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A B S T R A C T

Forecasting carbon futures prices is a challenging task due to the complex and dynamic factors influencing
them. Accurate forecasting can aid carbon market participants in hedging and optimizing their trading
strategies. In this paper, we propose a novel feature selection method based on importance measures, aimed
at selecting the most relevant and informative features for forecasting carbon futures prices. Our method
introduces Gaussian noise to the input features, calculates the importance scores of the features, and determines
the optimal threshold value for feature selection. We train and test different forecasting models on both the
original and noisy feature sets using a 5-fold cross-validation approach. The importance score of each feature
is calculated based on the error difference between the original and noisy feature sets. The optimal threshold
value is determined based on the minimum prediction error obtained by ranking the features. We combine
our feature selection method with different models to forecast carbon futures prices. The experimental results
demonstrate that our method can effectively select useful features, outperforming variance thresholding and
analysis of variance in feature selection. Moreover, our feature selection approach improves the prediction
accuracy of different models. Our method is also robust in enhancing prediction accuracy across different
models, test sets, time periods, and Gaussian noise levels.
1. Introduction

Forecasting carbon futures prices is a vital task for the carbon
emission trading market, which is one of the main mechanisms to
mitigate greenhouse gas emissions and combat climate change. Carbon
futures are contracts that allow buyers and sellers to trade carbon
emission allowances at a predetermined price and date in the future.
Carbon futures prices reflect the market expectations and uncertainties
about the supply and demand of carbon emission allowances, as well
as the impacts of various economic, environmental, and policy factors.
Accurate forecasting of carbon futures prices can provide valuable
insights for policymakers and regulators to design and evaluate ef-
fective carbon emission reduction policies and measures. Moreover,
forecasting carbon futures prices can also facilitate the development
of carbon finance products and services, such as carbon derivatives,
carbon funds, carbon insurance, and carbon asset management (Zhou
and Li, 2019; Phelan et al., 2010; Liu et al., 2021).

One of the main challenges in forecasting carbon futures prices is
the complexity, uncertainty, and volatility of the carbon futures data,
which exhibit nonlinear and nonstationary behaviors due to various
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factors affecting the carbon market, such as demand and supply, policy
changes, weather conditions, and unexpected events (Li et al., 2023;
Zhao et al., 2021a). These behaviors pose difficulties for conventional
linear or stationary models to capture the patterns and trends of the
data accurately. Another challenge is the high volatility and frequent
fluctuations of the carbon futures price, which make it prone to noise
interference or mode mixing during the data decomposition or re-
construction processes (Huang et al., 2021). Moreover, the carbon
futures price is influenced by many exogenous variables, such as energy
prices, macroeconomic indicators, environmental factors, and market
sentiments, which have complex and dynamic interactions with each
other and may affect the carbon market expectations and uncertain-
ties (Lovcha et al., 2022). To cope with these challenges, various
methods have been proposed to improve the accuracy and reliability
of forecasting carbon futures prices. These methods can be classified
into several groups: direct forecasting techniques, decomposition-based
methods, entropy methodologies, and secondary decomposition meth-
ods. Direct forecasting techniques are those that apply a single model to
forecast the carbon futures price without considering its nonlinear and
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nonstationary characteristics. These techniques include Random Forest
(RF) (Yahşi et al., 2019), Support Vector Regression (SVR) (Jianwei
et al., 2019), Linear Regression (LR) (Koop and Tole, 2013; Guðbrands-
dóttir and Haraldsson, 2011), Ridge Regression (RR) (Han et al., 2015;
Tan et al., 2022), Bagging Regression (BR) (Hong et al., 2017) and Gra-
dient Boosting Decision Tree Regression (GBR) (Zhu et al., 2023). These
techniques have some advantages, such as high speed, strong adapt-
ability, and powerful prediction ability. However, they also have some
drawbacks, such as high sensitivity to initial parameters, easy trapping
in local optima, poor generalization performance, and ignorance of
the structural features and temporal dependencies of carbon futures
price data. Although these methods have achieved some progress in
forecasting carbon futures prices, they still face some limitations and
challenges. For instance, most of these methods depend on manual
selection or trial-and-error of parameters, bases, or modes, which may
be subjective, time-consuming, and inefficient. Furthermore, some of
these methods may encounter overfitting or underfitting problems,
which may impair the generalization and robustness of the forecasting
models. Additionally, some of these methods may omit or lose some
important features or information of the carbon futures price data
during the decomposition or reconstruction process, which may lower
the forecasting accuracy and reliability. Lastly, some of these methods
may fail to capture the complex and dynamic interactions among the
exogenous variables that influence the carbon futures price, which may
result in biased or incomplete forecasts. Therefore, there is a need for
a novel feature selection method for forecasting carbon futures prices
that can overcome these limitations and challenges.

In this paper, we propose a novel feature selection method based
on importance measures for forecasting carbon futures prices. The
main features and contributions of our method are as follows. First,
it introduces Gaussian noise to each input feature and measures the
difference between the errors obtained using the original and noisy
feature sets, thereby reflecting the importance of the feature for fore-
casting. Second, our method determines the optimal threshold value
for feature selection by minimizing the prediction errors obtained from
ranking the features, ensuring that only features with predictive power
and relevance to the target variables are selected. Third, the proposed
feature selection method is applied to implement feature selection in
different models, such as linear regression, ridge regression, support
vector regression, random forest, gradient boosting decision tree re-
gression, and bagging regression. We compare our proposed method
with other feature selection techniques, including threshold value and
analysis of variance. Fourth, our method analyzes the top 10 features of
different models according to their importance scores, identifying the
common and consistent factors, as well as the varying and moderate
factors, for carbon futures price forecasting.

The main contributions of this paper are as follows:

• We propose a novel feature selection method that can effectively
identify the importance of predictors and screen relevant fac-
tors for carbon futures price forecasting. The proposed feature
selection method is applicable to a wide range of models.

• We apply the proposed method to select features and forecast the
EU carbon futures price using daily data spanning from January
4, 2013, to August 31, 2022. We compare its performance with
several benchmark methods.

• We conduct extensive experiments to verify the effectiveness, gen-
erality, robustness, and stability of the proposed method across
different models, various scenarios, and settings.

The rest of this paper is organized as follows. Section 2 reviews
the related literature on carbon futures price forecasting. Section 3
introduces the proposed method and its components in detail. Section 4
describes the data and experimental settings, conducts the experiments,
and presents the experimental results. Finally, Section 5 concludes the
2

paper and suggests potential directions for future research.
2. Related work

Carbon futures price forecasting is a vital and difficult task for
various stakeholders in the carbon market. It requires selecting suitable
features and models that can capture the complex and uncertain factors
that influence the carbon price. In this section, we survey the existing
methods for carbon futures price forecasting, feature selection, and
importance measures. We also identify the gaps and challenges of the
current research, and motivate our proposed method.

2.1. Forecasting methods

Carbon future price is a key factor in the carbon emission trading
market, which can influence the decisions and behaviors of enterprises
and policymakers. One of the main challenges in forecasting carbon
future price is to account for its nonlinear and nonstationary charac-
teristics, which may result from various factors such as market demand
and supply, policy changes, weather conditions, and unexpected events.

To address this challenge, some researchers have adopted
decomposition-based methods, which can reduce the complexity and
dimensionality of data, enhance the stability and accuracy of fore-
casting models, and capture the nonlinear and nonstationary features
of data. Decomposition-based methods can be divided into two cate-
gories: primary decomposition methods and secondary decomposition
methods. Primary decomposition methods are those that decompose
carbon future price data into several components with different char-
acteristics, such as trend, seasonality, cycle, and noise. Then, different
models are applied to forecast each component separately, and the final
forecasting results are obtained by aggregating the component fore-
casts. Some common primary decomposition methods include Variation
Mode Decomposition (VMD) (Huang et al., 2021), Wavelet Trans-
form (WT) (Wang et al., 2021), and Empirical Mode Decomposition
(EMD) (Zhu et al., 2018) and its variants, such as Ensemble Empirical
Mode Decomposition (EEMD) (Qin et al., 2020), Complementary En-
semble Empirical Mode Decomposition (CEEMD) (Sun and Li, 2020),
and Complete Ensemble Empirical Mode Decomposition with Adap-
tive Noise (CEEMDAN) (Zhou et al., 2022). However, these methods
also have some limitations, such as difficulty in selecting appropriate
parameters, bases, or modes, susceptibility to noise interference or
mode mixing, and loss of information during decomposition or re-
construction. Secondary decomposition methods are those that further
improve forecasting accuracy by conducting a second decomposition
on high-complexity components. The main methods in this category are
CEEMDAN-VMD (Zhou and Wang, 2021), EMD-VMD (Sun and Huang,
2020), and CEEMD-VMD (Li et al., 2021). These methods help reduce
the instability of the original data at a lesser cost. However, they still
need to choose suitable models for forecasting each component after
decomposition.

Another challenge in forecasting carbon future price is to measure
the complexity or uncertainty of data using entropy theory. Entropy
can reflect the degree of disorder or randomness of a system, and can
be used to quantify the information content or predictability of data.
Entropy methodologies can help enhance the accuracy of forecasting
complex data by selecting optimal parameters or models based on en-
tropy criteria. Some entropy methodologies include range entropy (Sun
et al., 2021), sample entropy (Li et al., 2022), fuzzy entropy (Zhang
and Wang, 2023), and Multiscale Fuzzy Entropy (MFE). MFE, as a
combination of the advantages of fuzzy entropy and multiscale, has
shown excellent nonlinearity but its application in the field of carbon
price forecasting remains unexplored (Yang et al., 2023).

Data decomposition can mine the intrinsic characteristics of the data
itself, but many decomposition integrated models only use carbon price
history series. However, the carbon price is a complex system that is
affected by many factors, so it is not enough to rely on the historical
information of carbon price for prediction (Wang et al., 2023c). In

addition, if the carbon price is decomposed, the model cannot truly
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reflect the relationship between the factor and the carbon price when
external influence factors are considered. Thus, some researchers have
also applied direct forecasting techniques to forecast carbon future
prices, which helps to directly reflect the influence of factors on carbon
price prediction. These techniques include Random Forest (RF) (Yahşi
et al., 2019), Support Vector Regression (SVR) (Jianwei et al., 2019),
Linear Regression (LR) (Koop and Tole, 2013; Guðbrandsdóttir and
Haraldsson, 2011), Ridge Rregression (RR) (Han et al., 2015; Tan et al.,
2022), Bagging Regression (BR) (Hong et al., 2017) and Gradient Boost-
ing Decision Tree Regression (GBR) (Zhu et al., 2023). These techniques
have been verified that they have high speed, strong adaptability, and
powerful prediction performance.

2.2. Feature selection methods

Feature selection is a process of selecting a subset of features from
the original feature space, which can improve the performance and
interpretability of the forecasting models (Alsahaf et al., 2022). Many
studies have shown that feature selection can improve the prediction
accuracy of carbon futures prices (Zhao et al., 2023; Li et al., 2022).
For instance, Hao and Tian (2020) consider multiple influencing factors
and use maximum correlation minimum redundancy to select features,
and the results show that these features can significantly improve
the accuracy of carbon price prediction. Gong et al. (2023) utilize
recursive feature elimination to select the best feature combination and
make carbon futures return prediction, and the results prove that these
features are helpful for this task. Zhao et al. (2021a) use a two-stage
feature selection method to select the important factors for carbon price
forecasting, and the experiment demonstrates that these selected factors
are helpful in this task as well.

Various feature selection techniques have been proposed and ap-
plied in time series forecasting, which can be broadly categorized into
four groups: filter methods, wrapper methods, embedded methods, and
metaheuristic-based feature selection algorithms. Each group has its
own advantages and disadvantages, as well as challenges and oppor-
tunities for further research (Wang and Li, 2018). Filter methods are
based on some statistical measures of the data, such as correlation,
entropy, variance thresholding, analysis of variance or mutual infor-
mation. They evaluate and select the features independently of the
prediction models, which makes them fast and convenient. However,
they may also neglect the interactions between the features, and may
not be optimal for a specific prediction task. Filter methods gener-
ally have a higher computational scalability, but result in a lower
accuracy (Cavalcante et al., 2016). Moreover, some filter methods
are not adaptive. For example, mutual information method requires
setting the number of selected features. Wrapper methods are based
on the performance of a specific prediction model, such as accuracy,
error, or likelihood. They search for the optimal subset of features that
maximizes or minimizes the performance metric of the model. They are
more accurate and flexible than filter methods, but they are also more
computationally expensive (Lin et al., 2014). Wrapper methods can
handle complex data structures better than filter methods, but they may
also require multiple training of the prediction models (Wang and Li,
2018). Embedded methods are based on a learning algorithm that has a
built-in mechanism for feature selection, such as regularization or tree-
based methods. They select the features that have a high contribution to
the model fitting or prediction, and penalize or eliminate the irrelevant
or redundant features. They combine the benefits of filter and wrapper
methods, such as efficiency and stability, but they may also be biased by
the choice of the learning algorithm. Moreover, the existing embedded
feature selection methods, such as RF, GBR, etc., do not provide clear
feature screening criteria, and many studies set the number of features
subjectively (Zhang and Lin, 2023; Yang et al., 2020).

