f 2 (B i )) 

2 + c 1 
∑ m 1 

i =1 
max (0 , 1 − f 2 (A i )) , (11) 

here c 1 > 0 is the penalty parameter to trade off the loss terms 

n Eqs. (10) and (11) . Consider the RKHS regularization terms 

 f 1 ‖ 

2 
H 

= 

1 
2 
(‖ w 1 ‖ 

2 + b 2 1 ) , (12) 

 f 2 ‖ 

2 
H 

= 

1 
2 
(‖ w 2 ‖ 

2 + b 2 2 ) , (13) 

nd manifold regularization terms 

 f 1 ‖ 

2 
M 

= 

1 
2 
(Mw 1 + eb 1 ) 

� L (Mw 1 + eb 1 ) , (14) 

 f 2 ‖ 

2 
M 

= 

1 
2 
(Mw 2 + eb 2 ) 

� L (Mw 2 + eb 2 ) , (15) 

herefore, the formulation for Lap-TSVM can be expressed as 

min w 1 ,b 1 ,ξ
1 
2 
‖ Aw 1 + e 1 b 1 ‖ 

2 + c 1 e 
� 
2 ξ + c 2 (‖ w 1 ‖ 

2 + b 2 1 ) 
+ c 3 (Mw 1 + eb 1 ) 

� L (Mw 1 + eb 1 ) 
s.t. − (Bw 1 + e 2 b 1 ) + ξ ≥ e 2 , ξ ≥ 0 , 

(16) 

nd 

min w 2 ,b 2 ,η
1 
2 
‖ Bw 2 + e 2 b 2 ‖ 

2 + c 1 e 
� 
1 η + c 2 (‖ w 2 ‖ 

2 + b 2 2 ) 
+ c 3 (Mw 2 + eb 2 ) 

� L (Mw 2 + eb 2 ) 
s.t. Aw 2 + e 1 b 2 + η ≥ e 1 , η ≥ 0 , 

(17) 

here c 1 , c 2 , c 3 > 0 are the hyperparameters of regularization term, 

∈ R 

m 2 , η ∈ R 

m 1 are the slack vectors and ‖ · ‖ denotes the L2

orm. e 1 , e 2 and e are the vectors of ones with appropriate dimen-

ions. A ∈ R 

m 1 ×d and B ∈ R 

m 2 ×d are the positive and negative train-

ng data, respectively. The dual problems of QPPs for Eqs. (16) and 

17) can be formulated as 

max α e � 2 α − 1 
2 
α� G (H 

� H + c 2 I + c 3 J 
� LJ) −1 G 

� α
s.t. 0 ≤ α ≤ c 1 e 2 , 

(18) 

max β e � 1 β − 1 
2 
β� H(G 

� G + c 2 I + c 3 J 
� LJ) −1 H 

� β
s.t. 0 ≤ β ≤ c 1 e 1 , 

(19) 

here H = [ A e 1 ] , G = [ B e 2 ] and J = [ M e ] . Once the Eqs. (18) and

19) are solved, the two nonparallel hyperplanes can be obtained 

y 

 1 = −(H 

� H + c 2 I + c 3 J 
� LJ) −1 G 

� α, 

 2 = (G 

� G + c 2 I + c 3 J 
� LJ) −1 H 

� β, (20) 

here v k = [ w 

� 
k 

b k ] 
� (k = 1 , 2) . Each hyperplane is closer to one

lass and as far as possible from the other class. When two nonpar- 

llel hyperplanes are obtained, a new data x ∈ R 

d can be assigned 

o the corresponding class “ + 1” or “ - 1” depending on which of 

he two hyperplanes it is closer to, i.e. 

f (x ) = sign ( 
w 

� 
1 x + b 1 ‖ w 1 ‖ − w 

� 
2 x + b 2 ‖ w 2 ‖ ) . (21) 

.3. Lap-LSTSVM 

In this section, we introduce the formulation of Laplacian least 

quares twin support vector machine. First of all, the empirical risk 

or Lap-LSTSVM is written as 

 1 ( f ) = 

∑ m 1 

i =1 
( f 1 (A i )) 

2 + c 1 
∑ m 2 

i =1 
( f 1 (B i ) + 1) 2 , (22) 

 2 ( f ) = 

∑ m 2 

i =1 
( f 2 (B i )) 

2 + c 1 
∑ m 1 

i =1 
( f 2 (A i ) − 1) 2 , (23) 
4 
he formulation of Lap-LSTSVM can be expressed as 

in 

 1 ,b 1 
L 1 = 

1 

2 

‖ Aw 1 + e 1 b 1 ‖ 

2 + c 1 ‖ Bw 1 + e 2 b 1 + e 2 ‖ 

2 

+ c 2 (‖ w 1 ‖ 

2 + b 2 1 ) + c 3 (Mw 1 + eb 1 ) 
� L (Mw 1 + eb 1 ) , 

(24) 

nd 

in 

 2 ,b 2 
L 2 = 

1 

2 

‖ Bw 2 + e 2 b 2 ‖ 

2 + c 1 ‖ Aw 2 + e 1 b 2 − e 1 ‖ 

2 

+ c 2 (‖ w 2 ‖ 

2 + b 2 2 ) + c 3 (Mw 2 + eb 2 ) 
� L (Mw 2 + eb 2 ) , 

(25) 

here c 1 , c 2 , c 3 > 0 are hyperparameters. A ∈ R 

m 1 ×d and B ∈ R 

m 2 ×d 

re positive and negative training data, respectively. M ∈ R 

(l+ u ) ×d is 

ll the training data. e 1 , e 2 and e are the vectors of ones with ap-

ropriate dimensions. Take the partial derivatives of Eq. (24) with 

espect to w 1 and b 1 and set them to zero, the following equa- 

ions can be obtained 

 w 1 
L 1 = A 

� (Aw 1 + e 1 b 1 ) + c 1 B 

� (Bw 1 + e 2 b 1 + e 2 ) + c 2 w 1 

+ c 3 M 

� L (Mw 1 + eb 1 ) = 0 , (26) 

nd 

 b 1 L 1 = e � 1 (Aw 1 + e 1 b 1 ) + c 1 B 

� (Bw 1 + e 2 b 1 + e 2 ) + c 2 b 1 

+ c 3 e 
� L (Mw 1 + eb 1 ) = 0 . (27) 

he joint matrix form of Eqs (26) and (27) is formulated as 

 