Some meta-heuristic algorithms, such as particle swarm optimiza-
tion (Song et al., 2021; Wang et al., 2007), simulated annealing (Meiri
3

and Zahavi, 2006), genetic algorithms (Hamdani et al., 2011), and
bacterial foraging optimization (Panda et al., 2011), have been applied
to feature selection problems and demonstrated good performance.
However, these algorithms also have some limitations. First, meta-
heuristic algorithms are prone to getting trapped in local optima when
solving feature selection problems (Sharma and Kaur, 2021). These al-
gorithms rely on search-based strategies that may not explore the entire
solution space and find the global optimum. Second, meta-heuristic
algorithms require many parameters to be set, such as population size,
number of iterations, convergence criteria, etc. The choice of these
parameters may affect the outcome of feature selection significantly.
However, finding the optimal values of these parameters is often chal-
lenging and time-consuming, as it involves trial and error and domain
knowledge. Third, meta-heuristic algorithms are computationally ex-
pensive. Many meta-heuristic based feature selection algorithms need
a large number of iterations and computations, especially for large
data sets (Agrawal et al., 2021). This results in a long running time
of the algorithms and limits their practical applicability. In contrast,
the proposed method does not suffer from these drawbacks. The pro-
posed method offers a simpler and more efficient approach to feature
selection. It avoids the risk of falling into local optima by not relying on
search-based strategies. Additionally, it eliminates the need for manual
parameter tuning, simplifying the implementation process. The pro-
posed method’s straightforward principle and computational efficiency
make it a promising candidate for feature selection tasks, including
those within the domain of carbon price forecasting

2.3. Summary

While numerous studies have focused on predicting carbon futures
prices, there remain certain aspects that require more attention. Firstly,
many of these studies concentrate solely on historical carbon price
time series data (e.g., Zhang and Wang, 2023; Wang et al., 2023b),
overlooking the impact of external factors on carbon price predictions.
Secondly, a significant challenge lies in effectively identifying key fac-
tors influencing carbon prices to enhance prediction accuracy. Efficient
feature selection not only improves model prediction accuracy but also
increases model interpretability (Cavalcante et al., 2016). However,
some models, like RF and GBR, employ their own mechanisms to assess
feature importance, lacking clear screening criteria and consistency
in their feature selection principles. The traditional feature selection
metrics such as correlation coefficients and information gain do not
consider the prediction processes or only consider the local effects of
prediction processes rather than the global effects. Addressing these
gaps, this paper takes into account multiple factors and proposes a
feature screening method applicable across various machine learning
models. This method also features the capability to automatically select
the number of features, eliminating the need for subjective setting.

3. Methodology

In this section, we propose a novel feature selection method based
on importance measures, which selects the most effective and infor-
mative features for carbon futures price forecasting. We also introduce
the forecasting models and the performance evaluation metrics that we
use to predict and measure the carbon futures price using the selected
features.

3.1. Overview

Fig. 1 shows the overview of the proposed feature selection method
(PFS), called feature selection based on importance measures (IM),
which consists of three main steps: adding Gaussian noise to the
input features, calculating the importance scores of all features, and
determining the optimal threshold value. The figure also illustrates how
each step works in detail. The Gaussian noise is added to the input

features to introduce some perturbation and uncertainty to the data.
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Fig. 1. Overview of the proposed method.
The importance scores of the features are calculated using a 𝑘-fold
cross-validation approach and a base model. The importance score is
defined as the ratio of the error change caused by a feature to the total
error change of all features. We use the features that have a cumulative
importance score exceeding the threshold value to train and test the
model by 𝑘-fold cross-validation and get the mean prediction errors for
each threshold value. Then, the optimal threshold value is determined
by the minimum of mean prediction errors.

Example 3.1 (Dataset Description). In this study, we will use a running
example to explain our methodology. This running example is about
forecasting carbon futures prices using various input features, such as
Brent crude oil futures, Natural gas futures price and Coal Rotterdam
futures price. Carbon futures are financial contracts that allow traders
to buy or sell carbon emission allowances at a predetermined price and
date. Forecasting carbon futures prices is important for carbon market
participants, such as investors, regulators, and policy makers. However,
forecasting carbon futures prices is challenging due to the high volatil-
ity and uncertainty of the carbon market, as well as the large number
4

of potential input features that may affect carbon futures prices. There-
fore, we need a robust and efficient feature selection method to select
the most relevant and important features for forecasting carbon futures
prices.

We use a dataset that contains daily data on carbon futures prices
(EUROPEAN EMISSION ALLOWANCES) and other input features from
European Union Allowances (EUA) from January 4, 2013 to August 31,
2022. The dataset is obtained from Bloomberg, Wind, FRED, Eeropean
Central Bank and public website. The dataset has 2344 observations
and 36 variables. Table A.14 shows the list of variables, and Table 1
shows a summary of the dataset. all features are closely related to EUA
prices at the significance level of 1%.

In the following subsections, we will describe each step of the
proposed method in more detail, and take a linear regression and 3
input features (Brent, NGFP and Coal) of carbon price forecasting as an
example to explain the proposed method. Moreover, in Section 4, we
will use the dataset of Table 1 to demonstrate how our feature selection
method works and how it can improve the forecasting performance of
different models.
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Table 1
Summary of the dataset.

Variable Mean Std Med Min Max Corr Variable Mean Std Med Min Max Corr

EUA 21.235 23.026 8.335 2.700 97.590 Corn 95.615 31.265 88.465 49.920 198.210 −0.061***
Brent 70.104 24.043 64.365 19.330 127.980 0.229*** Cotton 312.426 68.911 298.940 195.340 624.680 0.753***
NGFP 67.396 69.099 47.685 8.340 640.360 0.754*** USPU 59.875 81.023 31.530 4.800 939.580 0.242***
Coal 91.502 67.437 75.100 38.450 439.000 0.761*** UKPU 301.296 212.730 241.290 16.370 2610.060 −0.170***
COERI 5.429 2.100 5.520 1.350 17.800 −0.588*** VIX 17.635 7.356 15.430 9.140 82.690 0.402***
NGERI 79.131 26.933 67.749 42.827 190.847 0.288*** ESTOXX600 374.344 45.098 374.220 275.660 494.350 0.768***
HOERI 245.655 97.340 214.110 83.562 491.464 0.050** SP500 2714.026 857.171 2552.620 1457.150 4796.560 0.902***
ECI 577.370 193.494 523.044 178.558 1168.798 0.336*** ESTOXXOG 299.056 40.314 308.830 149.740 379.260 −0.145***
Spiler 650.576 129.702 604.080 391.700 1180.920 0.250*** NEGI 235.118 104.121 191.880 126.600 626.130 0.730***
Golden 752.508 117.159 703.380 566.410 1056.830 0.713*** CEI 77.027 47.551 58.630 36.530 281.440 0.670***
Live cattle 3528.372 378.831 3515.790 2597.980 4509.890 −0.546*** NECI 364.499 60.398 338.737 286.870 581.122 0.738***
Coffe 58.737 20.998 57.860 29.540 122.750 −0.281*** USCBYS 0.900 0.225 0.880 0.530 1.990 −0.060***
Cocoa 32.257 5.068 31.270 22.670 43.780 −0.269*** USBY3M 0.698 0.846 0.220 0.000 2.970 0.156***
Lean hogs 137.263 49.653 132.795 46.510 277.580 −0.564*** USBY10Y 2.101 0.640 2.200 0.520 3.490 −0.141***
Sugar 120.071 38.927 110.040 59.230 223.840 −0.324*** USTS 1.403 0.804 1.440 −0.520 2.970 −0.276***
Soybeans 4449.350 790.614 4383.200 3085.480 6904.240 0.488*** EUBY3M −0.464 0.305 −0.603 −0.930 0.201 −0.290***
Copper 4098.412 893.947 3962.135 2652.590 6638.730 0.763*** EULTBY 1.427 1.142 1.358 −0.402 3.986 −0.456***
Wheat 101.989 33.251 89.585 60.100 206.190 −0.133*** EUTS 0.944 0.518 0.996 0.072 2.236 −0.366***
Zinc 125.446 29.123 121.905 70.260 232.900 0.779***

Note: This table reports a summary of the dataset. Std, Min, and Max are the standard deviation, minimum, and maximum of the dataset. Corr is the correlation coefficient
between the independent variable and EUA. ‘‘**’’ and ‘‘***’’ are statistically significant at the 5%, and 1% levels, respectively.
3.2. Feature selection based on importance measures

Feature selection is a crucial step for carbon futures price fore-
casting, as it can reduce the dimensionality and noise of the input
features, and enhance the accuracy and efficiency of the forecasting
models. However, feature selection is also a challenging task, as it
requires to balance the trade-off between the relevance and redundancy
of the features, and to cope with the dynamic and non-linear nature of
the carbon futures market. In this paper, we propose a novel feature
selection method based on importance measures, which aims to select
the most relevant and informative features for carbon futures price
forecasting and is suitable for different models. Our method consists
of three main steps: adding Gaussian noise to the input features,
calculating the importance scores of the features, and determining the
optimal threshold value for feature selection. We describe each step in
detail below.

Before feature selection, we normalize all the input and output
features using the Min-Max method, which transforms the feature
values to a range between 0 and 1. The normalization formula is as
follows:

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥) (1)

where 𝑥 is a value of a feature, min(𝑥) and max(𝑥) are the minimum and
maximum values of that feature, respectively, and 𝑥′ is the normalized
value. The normalization can help to avoid the influence of different
scales and units of the features on the feature selection process.

3.2.1. Adding Gaussian noise to the input features
The first step of our method involves adding Gaussian noise to the

input features, denoted as 𝑋 = 𝑥1, 𝑥2,… , 𝑥𝑛, where 𝑛 is the number of
features. The Gaussian noise is generated from a normal distribution
with zero mean and a small standard deviation 𝜎, chosen according
to the scale of the features. The noise is added to each feature inde-
pendently, resulting in a noisy feature set 𝑋′ = 𝑋′

1, 𝑋
′
2,… , 𝑋′

𝑛, where
𝑋′

𝑖 = 𝑥1, 𝑥2,… , 𝑥′𝑖 ,… , 𝑥𝑛, 𝑥′𝑖 = 𝑥𝑖 + 𝜖𝑖, and 𝜖𝑖 ∼ 𝑁(0, 𝜎2). The purpose of
adding Gaussian noise to the input features is to introduce perturbation
and uncertainty to the data, which can emphasize the robustness of
the output features. Intuitively, if a feature is important for forecasting,
adding noise to it should cause a significant change in the forecasting
error; conversely, if a feature is irrelevant or redundant for forecasting,
adding noise to it should have little or no effect on the forecasting error.

To control the intensity of the added noise, we adjust the variance of
the Gaussian distribution. A higher variance results in more pronounced
disturbance and uncertainty, whereas a lower variance produces a
5

subtler effect. In our study, we have standardized all input features
to ensure uniform scaling. By adding Gaussian noise with consistent
mean and variance across all features, we guarantee equal levels of
disturbance and uncertainty for different factors during the feature
selection process. This strategy prevents bias towards specific samples
or features, allowing the model to focus on the overall contribution of
features. Therefore, we set the same variance for all features in different
models during the feature selection process.

Example 3.2 (Adding Gaussian Noise to Input Features). For the sake of
demonstration purposes, we take three features (’Brent’, ‘NGFP’, and
‘Coal’) as examples (see Fig. 2), which are crucial factors affecting the
carbon futures price. In this example, we split the training set and the
test set in the ratio of 9:1, and we use the training set (90% dataset)
for modeling and feature selection.

We have normalized these features using the Min-Max method as
described above. The normalized features range between 0 and 1. Next,
we generate Gaussian noise from a normal distribution with zero mean
and a standard deviation of 0.1. The standard deviation of the noise
is chosen based on trial-and-error experiments. After that, we add the
Gaussian noise to the normalized features independently. The noisy
features, denoted as ‘Brent Noisy’, ‘NGFP Noisy’, and ‘Coal Noisy’, are
calculated as ‘Feature Noisy’ = ‘Feature’ + noise.

Finally, we visualize the original and noisy features to see the effect
of the Gaussian noise. The figure below shows the ‘Brent’, ‘NGFP’, and
‘Coal’ features before and after adding the Gaussian noise. It can be seen
that the noisy features retain the same overall trends as the original
features, but with some random perturbation added. This perturbation
introduces some uncertainty to the data, which can help to evaluate the
importance of the features in the following steps.

3.2.2. Feature importance score calculation
The second step of our method is to calculate the importance scores

of the features, which reflect how much each feature contributes to the
forecasting performance. The proposed importance score is a quanti-
tative metric designed to measure the contribution of each feature in
the model’s prediction process. This score reflects the direct impact of
a feature on the model’s prediction accuracy. In machine learning, we
calculate the importance score of each feature based on the model’s
prediction error change.

To do this, we use a 𝑘-fold cross-validation approach, which divides
the data into 𝑘 subsets or folds. For each fold, we train a base model

(such as LR, RR, SVR, RF, GBR and BR) on 𝑘 − 1 folds, and test
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Fig. 2. Illustration of adding Gaussian noise to ‘Brent’, ‘NGFP’, and ‘Coal‘ features.
t on the remaining fold. We repeat this process for all folds, and
btain 𝑘 validation sets (out-of-bag (OOB) datasets), which are not used
or training but only for testing. For each OOB dataset, we calculate
he forecasting error using both the original feature set 𝑋 and the
oisy feature set 𝑋′ = {𝑋′

1, 𝑋
′
2,… , 𝑋′

𝑛}. We denote these errors as
𝑋 and 𝐸𝑋′ , respectively. The process of adding Gaussian noise and
erforming k-fold cross-validation relies on the fixed random seed
random.seed(12)). Then, we calculate the importance score of
ach feature 𝑥𝑖 as follows:

𝑖 = 𝐼(𝑥𝑖) =
1
𝑘

𝑘
∑

𝑗=1
|𝐸𝑋′

𝑖𝑗
− 𝐸𝑋𝑗

|,

𝐼𝑀𝑖 = 𝐼𝑀(𝑥𝑖) =
𝐼𝑖

∑𝑛
𝑖=1 𝐼𝑖

,

(2)

here 𝐸𝑋𝑗
is the errors of 𝑗th OOB dataset using 𝑋, and 𝐸𝑋′

𝑖𝑗
is the

rrors of 𝑗th OOB dataset using 𝑋′
𝑖 . 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛} is the original

nput features, and 𝑋′
𝑖 = {𝑥1, 𝑥2,… , 𝑥′𝑖 ,… , 𝑥𝑛} is the input feature after

dding the noise to the 𝑖th feature 𝑥𝑖. 𝑛 is the number of features. The
mportance 𝐼(𝑥𝑖) measures how much the error changes when adding
oise to feature 𝑥𝑖. The importance scores are then averaged across
he 𝑘 folds to obtain a single importance score for each feature. We
ormalize the importance to obtain the importance score (IM) of each
eature, which ranges from 0 to 1. The higher the importance score, the
ore the feature contributes to the forecasting performance.

We present the algorithm for calculating the importance scores of
he features in Algorithm 1. The data is a normalization dataset 𝐷 =
𝑋, 𝑌 ) of input features and output variable. The input of Algorithm

is the number of folds for cross-validation, the standard deviation
f Gaussian noise, and the base forecasting model. The output of
lgorithm 1 is a set of importance scores for each feature.

xample 3.3 (Calculating the Importance Scores of Features). The impor-
ance scores of the ‘Brent’, ‘NGFP’, and ‘Coal’ features, using a linear
egression model and a 5-fold cross-validation process, are shown in
ig. 3. To better understand these scores, we can examine how the
6

rediction error changes when Gaussian noise is added to each feature,
Algorithm 1: Calculating the Importance Scores of the Features
Data: 𝐷 = (𝑋, 𝑌 ), a normalization dataset of input features and

output variable
Result: 𝐼𝑀 = {𝐼𝑀1, 𝐼𝑀2, ..., 𝐼𝑀𝑛}, a set of importance scores

for each feature
Input: 𝑘, the number of folds for cross-validation; 𝜎, the

standard deviation of Gaussian noise; 𝑓 , the base
forecasting model

Output: 𝐼𝑀 , the importance scores of features
1 Initialize 𝐼𝑀 as an empty set;
2 Divide 𝐷 into 𝑘 training sets 𝑇 𝑟 = {𝑇 𝑟1, 𝑇 𝑟2, ..., 𝑇 𝑟𝑘} and

corresponding validation sets 𝑉 𝑎 = {𝑉 𝑎1, 𝑉 𝑎2, ..., 𝑉 𝑎𝑘} by
𝑘-fold cross-validation;

3 for 𝑖 ← 1 to 𝑛 do
4 Initialize 𝐼𝑖 as zero;
5 Generate Gaussian noise 𝜖𝑖 ∼ 𝑁(0, 𝜎2) and add it to feature

𝑥𝑖 to get noisy feature 𝑥′𝑖 ;
6 for 𝑗 ← 1 to 𝑘 do
7 Train model 𝑓 on training set 𝑇 𝑟𝑗 using both original

feature set 𝑋 and noisy feature set 𝑋′
𝑖 respectively;

8 Test model 𝑓 on validation set 𝑉 𝑎𝑗 using both original
feature set 𝑋 and noisy feature set 𝑋′

𝑖 ;
9 Calculate prediction errors 𝐸𝑋𝑗

and 𝐸𝑋′
𝑖𝑗

of validation
set 𝑉 𝑎𝑗 ;

10 Update 𝐼𝑖𝑗 by adding |𝐸𝑋′
𝑖𝑗
− 𝐸𝑋𝑗

|;
11 end
12 Get the average importance score 𝐼𝑖 of feature 𝑥𝑖;
13 Add 𝐼𝑖 to 𝐼𝑀 ;
14 end
15 Normalize 𝐼𝑀 by dividing each element by the sum of all

elements;
16 return 𝐼𝑀 ;
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Fig. 3. Calculated importance scores of the ‘Brent’, ‘NGFP’, and ‘Coal’ features.

Fig. 4. Changes in prediction error when noise is added to each feature.

as visualized in Fig. 4. The 𝑥-axis represents the fold number in the
ross-validation, while the 𝑦-axis represents the change in error, which
s the difference between the error from predictions using the original
ata and the error from predictions using data with added noise. From
ig. 4, we can see that adding noise to the ‘Coal’ feature often leads
o a larger increase in prediction error (as shown by the blue line),
mplying that ‘Coal’ is a crucial feature for accurate predictions. On
he other hand, adding noise to the ‘Brent’ (red line) and ‘NGFP’ (green
ine) features results in smaller changes in error, indicating that these
eatures, while still important, are less critical than ‘Coal’ for prediction
ccuracy. Therefore, these results demonstrate that the ‘Coal’ price is
he most significant feature among the three for forecasting carbon
utures prices, with ‘Brent’ and ‘NGFP’ prices being less important.

.2.3. Determining the optimal threshold value
The third step of our method is determing the optimal values.

o find the optimal threshold value 𝑇 and select the features, we
se a simple but effective criterion: The optimal threshold value and
eatures are obtained by minimizing the prediction error of 𝑘-fold
ross-validation. Our goal of feature selection is to preserve the main
nformation of features that have a significant impact on forecasting
erformance.
7

Fig. 5. Choosing the optimal threshold value.

Just as principal component analysis employs the cumulative con-
tribution rate to quantify the proportion of retained information, we
introduce the concept of a cumulative importance measurement (CIM)
for a similar purpose in our methodology. CIM is derived from feature
rankings and their respective importance scores. By setting a threshold
range judiciously, we can effectively manage the number and quality
of selected features, striking a balance between model complexity
and performance. Opting for a higher threshold incorporates more
features, enriching the model with information but potentially leading
to increased complexity or overfitting. Conversely, a lower threshold
results in the selection of fewer features, which, while simplifying
the model, risks losing valuable information and potentially degrading
performance. To capture key features while preserving the majority
of information, we establish the lower threshold limit at 0.5. Con-
currently, to prevent overfitting, we set the upper threshold limit at
0.9. A threshold within the [0.5, 0.9] range allows for an effective
control over model complexity and performance, ensuring adequate
information retention. Therefore, we set the range of threshold value
𝑇𝑉 as [0.5,0.9], and use an increment of 0.1 to traverse all potential
values of 𝑇𝑉 .

Importance scores of all features can be obtained based on Algo-
rithm 1, and they are the data of Algorithm 2 to get the optimal
threshold value and implement feature selection based on IM. Consid-
ering the generality of mean absolute error (MAE) and the fact that
it is more robust than root mean squared error (RMSE) in handling
outliers, we use MAE to evaluate the mean prediction errors. That is,
𝐸𝑟 in Algorithm 2 is the set of MAE.

Example 3.4 (Determining the Optimal Value). In the previous step,
we calculate the normalized importance scores for the ‘Brent’, ‘NGFP’,
and ‘Coal’ features, which are approximately 0.235, 0.319, and 0.446
respectively. To select the features for our forecasting model, we apply
Algorithm 2 to determine the optimal threshold value and features.
We sort the features in descending order of their importance scores,
resulting in the order ‘Coal’, ‘NGFP’, ‘Brent’. We then add features to
our model one by one and computed the CIM after each addition. We
set the range of threshold value as [0.5,0.9]. Based on a threshold
value, we select the features and calculate the mean absolute error
(MAE) of 5-kold cross-validation. Then we can get a set of MAE and
features. Finally, we will obtain the optimal threshold value and the
corresponding features by the minimum of MAE. As shown in Fig. 5,
when the threshold value is 0.7, we can get the minimum of MAE. The
CIM of the ‘NGFP’, and ‘Coal’ is 0.446+ 0.319 = 0.765 > 0.7, meaning

that the ‘NGFP’, and ‘Coal’ are selected.
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Algorithm 2: Feature Selection Based on Importance Measures
(IM)

Data: 𝐼𝑀 = {𝐼𝑀1, 𝐼𝑀2, ..., 𝐼𝑀𝑛}, a set of importance scores
for each feature;

𝐷 = (𝑋, 𝑌 ), a normalization dataset of input features and
output variable
Input: 𝑛, the number of features; 𝑇𝑉 , the range of threshold

values
Output: �̃�∗, the reduced feature set

1 Sort the importance scores 𝐼𝑀 in descending order to get
𝐼𝑀 ′ = {𝐼𝑀 ′

1, 𝐼𝑀
′
2, ..., 𝐼𝑀

′
𝑛} and corresponding features

�̃� = {�̃�1, �̃�2, ..., �̃�𝑛};
2 Initialize 𝐶𝐼𝑀 and 𝐸𝑟 as empty sets;
3 𝐿 ← length(𝑇𝑉 );
4 𝐶𝐼𝑀1 ← 𝐼𝑀 ′

1;
5 for 𝑖 ← 2 to 𝑛 do
6 𝐶𝐼𝑀𝑖 ← 𝐶𝐼𝑀𝑖−1 + 𝐼𝑀 ′

𝑖 ;
7 end
8 𝐶𝐼𝑀 ← {𝐶𝐼𝑀1, 𝐶𝐼𝑀2, ..., 𝐶𝐼𝑀𝑛};
9 for 𝑗 ← 1 to 𝐿 do
10 forall 𝑖 such that 𝐶𝐼𝑀𝑖 > 𝑇𝑉𝑗 do
11 Add feature �̃�𝑖 to 𝑋∗;
12 end
13 for 𝑡 ← 1 to 𝑘 do
14 Train model 𝑓 using the training set 𝑇 𝑟𝑗 including the

feature set 𝑋∗;
15 Get the prediction results of validation set 𝑉 𝑎𝑗 using the

feature set 𝑋∗ and model 𝑓 ;
16 end
17 Calculate the mean prediction errors 𝐸∗

𝑗 of all validation
sets;

18 Add 𝐸∗
𝑗 to 𝐸𝑟;

19 end
20 𝐸𝑟 ← {𝐸∗

1 , 𝐸
∗
2 , ..., 𝐸

∗
𝐿};

21 𝑇 ← min(𝐸𝑟);
22 Select the features �̃�∗ based on the optimal threshold value 𝑇 ;
23 return �̃�∗;

This selection method ensures that our model only contains the
eatures that have a significant impact on the forecasting performance,
hile discarding less important or redundant features. In this case,

he ‘NGFP’, and ‘Coal’ feature is selected as the only relevant and
nformative feature for forecasting the ‘EUA‘ target variable. We use the
elected features and the original feature variables to establish linear
egression and make predictions for test sets. The prediction accuracy
ased on the selected features is more than that based on the original
eatures.

.3. Carbon futures price forecasting models

This subsection describes the models used for carbon futures price
orecasting and how their performance is evaluated using feature se-
ection based on importance measures. The proposed feature selection
ethod is applied to various forecasting models to obtain a reduced

eature set �̃�∗. This reduced set is then employed to train and test the
odels, comparing the results with those obtained using the original

eature set 𝑋. The presented feature selection method is a universal
pproach, which can calculate the importance of features for different
odels. The baseline model chosen for feature selection, namely Linear
egression (LR), Ridge Regression (RR), Support Vector Regression
SVR), Random Forest (RF), Gradient Boosting Regression (GBR), and
agging Regression (BR), were selected for several key reasons. Firstly,
hese methods represent a diverse set of approaches to feature selection
8

f

and regression, encompassing both linear and non-linear models, as
well as ensemble techniques. This allows for a comprehensive evalu-
ation of the proposed feature selection method’s effectiveness across
different modeling paradigms. Secondly, these methods are widely used
and well-established in the field of carbon price forecasting, serving as
common benchmarks in the existing literature (such as Yahşi et al.,
2019; Wang et al., 2022; Ye et al., 2023). Comparisons with these
methods provide valuable context for the performance of our proposed
method and facilitate direct comparisons with previous studies. Finally,
despite the emergence of newer techniques, these baseline methods
remain relevant due to their strong theoretical foundations and practi-
cal applicability. They effectively capture the fundamental concepts of
feature importance and regression modeling, providing a robust basis
for assessing the improvements offered by our proposed method.

3.3.1. Linear regression (LR)
Linear regression (LR) is a simple and widely used model that

assumes a linear relationship between the input features and the output
variable. It estimates the coefficients of the features by minimizing the
sum of squared errors between the observed and predicted values. The
LR model can be expressed as follows:

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯ + 𝛽𝑛𝑥𝑛 + 𝜖 (3)

here 𝑦 is the output variable (carbon futures price), 𝑥𝑖 are the input
eatures, 𝛽𝑖 are the coefficients, and 𝜖 is the error term. The coefficients
an be estimated by solving the normal equations:

̂ = (𝑋𝑇𝑋)−1𝑋𝑇 𝑦 (4)

here 𝑋 is the matrix of input features, and 𝑦 is the vector of output
alues. LR is easy to interpret and implement, but it may suffer from
verfitting or underfitting problems when the features are correlated or
rrelevant.