� Hv 1 + c 1 G 

� G v 1 + c 1 G 

� e 2 + c 2 v 1 + c 3 J 
� LJv 1 = 0 , (28) 

here H = [ A e 1 ] , G = [ B e 2 ] , J = [ M e ] , v 1 = [ w 

� 
1 b 1 ] 

� . The solution

f Eq. (28) can be shown as 

 v 1 = −c 1 G 

� e 2 , (29) 

here P = H 

� H + c 1 G 

� G + c 2 I + c 3 J 
� LJ. Similarly, the solution of

q. (25) can be obtained by 

v 2 = c 1 H 

� e 1 , (30) 

here v 2 = [ w 

� 
2 

b 2 ] 
� and Q = G 

� G + c 1 H 

� H + c 2 I + c 3 J 
� LJ. A

owerful conjugate gradient algorithm is employed to solve 

qs. (29) and (30) . 

Once the solutions ( w 1 , b 1 ) and ( w 2 , b 2 ) are obtained. A new

ata x ∈ R 

d is assigned to the corresponding class depending on 

hich of two hyperplanes it is closer to, i.e., 

lass i = arg min k =1 , 2 
| w 

� 
k 

x + b k | 
‖ w k ‖ . (31) 

. Proposed method 

.1. Linear Laplacian Lp norm least squares twin support vector 

achine 

In this section, we elaborate on the formulation of our pro- 

osed Laplacian Lp norm least squares twin support vector ma- 

hine. Since Laplacian matrix L is real symmetric, it can be decom- 

osed into the following formulation by the technique of eigen- 

alue decomposition 

 = U V U 

� , (32) 

here U is a matrix composed of eigenvectors and V is a diagonal 

atrix whose diagonal elements are eigenvalues corresponding to 

he eigenvectors. Then the graph regularization term can be writ- 

en as 

JZ k ) 
� U V U 

� (JZ k ) = ‖ P Z k ‖ 

2 , (33) 
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here Z k = [ w 

� 
k 

b k ] 
� (k = 1 , 2) , J = [ M e ] , M ∈ R 

(l+ u ) ×d includes all

he labeled and unlabeled data, P = V 
1 
2 U 

� J. To promote the perfor-

ance, Lp norm is used instead of L2 norm. The proposed Lp norm 

raph regularization term can be formulated as 

(Z k ) = ‖ P Z k ‖ 

p 
p . (34) 

hen, the proposed Laplacian Lp norm least squares twin support 

ector machine can be formulated as 

in 

 1 ,b 1 
L 1 = 

1 

2 

‖ Aw 1 + e 1 b 1 ‖ 

p 
p + c 1 ‖ w 1 ‖ 

p 
p + c 1 | b 1 | p 

+ c 2 ‖ Bw 1 + e 2 b 1 + e 2 ‖ 

p 
p + c 3 ‖ P Z 1 ‖ 

p 
p , (35) 

in 

 2 ,b 2 
L 2 = 

1 

2 

‖ Bw 2 + e 2 b 2 ‖ 

p 
p + c 1 ‖ w 2 ‖ 

p 
p + c 1 | b 2 | p + c 2 ‖ 

−Aw 2 − e 1 b 2 + e 1 ‖ 

p 
p + c 3 ‖ P Z 2 ‖ 

p 
p , (36) 

here c 1 , c 2 , c 3 > 0 are regularization hyperparameters, A ∈ R 

m 1 ×d ,

 ∈ R 

m 2 ×d are the positive and negative data, respectively. e 1 , e 2 
nd e are vectors of ones with appropriate dimensions. We set 

 = [ A e 1 ] , G = [ B e 2 ] , (37)

hen Eqs. (35) and (36) can be rewritten as 

in Z 1 L 1 = 

1 
2 
‖ HZ 1 ‖ 

p 
p + c 1 ‖ Z 1 ‖ 

p 
p + c 2 ‖ GZ 1 + e 2 ‖ 

p 
p + c 3 ‖ P Z 1 ‖ 

p 
p , 

(38) 

in Z 2 L 2 = 

1 
2 
‖ GZ 2 ‖ 

p 
p + c 1 ‖ Z 2 ‖ 

p 
p + c 2 ‖ − HZ 2 + e 1 ‖ 

p 
p + c 3 ‖ P Z 2 ‖ 

p 
p , 

(39) 

n efficient iterative algorithm is designed to solve the optimiza- 

ion problem. After introducing the diagonal matrix, Eq. (38) can 

e rewritten as 

in 

Z 1 
L 1 = 

1 

2 

Z � 1 H 

� D 1 HZ 1 + c 1 Z 
� 
1 D 2 Z 1 + c 2 (GZ 1 + e 2 ) 

� 

D 3 (GZ 1 + e 2 ) + c 3 Z 
� 
1 P 

� D 4 P Z 1 , (40) 

here 

D 1 = diag( 1 
| H 1 Z 1 | 2 −p , 

1 
| H 2 Z 1 | 2 −p , · · · , 1 

| H m 1 Z 1 | 2 −p ), 

D 2 = diag( 1 
| Z 11 | 2 −p , 

1 
| Z 12 | 2 −p , · · · , 1 

| Z 1(d+1) | 2 −p ), 

D 3 = diag( 1 
| G 1 Z 1 +1 | 2 −p , 

1 
| G 2 Z 1 +1 | 2 −p , · · · , 1 

| G m 2 Z 1 +1 | 2 −p ), 

D 4 = diag( 1 
| P 1 Z 1 | 2 −p ,

1 
| P 2 Z 1 | 2 −p , · · · , 1 

| P m Z 1 | 2 −p ), 

H i , G i denote the i th row data of matrix H and G , respectively.

 i represents the i th row data of matrix P . Z 1 i denotes the i th ele-

ent of Z 1 . m 1 , m 2 are the number of positive and negative data,

espectively. m is the number of total training data. By taking the 

erivative of Eq. (40) with respect to Z 1 and setting it to zero, we

an obtain 

 Z 1 L 1 = H 

� D 1 HZ 1 + c 1 D 2 Z 1 + c 2 G 

� D 3 (GZ 1 + e 2 ) 

+ c 3 Z 
� 
1 P 

� D 4 P Z 1 = 0 , (41) 

hen we can obtain 

 1 = −c 2 (H 

� D 1 H + c 1 D 2 + c 2 G 

� D 3 G + c 3 P 
� D 4 P ) 

−1 · G 

� D 3 e 2 , 

(42) 

imilarly, for Z 2 , we can obtain 

 2 = c 2 (G 

� E 1 G + c 1 E 2 + c 2 H 

� E 3 H + c 3 P 
� E 4 P ) −1 · H 

� E 3 e 1 , (43) 

here 

E 1 = diag( 1 
| G 1 Z 2 | 2 −p , 

1 
| G 2 Z 2 | 2 −p , · · · , 1 

| G m 2 Z 2 | 2 −p ), 

E 2 = diag( 1 
| Z 21 | 2 −p , 

1 
| Z 22 | 2 −p , · · · , 1 

| Z 2(d+1) | 2 −p ), 

E 3 = diag( 1 
| H 1 Z 2 +1 | 2 −p , 

1 
| H 2 Z 2 +1 | 2 −p , · · · , 1 

| H m 1 Z 2 +1 | 2 −p ), 

E 4 = diag( 1 
| P 1 Z 2 | 2 −p , 

1 
| P 2 Z 2 | 2 −p , · · · , 1 

| P m Z 2 | 2 −p ). 
5

The algorithm for linear Lap-LpLSTSVM is formulated in 

lgorithm 1 . After we obtain the two nonparallel hyperplanes, 

lgorithm 1 Linear Laplacian Lp norm least squares twin support 

ector machine. 

1: Input: the data matrix M, the weight parameter δ1 for k near- 

est neighbor,the parameters c 1 , c 2 , c 3 of Lap-LpLSTSVM (chosen 

by five-fold cross-validation),convergence constant ε and max- 

imum iterations k max . 

2: Initial: initialize Z 1 and Z 2 with the vectors of ones. 

3: Obtain the adjacency matrix by Eq. (3), and then the graph 

Laplacian can be obtained by L = D − W . 

4: Repeat 

5: update Z 1 by the Eq. (42). 

6: update Z 2 by the Eq. (43). 

7: t = t + 1 . 

8: Until t == k max or ( max ( abs (Z t 
1 

− Z t+1 
1 

)) ≤ ε and max ( abs (Z t 
2 

−
Z t+1 

2 
)) ≤ ε). 

9: Obtain the final label of test data by Eq. (21). 

q. (21) can be used to obtain the label of data. 

.2. Nonlinear Laplacian Lp norm least squares twin support vector 

achine 

In this section, we extend linear Lap-LpLSTSVM to the non- 

inear case. The decision function can be written as f ±(x ) = w ± ·
(x ) + b ±, where φ(·) is the nonlinear mapping from the low di-

ensional space to higher dimensional Hilbert space H. The two 

ernel-generated nonparallel hyperplanes are formulated as 

f + (x ) = K(x � , M 

� ) u 1 + b 1 = 0 , 

f −(x ) = K(x � , M 

� ) u 2 + b 2 = 0 , (44) 

here M ∈ R 

(l+ u ) ×d represents total labeled and unlabeled data, 

nd K(·, ·) is a chosen kernel function such as RBF kernel. The op- 

imization problems for nonlinear Lap-LpLSTSVM can be expressed 

s 

in 

u 1 ,b 1 
L 1 = 

1 

2 

‖ K(A, M 

� ) u 1 + e 1 b 1 ‖ 

p 
p + c 1 ‖ u 1 ‖ 

p 
p + c 1 | b 1 | p 

+ c 2 ‖ K(B, M 

� ) u 1 + e 2 b 1 + e 2 ‖ 

p 
p + c 3 ‖ P ρ1 ‖ 

p 
p , (45) 

in 

u 2 ,b 2 
L 2 = 

1 

2 

‖ K(B, M 

� ) u 2 + e 2 b 2 ‖ 

p 
p + c 1 ‖ u 2 ‖ 

p 
p + c 1 | b 2 | p + c 2 ‖ 

−K(A, M 

� ) u 2 − e 1 b 2 + e 1 ‖ 

p 
p + c 3 ‖ P ρ2 ‖ 

p 
p , (46) 

here ρk = [ u � 
k 

b k ] 
� (k = 1 , 2) , P = V 

1 
2 U 

� [ K(M, M 

� ) e ] , u 1 and u 2 
re relevant coefficients. We set 

 φ = [ K(A, M 

� ) e 1 ] , G φ = [ K(B, M 

� ) e 2 ] . (47)

imilarly to the linear Lap-LpLSTSVM, we can obtain 

1 = −c 2 (H 

� 
φ D φ1 H φ + c 1 D φ2 + c 2 G 

� 
φD φ3 G φ + c 3 P 

� 
φ D φ4 P φ ) −1 

·G 

� 
φD φ3 e 2 , (48) 

here 

D φ1 = diag ( 1 
| H φ1 ρ1 | 2 −p , 

1 
| H φ2 ρ1 | 2 −p , · · · , 1 

| H φm 1 
ρ1 | 2 −p ) , 

D φ2 = diag ( 1 
| ρ11 | 2 −p , 

1 
| ρ12 | 2 −p , 

1 
| ρ13 | 2 −p , · · · , 1 

| ρ1(m +1) | 2 −p ) , 

D φ3 = diag ( 1 
| G φ1 ρ1 +1 | 2 −p , 

1 
G φ2 ρ1 +1 | 2 −p , · · · , 1 

| G φm 2 
ρ1 +1 | 2 −p ) , 

D φ4 = diag ( 1 
| P φ1 ρ1 | 2 −p , 

1 
| P φ2 ρ1 | 2 −p , · · · , 1 

| P φm ρ1 | 2 −p ) , 

G φi , H φi denote the i th row data of matrix G φ and H φ , respec-

ively. P φi denotes the i th row data of matrix P . ρ1 i denotes the i th

lement of vector ρ . m and m are the number of positive and 
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egative data, respectively. m is the number of total training data. 