.3.2. Ridge regression (RR)
Ridge regression (RR) is a variant of LR that adds a regularization

erm to the sum of squared errors, which penalizes the magnitude of the
oefficients. RR can reduce the variance and improve the generalization
f LR, especially when the features are multicollinear or redundant. The
R model can be expressed as follows:

= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯ + 𝛽𝑛𝑥𝑛 + 𝜖 (5)

here 𝑦 is the output variable (carbon futures price), 𝑥𝑖 are the input
eatures, 𝛽𝑖 are the coefficients, and 𝜖 is the error term. The coefficients
an be estimated by minimizing the following objective function:

in
𝛽

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝛽0 −

𝑛
∑

𝑗=1
𝛽𝑗𝑥𝑖𝑗 )2 + 𝜆

𝑛
∑

𝑗=1
𝛽2𝑗 (6)

here 𝑁 is the number of observations, 𝑛 is the number of features, 𝜆
s the regularization parameter, and 𝑥𝑖𝑗 is the value of feature 𝑗 for ob-
ervation 𝑖. The coefficients can be solved by using gradient descent or
ther optimization methods. RR may introduce some bias and lose some
nterpretability, but it can prevent overfitting and improve stability.

.3.3. Support vector regression (SVR)
Support vector regression (SVR) is a non-linear model that uses a

ernel function to map the input features into a high-dimensional space,
here it tries to find a hyperplane that fits the data with a maximum
argin. SVR can capture complex and non-linear patterns in the data,

ut it requires more computational resources and parameter tuning.
he SVR model can be expressed as follows:

= 𝑓 (𝑥) =
𝑁
∑

𝑖=1
(𝛼𝑖 − 𝛼∗𝑖 )𝐾(𝑥𝑖, 𝑥) + 𝑏 (7)

here 𝑦 is the output variable (carbon futures price), 𝑥 is the input
∗
eature vector, 𝑁 is the number of observations, 𝛼𝑖 and 𝛼𝑖 are Lagrange
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multipliers, 𝐾(𝑥𝑖, 𝑥) is the kernel function, and 𝑏 is the bias term. The
Lagrange multipliers and the bias term can be estimated by solving the
following optimization problem:

min
𝛼,𝛼∗ ,𝑏

1
2

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
(𝛼𝑖−𝛼∗𝑖 )(𝛼𝑗 −𝛼∗𝑗 )𝐾(𝑥𝑖, 𝑥𝑗 )−

𝑁
∑

𝑖=1
(𝛼𝑖−𝛼∗𝑖 )𝑦𝑖−𝑏(

𝑁
∑

𝑖=1
(𝛼𝑖−𝛼∗𝑖 )) (8)

subject to:
𝑁
∑

𝑖=1
(𝛼𝑖 − 𝛼∗𝑖 ) = 0 (9)

0 ≤ 𝛼𝑖, 𝛼
∗
𝑖 ≤ 𝐶 (10)

|𝑦𝑖 − 𝑓 (𝑥𝑖)| ≤ 𝜖 (11)

where 𝐶 is the penalty parameter, and 𝜖 is the error tolerance. The
kernel function can be chosen from different types, such as linear,
polynomial, radial basis function (RBF), or sigmoid. The kernel function
determines the complexity and flexibility of the model, and it should
be selected according to the data characteristics.

3.3.4. Random forest (RF)
Random forest (RF) is an ensemble model that combines multiple

decision trees, each trained on a bootstrap sample of the data and a
random subset of the features. RF can reduce the variance and improve
the robustness of a single decision tree, as well as provide feature
importance measures. The RF model can be expressed as follows:

𝑦 = 𝑓 (𝑥) = 1
𝐵

𝐵
∑

𝑏=1
𝑓𝑏(𝑥) (12)

here 𝑦 is the output variable (carbon futures price), 𝑥 is the input
eature vector, 𝐵 is the number of trees, and 𝑓𝑏(𝑥) is the prediction of
he b-th tree. Each tree can be grown by using the following algorithm:

• Start from the root node, which contains all the observations in
the bootstrap sample.

• If the node is pure (all observations have the same output value)
or too small (less than a minimum number of observations), stop
growing and make it a leaf node.

• Otherwise, randomly select 𝑚 features from the 𝑛 features, and
find the best split point for each feature based on some criterion
(such as mean squared error or mean absolute error).

• Choose the feature and the split point that minimize the criterion,
and split the node into two child nodes.

• Repeat the above steps for each child node until all nodes are
either pure or too small.

The parameters of RF include the number of trees 𝐵, the number of
eatures 𝑚, and the minimum number of observations in a node. These
arameters affect the bias–variance trade-off and the computational
ost of RF. RF may be prone to overfitting or underfitting when the
umber of trees or the depth of trees is too large or too small.

.3.5. Gradient boosting regression (GBR)
Gradient boosting regression (GBR) is another ensemble model that

teratively adds decision trees to fit the residual errors of the previous
rees. GBR can reduce both the bias and the variance of a single decision
ree, as well as handle missing values and outliers. The GBR model can
e expressed as follows:

= 𝑓 (𝑥) = 𝑓0(𝑥) +
𝐵
∑

𝑏=1
𝜂𝑓𝑏(𝑥) (13)

here 𝑦 is the output variable (carbon futures price), 𝑥 is the input
eature vector, 𝑓0(𝑥) is an initial constant value, 𝐵 is the number of
rees, 𝜂 is the learning rate, and 𝑓𝑏(𝑥) is the prediction of the b-th tree.
ach tree can be grown by using a similar algorithm as RF, except that it
9

ses gradient descent to find the best split point for each feature based
n some loss function (such as mean squared error or mean absolute
rror).

The parameters of GBR include the number of trees 𝐵, the learning
ate 𝜂, and other parameters related to each tree, such as the number
f features, the minimum number of observations in a node, and the
aximum depth of a tree. These parameters affect the convergence

nd generalization of GBR. GBR may be sensitive to noise or overfitting
hen the learning rate or the number of trees is too high.

.3.6. Bagging regression (BR)
Bagging regression (BR) is a simple ensemble model that averages

he predictions of multiple base models, each trained on a bootstrap
ample of the data. BR can reduce the variance and improve the
tability of a single base model, as well as handle different types of
ase models. The BR model can be expressed as follows:

= 𝑓 (𝑥) = 1
𝐵

𝐵
∑

𝑏=1
𝑔𝑏(𝑥) (14)

here 𝑦 is the output variable (carbon futures price), 𝑥 is the input
eature vector, 𝐵 is the number of base models, and 𝑔𝑏(𝑥) is the
rediction of the b-th base model. The base models can be chosen
rom different types, such as linear regression, ridge regression, support
ector regression, etc.

The parameters of BR include the number of base models 𝐵, and
ther parameters related to each base model. These parameters affect
he diversity and accuracy of BR. BR may not improve much when the
ase models are weak or similar.

.4. Time and space complexity analysis

In this subsection, we analyze the time and space complexity of
he proposed feature selection method based on importance measures.
he time complexity measures the amount of time required to run the
lgorithm, while the space complexity measures the amount of memory
equired to store the data and intermediate results. We denote the
umber of features as 𝑛, the number of observations as 𝑁 , the number
f folds for cross-validation as 𝑘, the number of validation sets as 𝑣, and
he base forecasting model as 𝑓 .

The time complexity of the proposed method can be derived as
ollows:

• The first step of adding Gaussian noise to the input features takes
𝑂(𝑛𝑁) time, as it involves generating and adding noise to each
feature value. This can be expressed as:

𝑇1 = 𝑂(𝑛𝑁) (15)

where 𝑇1 is the time complexity of the first step.
• The second step of calculating the importance scores of the fea-

tures takes 𝑂(𝑛𝑘𝑁) time, as it involves training and testing the
base model 𝑓 on 𝑘 folds using both the original and noisy feature
sets. The time complexity of the base model 𝑓 depends on the
specific algorithm used, such as linear regression, random forest,
or support vector regression. For simplicity, we assume that the
base model 𝑓 takes 𝑂(𝑁) time to train and test on each fold. This
can be expressed as:

𝑇2 = 𝑂(𝑛𝑘𝑁) (16)

where 𝑇2 is the time complexity of the second step.
• The third step of choosing the optimal threshold value for feature

selection takes 𝑂(𝑣𝑛𝑁) time, as it involves training and testing
different forecasting models on 𝑣 validation sets using different
subsets of features. The time complexity of the forecasting models
depends on the specific algorithms used, such as linear regression,
ridge regression, or gradient boosting regression. For simplicity,
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we assume that each forecasting model takes 𝑂(𝑁) time to train
and test on each validation set. This can be expressed as:

𝑇3 = 𝑂(𝑣𝑛𝑁) (17)

where 𝑇3 is the time complexity of the third step.
Therefore, the total time complexity of the proposed method is the

sum of the time complexities of the three steps, which can be expressed
as:

𝑇 = 𝑇1 + 𝑇2 + 𝑇3 = 𝑂(𝑛𝑁) + 𝑂(𝑛𝑘𝑁) + 𝑂(𝑣𝑛𝑁) = 𝑂(𝑛𝑁(𝑘 + 𝑣)) (18)

where 𝑇 is the total time complexity of the proposed method.
The space complexity of the proposed method can be derived as

follows:
• The first step of adding Gaussian noise to the input features takes
𝑂(𝑛𝑁) space, as it involves storing the original and noisy feature
sets. This can be expressed as:

𝑆1 = 𝑂(𝑛𝑁) (19)

where 𝑆1 is the space complexity of the first step.
• The second step of calculating the importance scores of the fea-

tures takes 𝑂(𝑛) space, as it involves storing the importance scores
of each feature. This can be expressed as:

𝑆2 = 𝑂(𝑛) (20)

where 𝑆2 is the space complexity of the second step.
• The third step of choosing the optimal threshold value for feature

selection takes 𝑂(𝑛) space, as it involves storing the selected
features and the optimal threshold value. This can be expressed
as:

𝑆3 = 𝑂(𝑛) (21)

where 𝑆3 is the space complexity of the third step.
Therefore, the total space complexity of the proposed method is the

sum of the space complexities of the three steps, which can be expressed
as:

𝑆 = 𝑆1 + 𝑆2 + 𝑆3 = 𝑂(𝑛𝑁) + 𝑂(𝑛) + 𝑂(𝑛) = 𝑂(𝑛𝑁) (22)

where 𝑆 is the total space complexity of the proposed method.
The proposed method has a linear time and space complexity with

respect to the number of features and the number of observations,
which is comparable to some existing feature selection methods, such
as variance thresholding and mutual information. However, the pro-
posed method has some advantages over these methods, such as being
able to handle non-linear relationships, providing feature importance
measures, and being compatible with any machine learning algorithm.

3.5. Performance evaluation metrics

In this subsection, we define the metrics that we use to evaluate the
performance of our forecasting models, such as root mean squared error
(RMSE), mean absolute error (MAE), 𝑅2

𝑂𝑆 , and 𝑀𝐴𝐸_𝑔𝑎𝑖𝑛. We explain
why these metrics are appropriate and meaningful for measuring the
accuracy of our forecasts.

RMSE is a common metric that measures the average magnitude of
the errors between the observed and predicted values. RMSE can be
calculated as follows:

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 (23)

where 𝑁 is the number of observations, 𝑦𝑖 is the observed value, and
�̂�𝑖 is the predicted value. RMSE gives more weight to large errors
than small errors, and it has the same unit as the output variable.
RMSE is suitable for comparing different models or methods on the
same dataset, as it reflects the overall accuracy and consistency of the
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forecasts.
MAE is another metric that measures the average magnitude of
the errors between the observed and predicted values. MAE can be
calculated as follows:

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖| (24)

here 𝑁 is the number of observations, 𝑦𝑖 is the observed value, and �̂�𝑖
is the predicted value. MAE gives equal weight to all errors, regardless
of their size, and it has the same unit as the output variable. MAE
is suitable for comparing different models or methods on different
datasets, as it reflects the absolute accuracy and robustness of the
forecasts.

Following Tan et al. (2022), out-of-sample 𝑅2 (𝑅2
𝑂𝑆 ) and MAE𝑔𝑎𝑖𝑛𝑠

can are used to compare different models, which are written as

𝑅2
𝑂𝑆 =

(

1 −
𝑀𝑆𝐸𝑐
𝑀𝑆𝐸𝑏

)

∗ 100%,MAE𝑔𝑎𝑖𝑛𝑠 =
(

1 −
𝑀𝐴𝐸𝑐
𝑀𝐴𝐸𝑏

)

∗ 100%, (25)

espectively, where 𝑀𝑆𝐸𝑐 and 𝑀𝐴𝐸𝑐 are from competing model,
nd 𝑀𝑆𝐸𝑏 and 𝑀𝐴𝐸𝑏 are obtained from the benchmark model. 𝑅2

𝑂𝑆
nd MAE𝑔𝑎𝑖𝑛𝑠 are used to compare the predictive performance of the
odels. When 𝑅2

𝑂𝑆 and MAE𝑔𝑎𝑖𝑛𝑠 are more than 0, the competing
odel has better prediction accuracy. 𝑅2

𝑂𝑆 and MAE𝑔𝑎𝑖𝑛𝑠 also mean the
mprovement percentages of MSE and MAE of the competing model
ompared to the benchmark model respectively.

We also use statistical tests to compare the prediction perfor-
ance of the competing and benchmark models: Clark West test (CW)

est (Clark and West, 2007), Diebold Mariano (DM) test (Diebold and
ariano, 2002; Zhao et al., 2021b) and The Friedman test (Veček

t al., 2017). CW test and DM test are used to compare the prediction
erformance of the models within the same data set, and to identify
he superior model or the set of equivalent models. The Friedman test
s used to compare the performance of the models across different data
ets.

. Experiments

In this section, we present the experimental setup and results of our
roposed feature selection method for carbon futures price forecasting.
e first describe the data and the settings of the forecasting models

hat we use in our experiments. Then, we report and analyze the
erformance of our method and compare it with other feature selection
ethods on carbon futures data set from Europe.

.1. Experimental settings

Our computer is equipped with an Intel(R) Core(TM) i7-9700F CPU,
hich is a desktop processor with 8 cores and 8 threads. It has a base

lock speed of 3.0 GHz and a max boost clock speed of 4.7 GHz. We
sed Python 3.7 for the modeling and prediction process, and Matlab
or the evaluation process.

In this paper, we use a real-world carbon futures dataset from
urope to evaluate the performance of our proposed feature selection
ethod and compare it with other methods. The dataset contains the
aily closing prices of the European Union Allowances (EUA) from Jan-
ary 4, 2013 to August 31, 2022, which is obtained from Bloomberg.
o forecast the EUA prices, we use various factors that may affect the
upply and demand of carbon emission allowances, such as commodity
arket factors, uncertainty factors, stock market factors, and bond mar-

et factors. Table A.14 shows the list of variables that we use as input
eatures for EUA price forecasting, along with their descriptions and
ata sources. We collect the daily data of these variables from different
ources, such as Bloomberg, Wind, FRED, and European Central Bank.
e use website1 to obtain the US Equity Market-related Economic
ncertainty Index and the UK economic uncertainty index. We align

he data by date and fill in the missing values by linear interpolation.
e also standardize the data to have zero mean and unit variance.
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Table 2
Prediction errors of three test sets.

Model Test set 1 Test set 2 Test set 3

RMSE MAE RMSE MAE RMSE MAE

NFS-LR 2.960 2.226 3.196 2.534 2.921 2.239
VT-LR 2.875 2.144 2.970 2.307 2.599 1.940
ANOVA-LR 2.913 2.166 3.196 2.534 2.573 1.921
PFS-LR 2.786 1.978 2.445 1.737 2.163 1.484
NFS-RR 3.312 2.656 3.488 2.814 10.131 8.244
VT-RR 3.257 2.615 3.218 2.553 9.182 7.694
ANOVA-RR 3.204 2.556 3.488 2.814 9.247 7.498
PFS-RR 2.816 2.057 2.493 1.799 9.130 7.373
NFS-SVR 18.529 16.690 41.032 36.252 41.937 34.786
VT-SVR 22.347 20.797 37.783 32.703 41.937 34.786
ANOVA-SVR 18.508 16.671 41.032 36.252 41.003 33.782
PFS-SVR 17.920 16.082 36.529 32.040 41.400 34.207
NFS-RF 23.300 20.729 33.047 29.147 38.806 32.722
VT-RF 25.695 22.832 32.862 28.881 38.839 32.764
ANOVA-RF 24.273 21.497 33.047 29.147 38.717 32.622
PFS-RF 22.704 20.084 32.555 28.610 38.699 32.614
NFS-GBR 27.034 24.922 36.773 33.410 40.910 35.061
VT-GBR 27.372 25.259 36.789 33.409 40.910 35.061
ANOVA-GBR 27.010 24.893 36.773 33.410 40.837 35.005
PFS-GBR 26.030 23.981 35.982 32.526 40.031 34.175
NFS-BR 23.386 20.787 32.477 28.604 38.595 32.504
VT-BR 26.524 23.386 32.477 28.604 38.595 32.504
ANOVA-BR 24.173 21.392 32.477 28.604 38.775 32.660
PFS-BR 23.336 20.513 32.112 28.213 38.263 32.164

Note: This table reports the prediction errors of three test sets. RMSE and MAE are shown in Eqs. (23) and (24).
4.2. Comparative analysis of different feature selection method

Considering the universality of the Proposed Feature Selection (PFS)
method for selecting features across different models, we compare it
with other universal feature selection algorithms, such as Variance
Thresholding (VT) and Analysis of Variance (ANOVA). There are sev-
eral reasons for choosing these two methods as baselines. Firstly, as
classic methods in the field of feature selection, the generality of VT and
ANOVA makes them rational benchmarks to evaluate the performance
of a new algorithm. Comparing with these methods can demonstrate
the advantages and potential of PFS in dealing with different types
of models. Secondly, as mature feature selection techniques, VT and
ANOVA have been verified and tested in numerous studies. Comparing
with these stable methods can prove the stability and reliability of
PFS. We compare the PFS method with the general feature selection
methods, VT and ANOVA. To demonstrate the effectiveness and robust-
ness of the proposed method, we apply it to achieve feature selection
in six different models and test its performance using test sets of
varying lengths, test datasets from four different periods, and multiple
evaluation metrics.

In the PFS method, we employ a 𝑘-fold cross-validation approach to
train and test various forecasting models on both the original and noisy
feature sets. We set 𝑘 = 5 in our experiments. We add Gaussian noise
with zero mean and a standard deviation of 0.1 to each input feature
to generate the noisy feature sets. We calculate the importance score of
each feature based on the difference between the errors obtained using
the original and noisy feature sets.

VT can help us identify the features that contribute the most to
the model performance. The 𝐹 distribution is used to select features
in ANOVA, and we set the significance level at 5% as the selection
criterion. Thus, we testify the superior performance of the proposed
method in feature selection by comparing it with Variance Threshold-
ing and Analysis of Variance. We use the proposed feature selection,
Variance Thresholding, and Analysis of Variance to establish the PFS-
type model, VT-type model, and ANOVA-type model, respectively. We
use the original feature set without feature selection to establish the
NFS-type model. Sections 4.2.1 and 4.2.2 present the prediction result
analysis for different test sets and varying periods.
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4.2.1. Prediction result analysis in different test sets
The dataset is divided into three groups, referred to as Test sets

1, 2, and 3. Test set 1 consists of training and testing sets with a 9:1
ratio. Test set 2 comprises training and testing sets with a 17:3 ratio,
while Test set 3 contains training and testing sets with an 8:2 ratio. The
training sets are utilized for feature selection and model establishment.

Fig. 6 shows the prediction errors of different models in three test
sets. PFS-type models have consistently lower RMSE and MAE than
NFS-type models in three test sets. Table 2 shows the prediction errors
of three test sets using different forecasting models with and without
feature selection. Compared to other feature selection methods, almost
all PFS-type models have better RMSE and MAE than the corresponding
VT-type and ANOVA-type models for all test sets. For example, the
RMSEs and MAEs of PFS-LR model are both significantly lower than
those of NFS-LR, VT-LR and ANOVA-LR models in three test sets. In
addition, VT-type and ANOVA-type models are not always superior to
models without feature selection on RMSE and MAE for three test sets.
For example, the RMSEs and MAEs of VT-SVR model are not lower
than these of NFS-SVR model in test set 1 and 3. ANOVA-RF model has
higher RMSE and MAE than NFS-RF model in test set 1. Moreover, we
can see that all PFS-type models generally have lower RMSE and MAE
than the models without feature selection, which indicates that our
proposed feature selection method can effectively reduce the dimen-
sionality and noise of the input features and improve the forecasting
performance. Contrasting PFS-type, VT-type, and ANOVA-type models,
only PFS-type models consistently have better prediction accuracy than
NFS-type models in three test sets. This indicates that PFS has a more
significant advantage in extracting useful information effectively and
improving the prediction accuracy of models than VT and ANOVA.
Based on the RMSE and MAE, we can conclude that our proposed
feature selection method can implement feature selection, deal with
the complex relationship of input and output variables, and improve
the prediction accuracies of machine learning models.

Among the PFS-type models, PFS-LR and PFS-RR have the lowest
RMSE and MAE among all models on all test sets, which suggests that
linear models can capture the main trend of carbon futures prices. PFS-
SVR, PFS-RF, PFS-GBR, and PFS-BR have higher RMSE and MAE than
PFS-LR and PFS-RR, which implies that non-linear models may overfit
the data and have poor generalization ability. This finding is consistent
with many previous studies (Tan et al., 2022; Batten et al., 2021; Koop
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Fig. 6. Prediction errors of different models in three test sets.
nd Tole, 2013; Wang et al., 2023a) that have predicted carbon futures
rices using linear models.

Considering different evaluation indictors, Table 3 shows the pre-
iction evaluation of different models in three test sets. Taking the
FS-type model as the benchmark model and the corresponding VT-

ype, ANOVA-type and PFS-type models as the competition models,
e calculate 𝑅2

𝑂𝑆 and MAE𝑔𝑎𝑖𝑛𝑠, and perform statistical tests on these
odels to further compare their performances. In Table 3, all 𝑅2

𝑂𝑆
12

and MAE𝑔𝑎𝑖𝑛𝑠 of PFS-type models in three test sets are more than 0,
indicating that the PFS-type models have more excellent prediction
accuracy than the corresponding NFS-type models. The CW and DM
tests are used to compare the forecasting performance of a model with
feature selection against a benchmark model without feature selection.
The null hypothesis of both tests is that there is no difference in
prediction performance between the two models. Taking MAE as the
loss function, the DM test is used to compare the MAE of a model with
feature selection against a benchmark model without feature selection.

We can also see that almost all CW tests reject the null hypothesis for
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Table 3
Prediction evaluation of different models in three test sets.

Model Test set 1 Test set 2 Test set 3

𝑅2
𝑜𝑠(%) CW test MAE𝑔𝑎𝑖𝑛𝑠(%) DM test 𝑅2

𝑜𝑠(%) CW test MAE𝑔𝑎𝑖𝑛𝑠(%) DM test 𝑅2
𝑜𝑠 CW test MAE𝑔𝑎𝑖𝑛𝑠(%) DM test

VT-LR 5.692 3.238*** 3.715 2.200** 13.636 11.149*** 8.939 15.328*** 20.810 12.853*** 13.334 15.870***
ANOVA-LR 3.174 3.803*** 2.713 5.661*** 0.000 3.383*** 0.000 3.547*** 22.378 13.132*** 14.175 15.745***
PFS-LR 11.405 4.305*** 11.173 4.633*** 41.492 11.415*** 31.451 11.984*** 45.156 13.277*** 33.718 13.508***
VT-RR 3.307 3.371*** 1.552 2.368*** 14.896 13.460*** 9.291 17.403*** 17.870 15.706*** 6.665 9.326***
ANOVA-RR 6.439 5.242*** 3.755 5.344*** 0.000 2.243** 0.000 3.265*** 16.693 22.931*** 9.048 28.328***
PFS-RR 27.729 8.098*** 22.563 8.150*** 48.930 13.373*** 36.071 13.923*** 18.782 22.057*** 10.559 26.734***
VT-SVR −45.459 −15.631 −24.612 −19.765 15.208 27.362*** 9.791 44.008*** 0.000 – 0.000 –
ANOVA-SVR 0.223 4.918*** 0.110 4.688*** 0.000 3.731*** 0.000 4.219*** 4.406 30.402*** 2.887 47.136***
PFS-SVR 6.466 11.100*** 3.639 12.027*** 20.745 21.339*** 11.620 24.555*** 2.545 27.979*** 1.666 40.576***
VT-RF −21.618 −17.616 −10.146 −19.551 1.117 5.996*** 0.911 10.367*** −0.170 −13.335 −0.131 −14.667
ANOVA-RF −8.529 −10.498 −3.706 −9.942 0.000 – 0.000 – 0.458 27.674*** 0.306 36.003***
PFS-RF 5.051 9.273*** 3.108 9.515*** 2.959 10.866*** 1.841 14.974*** 0.553 28.724*** 0.329 28.278***
VT-GBR −2.518 −17.607 −1.355 −19.553 −0.086 −4.739 0.004 0.341 0.000 – 0.000 –
ANOVA-GBR 0.178 9.159*** 0.115 8.295*** 0.000 2.995*** 0.000 3.364*** 0.354 16.738*** 0.160 15.812***
PFS-GBR 7.290 12.900*** 3.776 11.685*** 4.255 21.499*** 2.646 33.367*** 4.248 29.76*** 2.527 57.380***
VT-BR −28.637 −12.122 −12.502 −13.746 0.000 – 0.000 – 0.000 – 0.000 –
ANOVA-BR −6.840 −7.035 −2.909 −7.318 0.000 – 0.000 – −0.933 −21.101 −0.479 −20.847
PFS-BR 0.426 0.905 1.322 2.026** 2.235 6.695*** 1.366 8.822*** 1.715 31.702*** 1.049 40.609***

Note: This table reports prediction evaluation of different models in three test sets. 𝑅2
𝑜𝑠 and MAE𝑔𝑎𝑖𝑛𝑠 are shown in Eq. (25). Taking NFS-type as the benchmark model and other

models with feature selection as the competing models, we perform 𝑅2
𝑜𝑠, MAE𝑔𝑎𝑖𝑛𝑠, CW and DM tests. In CW test, the null hypothesis is that the competing and benchmark models

have the same prediction performance or mean square error, and the alternative hypothesis is that the competing model has a better prediction performance or mean square error.
Taking MAE as the loss function, we make DM test. The null hypothesis is that the competing and benchmark models have the same performance in MAE, and the alternative
hypothesis is that the competing model has better performance. ** and *** are statistically significant at the 5%, and 1% levels respectively. – represents that the model has the
same prediction performance as the benchmark model.
PFS-type models on all test sets at 1% significance level, which means
that PFS-type models has obviously better forecasting performance than
the models without feature selection in statistical significance. All DM
tests also reject the null hypothesis for PFS-type models on all test sets
at 1% or 5% significance level. Based on the CW test and DM test, 𝑅2

𝑂𝑆
and MAE𝑔𝑎𝑖𝑛𝑠 are significantly more than 0 in statistical significance,
which means that PFS-type models have significantly better forecasting
performances than the models without feature selection. According to
the CW test and DM test, 𝑅2

𝑂𝑆 and MAE𝑔𝑎𝑖𝑛𝑠, we can conclude that
the proposed feature selection can significantly enhance the prediction
performance of machine learning models. The effectiveness of our
feature selection method is verified again.