imilarly to ρ1 , we can obtain 

2 = c 2 (G 

� 
φ

E φ1 G φ + c 1 E φ2 + c 2 H 

� 
φ

E φ3 H φ + c 3 P 
� 
φ

E φ4 P φ ) −1 · H 

� 
φ

E φ3 e 1

(49) 

here 

E φ1 = diag( 1 
| G φ1 ρ2 | 2 −p , 

1 
| G φ2 ρ2 | 2 −p , · · · , 1 

| G φm 2 
ρ2 | 2 −p ), 

E φ2 = diag( 1 
| ρ21 | 2 −p , 

1 
| ρ22 | 2 −p , · · · , 1 

| ρ2(m +1) | 2 −p ), 

E φ3 = diag( 1 
| H φ1 ρ2 +1 | 2 −p , 

1 
| H φ2 ρ2 +1 | 2 −p , · · · , 1 

| H φm 1 
ρ2 +1 | 2 −p ), 

E φ4 = diag( 1 
| P φ1 ρ2 | 2 −p , 

1 
| P φ2 ρ2 | 2 −p , · · · , 1 

| P φm ρ2 | 2 −p ). 

ρ1 and ρ2 can be updated by Eqs. (4 8) and (4 9) . A new data

 ∈ R 

d is assigned to the corresponding class depending on which 

f two hyperplanes it is closer to, i.e., 

lass i = arg min k =1 , 2 
| K(x � ,M 

� ) u k + b k | √ 

u � 
k 

K(M,M 

� ) u k 
. (50) 

he algorithm for nonlinear Lap-LpLSTSVM is formulated in the 

lgorithm 2 . 

lgorithm 2 Nonlinear Laplacian Lp norm least squares twin sup- 

ort vector machine. 

1: Input: the data matrix M, the weight parameter δ1 for k nearest 

neighbor,the parameters c 1 , c 2 , c 3 and the RBF kernel param- 

eter δ2 of nonlinear Lap-LpLSTSVM (chosen by five-fold cross- 

validation),convergence constant ε and maximum iterations 

k max . 

2: Initial: initialize ρ1 and ρ2 with thevectors of ones. 

3: Obtain the adjacency matrix by Eq. (3), and then the graph 

Laplacian can be obtained by L = D − W . 

4: Repeat 

5: update ρ1 by the Eq. (48). 

6: update ρ2 by the Eq. (49). 

7: t = t + 1 . 

8: Until t == k max or ( max ( abs (ρt 
1 

− ρt+1 
1 

)) ≤ ε and max ( abs (ρt 
2 

−
ρt+1 

2 
)) ≤ ε). 

9: Obtain the label of test data by Eq. (50). 

.3. Time complexity 

In this section, we analyze the time complexity of our proposed 

ap-LpLSTSVM. N and d are set as the number of total training data 

nd the dimension of each data, respectively. T is the maximal 

umber of iterations. The time complexity of constructing adja- 

ency matrix and eigenvalue decomposition are both O (N 

2 ) . Mean- 

hile, in the linear case, we need to find the inverse matrix of a 

d + 1) × (d + 1) matrix whose time complexity is O ((d + 1) 3 ) . As

 whole, the time complexity of our proposed Lap-LpLSTSVM in 

he linear case is O (2 T (d + 1) 3 ) . As for its kernel version, the in-

erse matrix of a N × N matrix whose time complexity is O (N 

3 ) 

eeds to be obtained. Therefore, for the nonlinear Lap-LpLSTSVM, 

he time complexity is O (2 T N 

3 ) . 

. Experiment 

In this section, to demonstrate the effectiveness of our proposed 

lgorithm, we evaluate our algorithm on the task of binary classifi- 

ation in synthetic and real-world datasets. The synthetic datasets 

e use in the experiment are two moons and two lines. UCI and 

andwritten Numeral are real-world datasets. Our experiments are 

un in MATLAB 2016b on an Intel Core i7-9700K with 32GB RAM. 

e compare our proposed method with Lap-SVM, Lap-TSVM, Lap- 

STSVM, and manifold proximal support vector machine (MPSVM) 

33] . As known, least squares twin support vector machine [14] is 
6

 classical machine learning algorithm. To show that our proposed 

ethod can make full use of unlabeled data to exploit the geo- 

etric information embedded in the data, we adopt LSTSVM which 

ses the same labeled data to train the classifier for comparison. 

• Lap-SVM: Laplacian SVM. It uses the hinge loss with the man- 

fold assumption to construct a hyperplane classifier. 

• Lap-TSVM: Laplacian twin SVM. It adopts manifold assump- 

ions and exploits the geometric information embedded in data to 

onstruct two nonparallel hyperplanes to classify the data. 

• Lap-LSTSVM: Laplacian least squares twin SVM. It introduces 

 meaningful regularization hyperparameter to balance the RKHS 

erm and manifold regularization term. With the CG algorithm, 

wo systems of linear equations can be solved. 

• MPSVM: Manifold proximal SVM. It includes discriminant and 

nderlying geometric information to construct a more reasonable 

lassifier. The optimal nonparallel proximal hyperplanes can be 

btained by solving a pair of standard eigenvalue decomposition 

roblems. 

• LSTSVM: Least squares twin SVM. It is a classical machine 

earning algorithm, which requires the solution of two systems of 

inear equations. 

.1. Experiment setting 

In this section, we demonstrate the detailed setting of our ex- 

eriments. To partition datasets, the percentages of labeled and to- 

al training data are set to 8% and 60%, respectively. The percentage 

f test data is set to 40%. The maximum number of iterations is set 

o 20 and the threshold ε is set to 10 −4 . The p value of Lp norm

s selected from the set { 1 , 1 . 5 , 2 , 3 , 5 } . All the data are located in

0,1] before the training, and the best performance is highlighted. 