Comparing the VT-type, ANOVA-type, and PFS-type models, the
𝑅2
𝑂𝑆 and MAE𝑔𝑎𝑖𝑛𝑠 of VT-type and ANOVA-type models are not con-

sistently more than 0, and almost all 𝑅2
𝑂𝑆 and MAE𝑔𝑎𝑖𝑛𝑠 are always

lower than those of the PFS-type model. For example, the 𝑅2
𝑂𝑆 and

MAE𝑔𝑎𝑖𝑛𝑠 of VT-GBR and ANOVA-BR models are consistently lower than
0 in test set 1 and 2, but those of the PFS-type models are more than
0. This indicates that our feature selection method can select more
useful and effective features than VT and ANOVA. Moreover, many
CW and DM test for VT-type and ANOVA-type models do not reject
the null hypothesis, meaning that VT and ANOVA cannot consistently
improve the prediction accuracy of the benchmark model. On the
contrary, the PFS-type model is proved to be significantly superior to
the NFS-type model by the CW and DM tests. This demonstrates that
the proposed feature selection is more effective than VT and ANOVA
in the information extraction and enhancing the prediction accuracy.
Summarizing 𝑅2

𝑂𝑆 , MAE𝑔𝑎𝑖𝑛𝑠, CW and DM tests, the superiority of our
feature selection method compared with VT and ANOVA is testified
again.

4.2.2. Prediction results in different periods
To further verify the robustness of the model predictions, we con-

sider different financial market conditions and divide the test set 3
into different periods. Considering financial market volatility, the high
and low volatility periods are divided based on the median of the EUA
price volatility. Considering financial market uncertainty, the high and
low uncertainty periods are divided according to the median of the
uncertainty indicators (USPU). In this section, we discuss the prediction
performance of different models on the test data from these different
13

periods.
Tables 4 shows the prediction performance of different volatility
periods. In periods of high and low volatility, RMSEs and MAEs of PFS-
type models are less than those of models without feature selection.
Moreover, 𝑅2

𝑂𝑆 and MAE𝑔𝑎𝑖𝑛𝑠 of all PFS-type models are over 0, and
their CW tests and DM tests reject the null hypothesis at 1% significance
level, indicating that PFS-type models have better prediction perfor-
mance in MSE and MAE than the models without feature selection. This
indicates that our proposed feature selection can select the effective
and useful feature for carbon futures price forecasting to enhance the
prediction accuracies of machine learning models. Contrasting the PFS-
type, VT-type, and ANOVA-type models, our finding is that almost all
PFS-type models have better RMSE, MAE, 𝑅2

𝑂𝑆 and MAE𝑔𝑎𝑖𝑛𝑠 than VT-
type and ANOVA-type models in different volatility periods. Moreover,
CW and DM tests demonstrate that PFS-type models consistently out-
perform NFS-type models, but VT-type and ANOVA-type models do
not have consistent and more prominent performance than NFS-type
models in these statistic tests. This demonstrates the effectiveness and
superiority of the proposed method in feature selection and enhancing
the prediction performance of models.

Table 5 shows the prediction performance of different models dur-
ing high and low uncertainty periods. All PFS-type models exhibit lower
RMSE and MAE than the NFS-type model, indicating the effectiveness
of the proposed feature selection method in identifying useful informa-
tion and improving the prediction accuracy of the models. In contrast
with the NFS-type, VT-type, and ANOVA-type models, almost all PFS-
type models consistently have the smallest RMSE and MAE, the greatest
𝑅2
𝑂𝑆 , and the highest MAE𝑔𝑎𝑖𝑛𝑠 across different uncertainty periods,

verifying the superiority of the PFS-type models in terms of prediction
performance. All DM and CW tests for the PFS-type models reject the
null hypothesis. However, some statistics of the DM and CW tests for
the VT-type and ANOVA-type models fail to reject the null hypothesis,
indicating that these models do not outperform the NFS-type models.
This further reinforces that our proposed feature selection method
is effective and has significant superiority in feature selection and
improving prediction performance. Therefore, the proposed method
is effective in improving the prediction accuracy of different models
across varying volatility and uncertainty periods, demonstrating its

robustness in different market conditions.
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Table 4
Prediction performance of different volatility periods.

Model High volatility period Low volatility period

RMSE MAE 𝑅2
𝑂𝑆 (%) CW test MAE𝑔𝑎𝑖𝑛𝑠(%) DM test RMSE MAE 𝑅2

𝑂𝑆 (%) CW test MAE𝑔𝑎𝑖𝑛𝑠(%) DM test

NFS-LR 2.900 2.170 – – – – 2.946 2.311 – – – –
VT-LR 2.599 1.889 19.669 7.931*** 12.935 9.957*** 2.604 1.997 21.855 10.499*** 13.593 12.593***
ANOVA-LR 2.564 1.860 21.823 8.440*** 14.297 10.241*** 2.587 1.988 22.862 10.276*** 13.961 12.073***
PFS-LR 2.206 1.469 42.124 8.733*** 32.294 8.589*** 2.123 1.503 48.045 10.080*** 34.944 10.523***
NFS-RR 10.188 8.254 – – – – 10.076 8.227 – – – –
VT-RR 9.220 7.641 18.101 12.256*** 7.420 7.678*** 9.144 7.742 17.638 10.131*** 5.899 5.575***
ANOVA-RR 9.290 7.502 16.859 16.234*** 9.105 19.210*** 9.208 7.489 16.486 16.115*** 8.965 20.838***
PFS-RR 9.209 7.406 18.297 15.530*** 10.270 17.704*** 9.054 7.336 19.245 15.581*** 10.829 20.094***
NFS-SVR 42.419 35.081 – – – – 41.347 34.378 – – – –
VT-SVR 42.419 35.081 0.000 – 0.000 – 41.347 34.378 0.000 – 0.000 –
ANOVA-SVR 41.500 34.104 4.285 21.562*** 2.784 31.849*** 40.395 33.344 4.555 21.349*** 3.006 34.884***
PFS-SVR 41.896 34.527 2.449 19.514*** 1.579 26.845*** 40.793 33.771 2.664 20.052*** 1.765 30.89***
NFS-RF 39.000 32.690 – – – – 38.548 32.673 – – – –
VT-RF 39.035 32.730 −0.180 −9.531 −0.122 −9.463 38.579 32.719 −0.162 −9.333 −0.141 −11.301
ANOVA-RF 38.915 32.594 0.435 19.355*** 0.294 24.660*** 38.455 32.569 0.481 19.767*** 0.317 26.177***
PFS-RF 38.896 32.584 0.535 20.074*** 0.326 22.287*** 38.437 32.564 0.573 20.455*** 0.333 18.259***
NFS-GBR 41.095 35.007 – – – – 40.658 35.034 – – – –
VT-GBR 41.095 35.007 0.000 – 0.000 – 40.658 35.034 0.000 – 0.000 –
ANOVA-GBR 41.025 34.957 0.344 11.151*** 0.143 8.625*** 40.584 34.973 0.363 12.517*** 0.176 15.247***
PFS-GBR 40.226 34.145 4.187 20.496*** 2.464 35.440*** 39.772 34.126 4.310 21.509*** 2.592 47.758***
NFS-BR 38.795 32.479 – – – – 38.331 32.450 – – – –
VT-BR 38.795 32.479 0.000 – 0.000 – 38.331 32.450 0.000 – 0.000 –
ANOVA-BR 38.969 32.624 −0.894 −14.795 −0.446 −13.577 38.516 32.616 −0.965 −15.020 −0.510 −15.892
PFS-BR 38.463 32.143 1.706 22.199*** 1.035 26.215*** 37.999 32.104 1.728 22.537*** 1.066 31.705***

Note: This table reports the prediction performance of different volatility periods. RMSE and MAE are shown in Eqs. (23) and (24). Taking the models without feature selection
as benchmark models, 𝑅2

𝑜𝑠 and MAE𝑔𝑎𝑖𝑛𝑠 are shown in Eq. (25). Taking NFS-type as the benchmark model and other models with feature selection as the competing models, we
perform 𝑅2

𝑜𝑠, MAE𝑔𝑎𝑖𝑛𝑠, CW and DM tests. In CW test, the null hypothesis is that the competing and benchmark models have the same prediction performance or mean square error,
and the alternative hypothesis is that the competing model has a better prediction performance or mean square error. Taking MAE as the loss function, we make DM test. The null
hypothesis is that the competing and benchmark models have the same performance in MAE, and the alternative hypothesis is that the competing model has better performances.
** and *** are statistically significant at the 5%, and 1% levels respectively. – represents that the model has the same prediction performance as the benchmark model.
Table 5
Prediction performance of different uncertainty periods.

Model High uncertainty period Low uncertainty period

RMSE MAE 𝑅2
𝑂𝑆 (%) CW test MAE𝑔𝑎𝑖𝑛𝑠(%) DM test RMSE MAE 𝑅2

𝑂𝑆 (%) CW test MAE𝑔𝑎𝑖𝑛𝑠(%) DM test

NFS-LR 3.154 2.384 – – – – 2.666 2.093 – – – –
VT-LR 2.848 2.092 18.470 8.343*** 12.226 9.981*** 2.322 1.787 24.100 10.350*** 14.601 12.870***
ANOVA-LR 2.802 2.059 21.063 8.703*** 13.615 10.131*** 2.320 1.783 24.228 10.769*** 14.816 12.661***
PFS-LR 2.439 1.612 40.225 8.742*** 32.398 8.946*** 1.845 1.356 52.088 10.650*** 35.228 10.373***
NFS-RR 10.970 8.965 – – – – 9.213 7.519 – – – –
VT-RR 9.893 8.208 18.674 13.738*** 8.451 9.345*** 8.407 7.178 16.724 8.774*** 4.528 4.078***
ANOVA-RR 10.023 8.177 16.511 17.590*** 8.787 19.342*** 8.396 6.815 16.954 15.231*** 9.362 21.193***
PFS-RR 9.977 8.113 17.287 16.558*** 9.503 17.748*** 8.193 6.630 20.911 14.698*** 11.825 20.180***
NFS-SVR 45.698 38.050 – – – – 37.786 31.508 – – – –
VT-SVR 45.698 38.050 0.000 – 0.000 – 37.786 31.508 0.000 – 0.000 –
ANOVA-SVR 44.820 37.156 3.803 21.346*** 2.350 27.628*** 36.773 30.393 5.292 21.705*** 3.538 43.190***
PFS-SVR 45.200 37.547 2.165 18.943*** 1.324 22.484*** 37.195 30.853 3.102 20.802*** 2.080 40.250***
NFS-RF 41.519 34.872 – – – – 35.876 30.562 – – – –
VT-RF 41.540 34.899 −0.102 −6.373 −0.075 −6.563 35.923 30.621 −0.263 −13.085 −0.196 −14.939
ANOVA-RF 41.424 34.772 0.457 20.356*** 0.286 21.440*** 35.793 30.461 0.459 19.698*** 0.328 33.053***
PFS-RF 41.408 34.762 0.533 20.746*** 0.316 18.932*** 35.771 30.456 0.581 20.414*** 0.344 21.394***
NFS-GBR 43.623 37.164 – – – – 37.990 32.950 – – – –
VT-GBR 43.623 37.164 0.000 – 0.000 – 37.990 32.950 0.000 – 0.000 –
ANOVA-GBR 43.541 37.104 0.375 12.828*** 0.160 9.755*** 37.928 32.897 0.325 11.150*** 0.160 14.505***
PFS-GBR 42.709 36.286 4.148 21.254*** 2.360 32.324*** 37.149 32.055 4.380 21.690*** 2.715 60.848***
NFS-BR 41.299 34.656 – – – – 35.674 30.344 – – – –
VT-BR 41.299 34.656 0.000 – 0.000 – 35.674 30.344 0.000 – 0.000 –
ANOVA-BR 41.501 34.833 −0.980 −16.252 −0.511 −15.811 35.828 30.478 −0.868 −14.212 −0.444 −13.829
PFS-BR 40.974 34.349 1.571 21.951*** 0.885 21.147*** 35.332 29.969 1.909 23.238*** 1.237 47.855***

Note: This table reports the prediction performance of different uncertainty periods. RMSE and MAE are shown in Eqs. (23) and (24). Taking the models without feature selection
as benchmark models, 𝑅2

𝑜𝑠 and MAE𝑔𝑎𝑖𝑛𝑠 are shown in Eq. (25). Taking NFS-type as the benchmark model and other models with feature selection as the competing models, we
perform 𝑅2

𝑜𝑠, MAE𝑔𝑎𝑖𝑛𝑠, CW and DM tests. In CW test, the null hypothesis is that the competing and benchmark models have the same prediction performance or mean square error,
and the alternative hypothesis is that the competing model has a better prediction performance or mean square error. Taking MAE as the loss function, we make DM test. The null
hypothesis is that the competing and benchmark models have the same performance in MAE, and the alternative hypothesis is that the competing model has better performances.
** and *** are statistically significant at the 5%, and 1% levels respectively. – represents that the model has the same prediction performance as the benchmark model.
4.2.3. Average prediction performance of different models
To evaluate average prediction performance of the models in differ-

ent data sets and different periods, we use the Friedman test to rank
them based on their RMSE and MAE on each test set and period, as
shown in Tables 2, 4 and 5. The Friedman test compares the average
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ranks of models with different feature selection methods and without
feature selection, where a higher rank indicates a better predictive
performance. The null hypothesis of the Friedman test is that there is no
difference among the models in all data sets. Table 6 shows the results
of the Friedman test for the models with and without feature selection.
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Table 6
Friedman test.