As known, the performance of our proposed algorithm and 

ther compared algorithms depends on the choice of hyperparam- 

ters [34] and the cross-validation method is employed to find the 

ptimal hyperparameters. In our experiments, the five-fold cross- 

alidation is used to select the optimal hyperparameters. In the 

rocedure of selecting hyperparameters, both labeled and unla- 

eled data are divided into five groups, and four groups of labeled 

nd unlabeled data are used to train the model. After the model 

s trained, the rest one group of the labeled data is used to be the

alidation set to obtain the accuracy. The process is repeated for 

ve times. In the linear case, for the sake of brevity, c 1 , c 2 are cho-

en from the set { 2 i | i = −5 , −4 , . . . , 4 , 5 } and c 3 is equal to c 2 . In

he nonlinear case, we set c 1 = c 2 = c 3 , c 1 , c 2 , c 3 and RBF kernel

arameter δ2 are also selected from the set { 2 i | i = −5 , −4 , . . . , 4 , 5 }.

fter the optimal hyperparameters are obtained by the strategy of 

ross-validation, they can be used to train the model. This process 

s repeated for five times, and the average accuracies and time are 

eported. 

.2. Experiments on synthetic datasets 

In this section, we use two synthetic datasets containing two 

oons and two lines to make experiments. These two synthetic 

atasets have two features and can be divided into two cate- 

ories. In order to further validate the effectiveness of the pro- 

osed method, we also add Gaussian noise with the mean value 

f zero and standard deviation of 0.1, 0.2, and 0.3 to the origi- 

al data. The distributions of two moons and two lines which are 

dded to the noise of mean value of zero and standard deviation of 

.2 are shown in Fig. 2 . We compare our algorithm with the other 

tate-of-the-art algorithms in linear and nonlinear cases. The re- 

ults of linear and nonlinear cases for synthetic datasets are shown 

n Tables 1 and 2 , respectively. 

In the linear case, we can see that our proposed method 

chieves the optimal performance in five datasets except for the 
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Fig. 2. Distributions of two moons and two lines datasets under the noise of mean value of zero and standard deviation of 0.2. 

Table 1 

The testing accuracy and training time on synthetic datasets(linear case). 

Datasets Lap-SVM Lap-TSVM Lap-LSTSVM MPSVM LSTSVM Lap-LpLSTSVM 

Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) 

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) 

Two moons(0.1) 85.83 ±10.79 91.42 ±4.55 94.25 ±1.85 94.00 ±4.31 93.50 ±4.40 95 . 00 ±1 . 06 

0.0371 0.0205 0.0098 0.0217 0.0004 0.0708 

Two moons(0.2) 76.25 ±18.45 91.50 ±3.32 93.75 ±0.98 93.08 ±1.55 93.67 ±4.15 93 . 83 ±1 . 08 

0.0611 0.0232 0.0153 0.0144 0.0004 0.0339 

Tow moons(0.3) 71.83 ±19.61 88.67 ±5.45 91.33 ±2.52 89.17 ±4.04 91.92 ±3.18 92 . 17 ±2 . 27 

0.0311 0.0201 0.0103 0.0228 0.0004 0.0762 

Two lines(0.1) 53.75 ±7.47 97.42 ±1.26 97.58 ±1.46 99 . 00 ±0 . 63 96.83 ±1.83 99 . 00 ±0 . 86 

0.0325 0.0215 0.0097 0.0124 0.0004 0.0793 

Two lines(0.2) 53.75 ±7.47 98.50 ±0.48 99 . 33 ±0 . 37 99.25 ±0.1 96.17 ±1.16 99.08 ±0.46 

0.0415 0.0214 0.0096 0.0135 0.0004 0.0475 

Two lines(0.3) 83.08 ±9.38 97.50 ±0.78 97.67 ±0.63 98.00 ±0.80 94.41 ±3.26 98 . 08 ±0 . 81 

0.0579 0.0157 0.0107 0.0116 0.0004 0.0691 
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ataset two lines(0.2). In the nonlinear case, our method also 

btains the optimal performance in four datasets except two 

oons(0.1) and two moons(0.3) datasets. The results show the ef- 

ectiveness of our proposed Lap-LpLSTSVM. 

.3. Experiments on UCI datasets 

In this section, we perform our proposed method and other 

ompared methods on the real-world datasets from the UCI ma- 

hine learning repository. The details of the datasets are summa- 

ized in Table 3 . Tables 4 and 7 list the results of all methods in

he linear and nonlinear cases for UCI datasets. In the linear case, 

ur proposed method obtains 1.43%, 6.39%, 7.86%, and 2.76% im- 

rovement on datasets Seeds, Vehicle, Ionosphere, and Liver re- 

pectively than the second baseline. In the nonlinear case, our pro- 

osed method obtains 1.38%, 0.57%, 3.9% improvement in datasets 

lass, Ionosphere, and Wilt respectively than the second baseline. 

hese results show the effectiveness of our proposed method. 

.4. Experiments on handwritten numeral datasets 

Handwritten Numeral datasets contain the digits from 0 to 9, 

nd each digit contains 200 data. Since Handwritten Numeral are 
7 
ulti-view datasets, we use one of its views to make the experi- 

ents. The Fourier coefficients of characters shapes (FOU) are used 

o evaluate the performance of our proposed Lap-LpLSTSVM and 

ompared methods. Two digits which contain 400 data are ran- 

omly selected from the datasets, and we select six numeral pairs 

or the experiments. Tables 6 and 8 show the results of the linear 

nd nonlinear cases for our and compared methods on Handwrit- 

en Numeral datasets. 