Model RMSE MAE

Friedman rank Friedman test Friedman rank Friedman test

NFS VT ANOVA PFS NFS VT ANOVA PFS

LR. 4.000 2.714 2.286 1.000 19.286∗∗∗ 4.000 2.714 2.286 1.000 19.286∗∗∗

R.R. 4.000 2.143 2.714 1.143 17.914∗∗∗ 4.000 2.857 2.143 1.000 19.971∗∗∗

SVR. 3.500 3.357 1.429 1.714 15.831∗∗∗ 3.500 3.357 1.429 1.714 15.831∗∗∗

RF 2.929 3.714 2.357 1.000 16.739∗∗∗ 2.929 3.714 2.357 1.000 16.739∗∗∗

GBR. 3.286 3.643 2.071 1.000 20.016∗∗∗ 3.500 3.357 2.143 1.000 18.600∗∗∗

BR. 2.500 2.786 3.714 1.000 18.344∗∗∗ 2.500 2.786 3.714 1.000 18.344∗∗∗

Note: This table reports the Friedman test. The null hypothesis is that the prediction performances (RMSE and MAE) of models have no difference in all data sets, and the
alternative hypothesis is that they have differences. *** are statistically significant at the 1% level. NFS represents that the model does not consider the feature selection, VT is
that the model uses variance thresholding for feature selection, ANOVA is that the model uses the analysis of variance for feature selection, and PFS is that the model uses the
proposed method for feature selection.
We can see that all Friedman tests reject the null hypothesis for both
RMSE and MAE at 1% significance level, which means that there is a
significant difference in RMSE and MAE among the models. Moreover,
almost all PFS-type models have higher ranks than the corresponding
NFS-type, VT-type, and ANOVA-type models, meaning that PFS can
significantly improve the prediction performance of models in different
data sets and it is more effective than VT and ANOVA in feature
selection and improving prediction accuracy. For example, the ranks of
PFS-LR model are both 1.000 higher than those of NFS-LR, VT-LR, and
ANOVA-LR models for both RMSE and MAE samples. The rank of PFS-
BR model is also higher than those of NFS-BR, VT-BR and ANOVA-type
models.

In summary, our experiments demonstrate that the proposed PFS
method effectively selects essential features for carbon futures price
forecasting, enhancing the forecasting performance by retaining key
information from the input features. Furthermore, our method shows a
more significant advantage in feature selection over the VT and ANOVA
methods. For test sets of different lengths, datasets considering different
financial market conditions, different evaluation metrics, and different
models, PFS exhibits consistent and excellent performance in feature
selection and improving prediction accuracy, indicating its robustness.
PFS can be used for feature selection and improving prediction perfor-
mance across different models, which suggests that it is not dependent
on the model construction. Across various scenarios, PFS yields consis-
tent conclusions for different models, proving its universality in feature
selection for diverse models.

4.2.4. Time cost of different methods
Table 7 shows the time cost of different methods. From the results,

we can observe that our proposed feature selection method currently
has a relatively higher computational running time compared to the
baseline methods. This is primarily due to the additional computations
involved in adding Gaussian noise to the features and performing cross-
validation with both the original and noisy feature sets. These steps
are essential for accurately assessing the impact of each feature on
the forecasting performance and selecting the most relevant subset
of features. We recognize the importance of computational efficiency,
especially when dealing with large datasets. However, we believe that
the improved prediction accuracy and robustness achieved by our
method justify the increased running time for many applications. The
trade-off between efficiency and performance is a crucial consideration,
and the choice of method would ultimately depend on the specific
requirements of the task at hand.

In future work, we aim to explore potential optimization strategies
to improve the computational efficiency of our method. This could
involve investigating algorithmic improvements, parallelization tech-
niques, or approximation methods to reduce the running time while
maintaining the high prediction accuracy.
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4.3. Comparative analysis of different importance scoring methods

There are different methods for calculating the importance of fea-
tures, such as GBR, RF, and BR. To illustrate the advantages and
differences of PFS, we contrast the importance scores obtained from
PFS-GBR, GBR, PFS-RF, RF, PFS-BR, and BR models. Using test set 3
as an example, Table 8 shows the importance scores of the Top 10
factors for each method. The results reveal notable differences in the
importance scores and the top 10 factors between PFS-RF and RF, PFS-
GBR and GBR, as well as PFS-BR and BR. These observed differences
can be attributed to the distinct principles underlying the calculation
of importance scores in the respective methods, leading to significantly
different feature importance rankings.

According to RF, GBR, and Bagging, the importance score of the
factors is calculated, and the importance score of Brent is very high,
while the importance of other variables is low. If there are highly cor-
related features in the data, GBR, RF and BR may select some of these
features as split nodes while ignoring other relevant features,resulting
in the high importance score of Brent. Compared with RF, GBR, and
Bagging, the importance score distributions of PFS-RF, PFS-GBR and
PFS-BR are more balanced. In PFS-RF, PFS-GBR and PFS-BR, we can
find the similar factors in top 10 factors, the reason may be that all
three model are built based on the decision tree.

We select features based on importance scores and make predic-
tions. RF, GBR, and BR are performed for feature selection, with
selected thresholds aligned with PFS-RF, PFS-GBR, and PFS-BR, re-
spectively. To validate the advantages of PFS in feature selection and
importance score calculation, we compare the prediction results in
Table 9, which shows the performance of PFS-GBR, GBR, PFS-RF,
RF, PFS-BR, and BR. Comparing the PFS-RF, RF, and RF-PFS models,
the PFS-RF model has the smallest RMSE and MAE, and its 𝑅2

𝑂𝑆 and
MAE𝑔𝑎𝑖𝑛𝑠 are both greater than 0, with the CW and DM statistics also
rejecting the null hypothesis, indicating the PFS-RF model’s superior
prediction performance. In contrast, the RF model’s RMSE and MAE are
higher than the PFS-RF model, suggesting that feature selection based
on the RF method cannot improve prediction. Similarly, the PFS-GBR
model outperforms the GBR model, and the PFS-BR, BR, and BR-PFS
models exhibit consistent performance patterns. These results demon-
strate that PFS can improve prediction accuracy in carbon future return
forecasting and has evident advantages in feature selection compared
to the standard RF, GBR, and BR approaches.

The importance score calculation and feature selection of GBR, RF
and BR depend on the structure of the model itself. However, PFS can
be used to get the importance scores of features in different models,
which is not limited by the structure of the model. Comparing with
GBR, RF and BR, PFS has universal applicability in importance score
calculation for machine learning models. PFS has more obvious advan-
tages in improving the accuracy of carbon futures price prediction than
RF, GBR and BR, verifying the effectiveness and superiority of PFS in
feature selection.
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Table 7
Time cost of different methods.

Model Test set 1 Test set 2 Test set 3

PFS VT ANOVA PFS VT ANOVA PFS VT ANOVA

LR 0.628 0.134 0.006 0.691 0.153 0.002 0.717 0.040 0.003
RR 0.434 0.026 0.002 0.434 0.044 0.001 0.426 0.026 0.002
SVR 4.705 0.197 0.011 2.002 0.075 0.004 1.976 0.067 0.004
GBR 711.646 3.630 0.214 368.398 4.577 0.275 391.047 27.931 1.656
RF 61.105 43.406 2.630 73.504 23.081 1.431 465.958 53.102 3.107
BR 111.701 6.912 0.427 119.686 7.288 0.427 124.944 7.373 0.456

Note: This table reports time cost of different methods.
Table 8
Importance scores of the top 10 factors in different methods.

PFS-RF PFS-GBR PFS-BR RF GBR BR

Factors Scores Factors Scores Factors Scores Factors Scores Factors Scores Factors Scores

USBY3M 0.3639 USBY3M 0.2950 USBY3M 0.3053 Brent 0.9926 Brent 0.9972 Brent 0.9935
Coffe 0.0663 HOERI 0.0884 Soybeans 0.0577 USBY10Y 0.0044 Coffe 0.0002 USBY10Y 0.0036
Soybeans 0.0545 Coffe 0.0662 Coffe 0.0479 Coffe 0.0002 UKPU 0.0002 Coffe 0.0002
HOERI 0.0507 Sugar 0.0570 HOERI 0.0434 Golden 0.0001 Cocoa 0.0001 NGERI 0.0002
Coal 0.0339 Soybeans 0.0445 ESTOXX600 0.0302 USTS 0.0001 Zinc 0.0001 USTS 0.0001
Corn 0.0306 ESTOXX600 0.0440 Coal 0.0292 Soybeans 0.0001 NGERI 0.0001 Golden 0.0001
USBY10Y 0.0305 Corn 0.0356 USBY10Y 0.0285 Lean hogs 0.0001 Cotton 0.0001 UKPU 0.0001
ESTOXX600 0.0279 USCBYS 0.0347 Corn 0.0268 Cocoa 0.0001 Lean hogs 0.0001 ECI 0.0001
USCBYS 0.0243 USBY10Y 0.0323 USCBYS 0.0211 NGERI 0.0001 USTS 0.0001 Soybeans 0.0001
Sugar 0.0219 Cotton 0.0292 Sugar 0.0209 UKPU 0.0001 Soybeans 0.0001 Cocoa 0.0001

Note: This table reports the importance scores of the top 10 factors in different methods.
Table 9
The prediction results considering different importance scores calculation.

Inidcators NFS-RF RF PFS-RF NFS-GBR GBR PFS-GBR NFS-BR BR PFS-BR

RMSE 38.806 38.810 38.699 40.910 40.382 40.031 38.595 38.407 38.263
MAE 32.722 32.738 32.614 35.061 34.514 34.175 32.504 32.296 32.164
𝑅2

𝑜𝑠(%) – −0.022 0.553 – 2.562 4.248 – 0.972 1.715
CW test – −2.172 28.724*** – 29.579*** 29.760*** – 26.095*** 31.702***
MAE𝑔𝑎𝑖𝑛𝑠 – −0.051 0.329 – 1.561 2.527 – 0.641 1.049
DM test – −6.632*** 28.278*** – 51.061*** 57.380*** – 31.481*** 40.609***

Note: This table reports the 𝑝 considering different importance scores calculation. RMSE and MAE are shown in Eqs. (23) and (24). Taking the models without feature selection
as benchmark models, 𝑅2

𝑜𝑠 and MAE𝑔𝑎𝑖𝑛𝑠 are shown in Eq. (25). Taking NFS-type as the benchmark model and other models with feature selection as the competing models, we
perform 𝑅2

𝑜𝑠, MAE𝑔𝑎𝑖𝑛𝑠, CW and DM tests. In CW test, the null hypothesis is that the competing and benchmark models have the same prediction performance or mean square error,
and the alternative hypothesis is that the competing model has a better prediction performance or mean square error. Taking MAE as the loss function, we make DM test. The null
hypothesis is that the competing and benchmark models have the same performance in MAE, and the alternative hypothesis is that the competing model has better performances.
** and *** are statistically significant at the 5%, and 1% levels respectively. – represents that the model has the same prediction performance as the benchmark model.
4.4. Factor analysis

We analyze the factors that are selected by our proposed feature
selection method for different forecasting models and training sets. We
aim to identify the most important and influential factors for carbon
futures price forecasting, and to examine how they vary across different
data characteristics and model preferences.

Tables 10 show the top 10 factors of feature selection. The im-
portance score of a factor is calculated by adding Gaussian noise to
that factor and measuring the difference between the errors using the
original and noisy feature sets. The higher the importance score, the
more relevant and informative the factor is for forecasting. We get the
sorting factors based on the importance scores. Due to the large number
of factors, we will only show the top 10 factors of each model.