From Tables 6 and 8 , we can see that our method achieves the 

ptimal performance for all of the datasets in the linear case and 

btains the optimal performance in five datasets in the nonlinear 

ase. During the process of cross-validation, the accuracy versus c 1 
nd c 2 for Handwritten Numeral datasets are shown in Figs. 3 , 4 

nd 5 . They show the effect of changing values of c 1 and c 2 on ac-

uracy. In the dataset Handwritten Numeral (0 9), we can see that 

he accuracy is not sensitive to the choice of c 1 and c 2 . In dataset

andwritten Numeral (1 4), the optimal accuracy can be obtained 

hen c 1 ≤ 0 . 0625 . In dataset Handwritten Numeral (1 6), opti- 

al accuracy is obtained when c 1 ≤ 0 . 125 . In dataset Handwritten 

umeral (2 6), the performance is optimal when c 1 ≤ 0 . 025 and 

 2 ≥ 8 . In Handwritten Numeral (2 9) and Handwritten Numeral (6 

) datasets, the performance is optimal when c 1 ≤ 0 . 0625 . Accord- 

ng to the analysis above and Figs. 3–5 , we can obtain the follow- 
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Table 2 

The testing accuracy and training time on synthetic datasets(nonlinear case). 

Datasets Lap-SVM Lap-TSVM Lap-LSTSVM MPSVM LSTSVM Lap-LpLSTSVM 

Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) 

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) 

Two moons(0.1) 86.75 ±2.13 96.17 ±7.18 92.75 ±0.96 91.08 ±3.11 99 . 75 ±0 . 23 96.75 ±1.54 

0.1809 0.1530 0.0509 1.1421 0.0012 0.1957 

Two moons(0.2) 72.08 ±17.27 96.67 ±2.95 71.25 ±17.85 84.50 ±9.35 96.08 ±3.52 96 . 75 ±1 . 16 

0.2571 0.1656 0.0810 0.4541 0.0011 0.3581 

Two moons(0.3) 49.75 ±3.32 93.63 ±2.31 58.00 ±16.07 94.13 ±1.80 94 . 67 ±4 . 54 90.63 ±1.59 

0.1183 0.1372 0.8270 1.0076 0.0012 1.0100 

Two lines(0.1) 51.00 ±4.15 94.17 ±3.82 52.25 ±6.11 89.00 ±3.65 95.00 ±3.08 95 . 17 ±4 . 77 

0.0616 0.0366 0.0609 0.1690 0.0012 0.0730 

Two lines(0.2) 50.92 ±4.02 97.83 ±1.65 52.75 ±5.92 85.67 ±11.61 92.42 ±2.91 98 . 33 ±0 . 66 

0.0792 0.0256 0.0304 0.8450 0.0011 0.3033 

Two lines(0.3) 50.75 ±3.98 95.83 ±4.70 52.33 ±5.26 75.75 ±12.71 92.42 ±4.08 96 . 00 ±2 . 10 

0.0408 0.0412 0.0280 0.1683 0.0011 0.0991 

Table 3 

Description of the UCI datasets. 

Datasets Selected classes Instances Attributes 

Glass (1,2) 146 9 

Seeds (1,2) 140 7 

Vehicle (1,2) 429 18 

Australian - 690 14 

Housevotes - 435 16 

Haberman - 306 3 

Ionosphere - 351 34 

Liver - 345 6 

Pima - 768 8 

Wilt - 500 5 
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ng conclusions: (1) The optimal value of c 1 is selected from the set 

0.03125, 0.0625, 0.125}, so we recommend that c 1 takes a smaller 

alue. (2) In order to achieve better performance, c 2 tends to take 

 larger value. 

.5. Discussion 

Tables 1 –2 shows the results of our proposed Lap-LpLSTSVM 

n the linear and nonlinear cases on synthetic datasets. We can 

ee that our proposed method achieves the optimal performance 
Table 4 

The testing accuracy and training time on UCI datasets(linear

Datasets Lap-SVM Lap-TSVM Lap-LSTSVM

Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) 

Time(s) Time(s) Time(s) 

Glass 51.72 ±5.45 56.21 ±7.07 58.62 ±7.31 

0.0087 0.0190 0.0012 

Seeds 67.86 ±20.04 94.64 ±3.09 94.64 ±3.99 

0.0067 0.0184 0.0011 

Vehicle 49.19 ±4.08 51.51 ±1.77 50.70 ±5.43 

0.0203 0.0154 0.0050 

Australian 85.65 ±2.27 85.72 ±2.47 85.80 ±2.13 

0.0586 0.0275 0.0181 

Housevotes 87.01 ±5.15 91 . 26 ±3 . 53 91 . 26 ±3 . 02 

0.0204 0.0160 0.0058 

Haberman 72.79 ±2.68 70.82 ±5.46 72.62 ±5.84 

0.0140 0.0199 0.0048 

Ionosphere 69.57 ±7.01 72.29 ±9.25 77.86 ±6.59 

0.0371 0.0115 0.0049 

Liver 54.32 ±9.36 53.48 ±8.28 56.81 ±6.39 

0.0207 0.0115 0.0049 

Pima 67.62 ±2.75 75.18 ±2.90 74.85 ±3.53 

0.0760 0.0338 0.0228 

Wilt 61.80 ±2.84 58.60 ±5.33 56.10 ±11.21

0.0479 0.0172 0.0064 

8

n five of the six datasets for the linear case and in four of the six

atasets for the nonlinear case, which indicates that our method 

an also deal with noisy datasets and obtain good performance. 

ables 4 and 7 show the results of UCI datasets. Our proposed 

ethod outperforms other compared methods all except dataset 

ilt in the linear case. In the nonlinear case, our method does 

ot achieve the optimal performance just for the datasets Seeds 

nd Australian. Tables 6 and 8 show the results of six selected nu- 

eral pairs on Handwritten Numeral datasets. In the linear case, 

ur proposed method outperforms all compared methods in all 

atasets, which shows the advantage of our proposed algorithm. 

n the nonlinear case, we can see that our method obtains the op- 

imal performance in five datasets. Meanwhile, our method out- 

erforms LSTSVM which only uses the same labeled data to train 

n almost all of the datasets. It indicates that our method can 

ake advantage of unlabeled data to exploit the geometric infor- 

ation embedded in the data. In a word, we can see that our pro- 

osed method not only can handle noisy synthetic and real-world 

atasets but also can make full use of unlabeled data. 

Analysis of Variance (ANOVA) is a statistical hypothesis test, 

hich can be used to analyze the accuracy results and test the 

ignificance differences between several groups of results. In or- 

er to evaluate whether the performance improvement observed 
 case). 

 MPSVM LSTSVM Lap-LpLSTSVM 

Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) 

Time(s) Time(s) Time(s) 

49.29 ±3.91 61 . 03 ±6 . 96 61 . 03 ±7 . 57 

0.0013 0.0003 0.0090 

73.57 ±20.92 93.21 ±7.29 96 . 07 ± 4 . 07 

0.0013 0.0002 0.0026 

52.62 ±3.08 54.77 ±4.22 61 . 16 ±5 . 72 

0.0078 0.0005 0.0362 

63.28 ±6.54 85.86 ±1.93 85 . 87 ±2 . 23 

0.0218 0.0007 0.1095 

91.18 ±2.33 55.17 ±4.92 91 . 26 ±4 . 01 

0.0058 0.0004 0.0469 

72.13 ±2.24 66.23 ±13.38 73 . 61 ±1 . 58 

0.0037 0.0003 0.0555 

72.14 ±4.26 80.00 ±4.68 87 . 86 ±2 . 42 

0.0066 0.0006 0.0.0940 

56.81 ±10.61 55.51 ±10.67 59 . 57 ±5 . 53 

0.0066 0.0003 0.0278 

57.22 ±3.90 63.97 ±2.41 76 . 03 ±2 . 72 

0.0185 0.0006 0.0517 

 87 . 10 ±1 . 71 60.7 ±4.55 82.80 ±3.21 

0.0090 0.0004 0.0492 
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Table 5 

The p-value for the results of UCI datasets (linear case) for ANOVA. 

Ours V.S. Lap-SVM Lap-TSVM Lap-LSTSVM MPSVM LSTSVM 

p-value 0.0048 0.0278 0.0630 0.0102 0.0590 

Table 6 

The testing accuracy and training time on Handwritten Numeral datasets(linear case). 

Selected numeral pairs Lap-SVM Lap-TSVM Lap-LSTSVM MPSVM LSTSVM Lap-LpLSTSVM 

Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) 

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) 

0 9 70.25 ±24.99 99.63 ±0.56 99.63 ±0.56 99.75 ±0.34 99.50 ±0.28 99 . 88 ±0 . 28 

0.1145 0.0699 0.0200 0.0114 0.0025 0.3129 

1 4 51.00 ±3.66 75.75 ±8.61 77.63 ±6.75 78.88 ±14.57 84.88 ±9.22 86 . 00 ±5 . 97 

0.0301 0.0422 0.0193 0.0093 0.0040 0.0484 

1 6 52.87 ±6.40 83.38 ±4.93 84.13 ±3.47 87.00 ±3.26 85.50 ±5.40 89 . 13 ±4 . 30 

0.0379 0.0544 0.0281 0.0088 0.0034 0.6306 

2 6 55.50 ±9.64 91.75 ±7.41 92.12 ±5.51 96.12 ±2.91 91.88 ±4.10 97 . 63 ±0 . 81 

0.0298 0.0443 0.0167 0.0093 0.0471 0.2641 

2 9 58.13 ±12.36 92.75 ±5.39 89.25 ±7.17 95.75 ±2.31 93.38 ±4.89 97 . 37 ±2 . 00 

0.0178 0.0207 0.0178 0.0081 0.0505 0.0902 

6 9 49.75 ±3.32 78.62 ±2.70 50.13 ±3.26 51.13 ±2.44 51.13 ±4.56 55 . 00 ±3 . 278 

0.0186 0.0567 0.0162 0.0082 0.0025 0.045 

Table 7 

The testing accuracy and training time on UCI datasets(nonlinear case). 

Datasets Lap-SVM Lap-TSVM Lap-LSTSVM MPSVM LSTSVM Lap-LpLSTSVM 

Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) 

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) 

Glass 51.72 ±5.45 63.45 ±5.64 52.07 ±7.75 51.03 ±10.74 60.35 ±6.90 64 . 83 ±11 . 48 

0.0073 0.0331 0.0137 0.0070 0.0003 0.0380 

Seeds 85.00 ±2.68 83.41 ±1.99 85.65 ±2.27 94 . 64 ±2 . 82 93.93 ±3.25 85.00 ± 3.35 

0.0943 0.0353 0.0289 0.0056 0.0003 0.1502 

Vehicle 72.79 ±2.68 71.31 ±5.71 67.87 ±5.66 55.57 ±21.43 51.63 ±4.22 72 . 95 ±5 . 82 

0.0190 0.0431 0.0219 0.0881 0.0008 0.3495 

Australian 85.00 ±2.68 83.41 ±1.99 85 . 65 ±2 . 27 70.94 ±12.52 85.00 ±2.78 85.00 ±3.35 

0.0943 0.0353 0.0289 0.2920 0.0014 0.1502 

Housevotes 87.70 ±2.13 88.85 ±4.35 87.13 ±7.68 54.14 ±4.64 58.28 ±1.70 89 . 20 ±5 . 38 

0.0223 0.0676 0.0196 0.0558 0.0011 0.0820 

Haberman 72.79 ±2.68 71.31 ±5.71 67.87 ±5.66 55.57 ±21.43 69.67 ±4.26 72 . 95 ±5 . 82 

0.0190 0.0431 0.0219 0.0881 0.0005 0.3495 

Ionosphere 68.57 ±5.27 84.86 ±7.99 56.14 ±23.34 79.14 ±6.80 85.29 ±3.37 85 . 43 ±7 . 03 

0.2004 0.0469 0.0265 0.2444 0.0145 0.1774 

Liver 53.04 ±8.79 57.97 ±4.26 53.62 ±9.15 59.13 ±5.99 57.68 ±2.02 59 . 28 ±3 . 92 

0.0188 0.0477 0.0283 0.0290 0.0065 0.4338 

Pima 67.30 ±2.23 74.33 ±3.52 70.49 ±4.17 68.08 ±6.55 64.95 ±1.29 74 . 92 ±3 . 96 

0.0532 0.0406 0.0363 0.1947 0.0017 0.8700 

Wilt 61.80 ±2.84 60.00 ±2.42 61.80 ±2.84 45.70 ±11.19 58.10 ±8.48 65 . 70 ±4 . 74 

0.0200 0.0171 0.0104 0.1062 0.0008 0.5857 

Table 8 

The testing accuracy and training time on Handwritten Numeral datasets(nonlinear case). 

Selected numeral pairs Lap-SVM Lap-TSVM Lap-LSTSVM MPSVM LSTSVM Lap-LpLSTSVM 

Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) Acc ±Std( % ) 

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) 

0 9 77.62 ±17.10 98.13 ±4.19 49.75 ±3.32 99 . 63 ±0 . 56 99.13 ±0.84 98.75 ±0.99 

0.0082 0.1338 0.0209 1.1174 0.0007 0.0289 

1 4 66.50 ±3.74 82.13 ±7.48 49.75 ±3.32 83.75 ±1.93 86.00 ±5.62 88 . 00 ±2 . 18 

0.0083 0.0182 0.0146 0.1551 0.0008 0.0892 

1 6 82.38 ±14.03 87.50 ±3.03 49.75 ±3.32 72.75 ±19.47 88.75 ±4.49 89 . 63 ±4 . 52 

0.0103 0.0348 0.0288 0.1128 0.0008 0.0892 

2 6 88.50 ±12.08 96.37 ±1.43 49.75 ±3.32 95.63 ±2.58 94.88 ±3.35 96 . 62 ±0 . 95 

0.0105 0.1437 0.0458 0.0725 0.0007 0.3092 

2 9 70.75 ±15.61 94.75 ±2.67 49.75 ±3.32 95.38 ±2.28 93.63 ±2.355 95 . 63 ±2 . 50 

0.0081 0.0570 0.0741 0.0872 0.0007 0.2575 

6 9 49.75 ±4.77 51.00 ±3.87 50.25 ±3.32 47.87 ±2.19 50.25 ±3.24 52 . 38 ±3 . 17 

0.0081 0.1665 0.0465 0.4755 0.0007 1.3161 
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rom the proposed Lap-LpLSTSVM is statistically significant. The 

roposed Lap-LpLSTSVM and compared methods are used for pair- 

ise comparison on UCI datasets. The null hypothesis is that there 

s no significant difference in accuracy between the two methods 

n these datasets. The accuracy results on UCI datasets are shown 

n Table 4 , and we use the MATLAB toolbox to obtain the p-value
9

hose results are described in Table 5 . The p-value for the ac- 

uracy of Table 7 is shown in Table 9 . Since all the p-value in

ables 5 and 9 are less than 0.1, the significant differences are at 

he 0.1 significant level. 

Figures 6–8 indicates the change in the objective function value 

ith respect to each iteration on Handwritten Numeral datasets. 
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Fig. 3. Accuracy versus c 1 and c 2 on datasets Handwritten Numeral (0 9) and Handwritten Numeral (1 4). 

Fig. 4. Accuracy versus c 1 and c 2 on datasets Handwritten Numeral (1 6) and Handwritten Numeral (2 6). 

Fig. 5. Accuracy versus c 1 and c 2 on datasets Handwritten Numeral (2 9) and Handwritten Numeral (6 9). 

Table 9 

The p-value for the results of UCI datasets (nonlinear case) for ANOVA. 

Ours V.S. Lap-SVM Lap-TSVM Lap-LSTSVM MPSVM LSTSVM 

p-value 0.0284 0.0076 0.0393 0.0116 0.0844 

10 
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Fig. 6. Convergence curves for Z 1 and Z 2 on datasets Handwritten Numeral (0 9) and Handwritten Numeral (1 4). 

Fig. 7. Convergence curves for Z 1 and Z 2 on datasets Handwritten numerals (1 6) and Handwritten Numeral (2 6). 

Fig. 8. Convergence curves for Z 1 and Z 2 on datasets Handwritten numerals (2 9) and Handwritten Numeral (6 9). 
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e can observe that the loss curve falls fast and converges within 

everal iterations. The results empirically show the convergence of 

he proposed method. 

There are several reasons why our method outperforms other 

ompared state-of-the-art methods. (1) The p value of the Lp norm 

s adjustable, and desired performance can be achieved by choos- 

ng the appropriate value of p. (2) The proposed novel Lp graph 

egularization term can effectively exploit the geometric informa- 

ion embedded in the data, which is beneficial to find the optimal 

lassifier. (3) The iterative strategy can effectively deal with the op- 

imization problem, which will obtain a better performance. 

. Conclusion 

In this paper, we propose a novel Laplacian Lp norm least 

quares twin support vector machine for semi-supervised classi- 

cation. The strength of the proposed Lap-LpLSTSVM is that it can 

fficiently exploit the geometric information embedded in the data 

ith the introduced Lp norm graph regularization term and the 
11 
alue of p is flexible. Besides, an efficient iterative method is intro- 

uced to update the parameters of two nonparallel hyperplanes. 

t the same time, our proposed method converges in several iter- 

tions, which shows the high efficiency of our approach. 

In the experiment, the results on synthetic and real-world 

atasets demonstrate that the proposed method can achieve bet- 

er performance than other state-of-the-art methods in linear 

nd nonlinear cases. In order to show that our proposed semi- 

upervised approaches outperform their supervised counterparts, 

STSVM which uses the same labeled data as the training data 

s used to compare with the proposed Lap-LpLSTSVM. The results 

ndicate the advantage of our Lap-LpLSTSVM. The disadvantage is 

hat our method has several hyperparameters which need to be 

uned. In the future, we can extend our method to unsupervised 

plane clustering. Multi-view learning is also an extensible direc- 

ion, and we can exploit the complementary and consensus infor- 

ation among views based on our method. Besides, we can also 

xtend our model to transfer learning. 
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