For different models, they have different factors or factor ranks in
the top 10 factors. For different data sets, there are different factors
ranked in the same model. Due to the different principles of the
model, the error changes will be different, resulting in different factor
scores and rankings. However, there are some similarities between
the different models. We find that PFS-LR and PFS-RR models contain
similar factors in all data sets. For the top 10 factors, PFS-LR and PFS-
RR models have 9 identical factors in data set 1, all factors are identical
in data set 2, and there are 8 identical factors in data set 3. For PFS-RF,
PFS-GBR, and PFS-BR models, there are 7 and 9 identical factors in data
set 1 and 3, respectively. PFS-LR and PFS-RR are both linear models,
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which may be the reason why they have a similar selection for the top
10 factors. PFS-RF, PFS-GBR, and PFS-BR are all ensemble models based
on the decision trees, which may cause their top 10 factors are similar
to a certain extent.

We can also see that some factors appear frequently in the top 10
factors for most models and data sets, which suggests that they have a
consistent and significant impact on carbon futures prices. For example,
Coffee, SP500, Sugar, USBY3M, USCBYS and EULTBY compared with
other factors are often in the top 10 factors among different models and
data sets. Coffee represents the GSCI Coffee total return index, which
reflects the price changes of Coffee futures contracts. Sugar represents
the GSCI sugar total return index, which reflects the price changes of
sugar futures contracts. SP500 represents the S&P 500 stock composite
index, which reflects the performance of the US stock market. USBY3M
represents the Euro area 3-month 3 A bond yield, which reflects the
interest rate of short-term bonds issued by the Euro area countries.
USCBYS represents the difference between Moody’s BAA-and AAA-
rated US corporate bond yields, which reflects the credit risk premium
of corporate bonds. EULTBY represents Euro area 10-year 3 A govern-
ment bond yield, which reflects the long-term government bond yield in
Euro area. These factors may have a consistent and significant impact
on carbon futures prices because they are related to the supply and
demand of energy, the economic conditions, and the risk preferences
of investors. Tan et al. (2022) has proved that SP500, USBY3M, and
USCBYS have a significant impact on the EUA price, and Wang et al.
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Table 10
Top 10 factors in different models.

Model Rank

1 2 3 4 5 6 7 8 9 10

Data set 1
PFS-LR NEGI Zinc USCBYS CEI Coffe SP500 NGERI Sugar HOERI Wheat
PFS-RR Zinc USCBYS SP500 Coffe NEGI Wheat ESTOXX600 CEI NGERI Sugar
PFS-SVR ESTOXX600 SP500 EUTS NECI Copper EULTBY Cocoa USBY3M Golden Coal
PFS-RF SP500 Coffe USTS EULTBY USBY3M Sugar COERI Coal USBY10Y USCBYS
PFS-GBR SP500 Coffe EULTBY USTS Coal Sugar USBY3M HOERI USCBYS NGFP
PFS-BR SP500 Coffe USTS EULTBY USBY3M Coal Sugar COERI USBY10Y NEGI
Data set 2
PFS-LR CEI NEGI SP500 Coffe COERI USCBYS Zinc VIX Copper NGERI
PFS-RR SP500 CEI COERI Coffe NEGI Zinc USCBYS VIX NGERI Copper
PFS-SVR Sugar USBY3M EULTBY Copper EUTS Zinc Coffe SP500 NECI Soybeans
PFS-RF USBY3M Coffe EULTBY Coal HOERI ESTOXX600 USBY10Y USPU NGFP CEI
PFS-GBR USBY3M Coffe EULTBY SP500 ESTOXX600 NEGI NGFP Cotton Cocoa Copper
PFS-BR USBY3M EULTBY Coffe HOERI Coal Cotton ESTOXX600 USPU Cocoa Spiler
Data set 3
PFS-LR NEGI CEI NGERI Coffe COERI USCBYS SP500 Zinc NGFP Sugar
PFS-RR USBY3M Coffe USCBYS SP500 Sugar NGFP COERI NGERI CEI EUTS
PFS-SVR Sugar USBY3M Soybeans EUTS SP500 Zinc NGERI USTS EULTBY ESTOXX600
PFS-RF USBY3M Coffe Soybeans HOERI Coal Corn USBY10Y ESTOXX600 USCBYS Sugar
PFS-GBR USBY3M HOERI Coffe Sugar Soybeans ESTOXX600 Corn USCBYS USBY10Y Cotton
PFS-BR USBY3M Soybeans Coffe HOERI ESTOXX600 Coal USBY10Y Corn USCBYS Sugar

Note: This table reports the Top 10 factors in different models. Algorithm 1 is used for features selection in LR, RR, SVR, RF, GBR, and BR models, and we can get the importance
scores of these models.
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(2023a) think we pay more attention to the price movement of the
European bond market, these researches support our findings.

Some factors appear only in the top 10 factors for some models
and data sets, which implies that they have a varying and moderate
impact on carbon futures prices. For example, CEI, NGERI, and Zinc
are factors that appear in some models and data sets, but not in others.
CEI represents Wilderhill clean energy index, which reflects the price
of clean energy. NGERI represents the natural gas excess return index,
which reflects the price changes of natural gas futures contracts. Zinc
represents GSCI zinc total return index, which reflects the price changes
of Zinc. These factors may have a varying and moderate impact on
carbon futures prices because they are influenced by various factors,
such as weather conditions, production levels, geopolitical events, and
market sentiments.

In conclusion, the factor analysis shows that our proposed feature
selection method can effectively select the most important and in-
fluential factors for carbon futures price forecasting, and that these
factors vary across different data characteristics and model preferences.
The factor analysis also reveals some common and consistent factors
that have a stable and strong impact on carbon futures prices, such
as Coffee, SP500, Sugar, USBY3M, USCBYS and EULTBY. The factor
analysis also identifies some varying and moderate factors that have
a fluctuating and weak impact on carbon futures prices, such as CEI,
NGERI, and Zinc.

4.5. Sensitivity analysis of our feature selection

We conduct a sensitivity analysis of our feature selection by adding
Gaussian noise with different standard deviations (STD = 0.1, 0.2, and
0.3) to the data. Table 11 shows the prediction errors of models with
the proposed feature selection for different noise levels. All PFS-type
models with different standard deviations have lower RMSE and MAE
than NFS-type models, indicating that our feature selection for different
Gaussian noises can effectively and stably select useful features and
improve the prediction accuracies of models in different test sets. In
addition, for the same basic model, when we use feature selection with
different noise levels, these models have the same or similar prediction
errors. For example, PFS-BR models with different STDs have the same
RMSE and MAE in test set 1, and they have small differences between
RMSE and MAE in test set 2 and 3. This indicates that PFS has relatively
17

stable feature selection and prediction performance. In addition, our i
results once again confirm that the linear models with our feature
selection (PFS-LR and PFS-RR) has higher prediction accuracy than
those non-linear models (PFS-SVR, PFS-RF, PFS-GBR and PFS-BR).

Table 12 shows the prediction evaluation of models with feature
selection considering different Gaussian noises. All 𝑅2

𝑂𝑆 and MAE𝑔𝑎𝑖𝑛𝑠
alues of PFS-type models for different STD are greater than 0 in three
est sets, indicating the superiority and stability of our feature selection
n choosing effective features and improving prediction performances
f machine learning models. We also calculate the mean values of 𝑅2

𝑂𝑆
nd MAE𝑔𝑎𝑖𝑛𝑠 based on Table 12 to exhibit the improvement in RMSE
nd MAE. The mean values of 𝑅2

𝑂𝑆 and MAE𝑔𝑎𝑖𝑛𝑠 for all PFS-type mod-
ls of three test sets are 12.842% and 9.233% respectively, meaning
hat our feature selection could improve the prediction performance
f models. Moreover, most of CW and all DM tests reject the null
ypothesis, implying that PFS is robust and prominent in enhancing the
rediction accuracies of machine learning models for different data sets
nd various Gaussian noise conditions in statistical significance. Based
n the 𝑅2

𝑂𝑆 and MAE𝑔𝑎𝑖𝑛𝑠 values, CW and DM test, we conclude that
FS is robust for different Gaussian noises to improve the prediction
erformance of machine learning models.

Table 13 shows the Friedman tests considering different Gaussian
oises. We employ the RMSE and MAE of PFS-type model with different
aussian noises as the samples to perform the Friedman tests. All PFS-

ype models do not reject the null hypothesis, meaning that there is
o difference for the same basic model with the feature selection of
ifferent noises. For example, the 𝑝 value of Friedman test is 0.670 in
FS-LR model, which is more than 0.1, indicating that PFS-LR models
ith different noises has no difference in statistical significance.

To summarize, Tables 11 and 13 show that the proposed feature
election method is robust in selecting effective and useful features
nd improving the prediction accuracies of machine learning models.
or different models, different test sets, different periods and different
oises, our method can select the effective features for the EUA price
rediction and improve the prediction accuracy of models. We can con-
lude that PFS has robustness, effectiveness and superiority in feature
election and improving the EUA price prediction.

To verify the robustness of the PFS approach in carbon futures
rice forecasting, we consider different scenarios: varying data split
atios, distinct test sets accounting for financial market changes, diverse
valuation metrics, and different standard deviations in the PFS model.
irstly, employing different proportions of data sets may exhibit vary-

ng data distribution characteristics, thereby ensuring the reliability
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Table 11
Prediction errors of different models considering PFS with different Gaussian noises.

Model Test set 1 Test set 2 Test set 3

RMSE MAE RMSE MAE RMSE MAE

NFS-LR 2.960 2.226 3.196 2.534 2.921 2.239
PFS-LR(STD=0.1) 2.786 1.978 2.445 1.737 2.163 1.484
PFS-LR(STD=0.2) 2.805 2.019 2.424 1.705 2.410 1.765
PFS-LR(STD=0.3) 2.784 1.968 2.424 1.705 2.410 1.765
NFS-RR 3.312 2.656 3.488 2.814 10.131 8.244
PFS-RR(STD=0.1) 2.816 2.057 2.493 1.799 9.130 7.373
PFS-RR(STD=0.2) 2.798 2.025 2.547 1.868 9.804 7.942
PFS-RR(STD=0.3) 2.798 2.025 2.547 1.868 9.804 7.942
NFS-SVR 18.529 16.690 41.032 36.252 41.937 34.786
PFS-SVR(STD=0.1) 17.920 16.082 36.529 32.040 41.400 34.207
PFS-SVR(STD=0.2) 17.825 15.997 38.287 33.585 41.179 33.566
PFS-SVR(STD=0.3) 17.433 15.679 39.001 34.350 41.264 33.656
NFS-RF 23.300 20.729 33.047 29.147 38.806 32.722
PFS-RF(STD=0.1) 22.704 20.084 32.555 28.610 38.699 32.614
PFS-RF(STD=0.2) 22.135 19.714 32.830 28.903 38.181 32.082
PFS-RF(STD=0.3) 23.064 20.294 32.821 28.875 38.687 32.593
NFS-GBR 27.034 24.922 36.773 33.410 40.910 35.061
PFS-GBR(STD=0.1) 26.030 23.981 35.982 32.526 40.031 34.175
PFS-GBR(STD=0.2) 25.851 23.782 35.982 32.526 39.669 33.737
PFS-GBR(STD=0.3) 25.851 23.782 35.982 32.526 39.670 33.740
NFS-BR 23.386 20.787 32.477 28.604 38.595 32.504
PFS-BR(STD=0.1) 23.336 20.513 32.112 28.213 38.263 32.164
PFS-BR(STD=0.2) 23.336 20.513 32.472 28.525 38.359 32.260
PFS-BR(STD=0.3) 23.336 20.513 32.384 28.466 38.438 32.336

Note: This table reports the prediction errors of different models considering PFS with different Gaussian noises. RMSE and MAE are shown in Eqs. (23) and (24). STD is the
standard deviation of Gaussian noise.
Table 12
Prediction evaluation of models with feature selection considering different Gaussian noises.

Model Test set 1 Test set 2 Test set 3

𝑅2
𝑜𝑠(%) CW test MAE𝑔𝑎𝑖𝑛𝑠(%) DM test 𝑅2

𝑜𝑠(%) CW test MAE𝑔𝑎𝑖𝑛𝑠(%) DM test 𝑅2
𝑜𝑠 CW test MAE𝑔𝑎𝑖𝑛𝑠(%) DM test

PFS-LR(STD=0.1) 11.405 4.305*** 11.173 4.633*** 41.492 11.415*** 31.451 11.984*** 45.156 13.277*** 33.718 13.508***
PFS-LR(STD=0.2) 10.210 4.252*** 9.308 4.321*** 42.472 11.536*** 32.713 11.97*** 31.913 12.768*** 21.175 14.137***
PFS-LR(STD=0.3) 11.565 4.352*** 11.622 4.637*** 42.472 11.536*** 32.713 11.970*** 31.913 12.768*** 21.175 14.137***
PFS-RR(STD=0.1) 27.729 8.098*** 22.563 8.150*** 48.930 13.373*** 36.071 13.923*** 18.782 22.057*** 10.559 26.734***
PFS-RR(STD=0.2) 28.630 8.316*** 23.770 7.995*** 46.695 13.108*** 33.625 14.112*** 6.354 14.446*** 3.655 14.709***
PFS-RR(STD=0.3) 28.630 8.316*** 23.770 7.995*** 46.695 13.108*** 33.625 14.112*** 6.354 14.446*** 3.655 14.709***
PFS-SVR(STD=0.1) 6.466 11.100*** 3.639 12.027*** 20.745 21.339*** 11.620 24.555*** 2.545 27.979*** 1.666 40.576***
PFS-SVR(STD=0.2) 7.456 20.155*** 4.149 18.851*** 12.934 27.140*** 7.357 46.787*** 3.585 25.706*** 3.506 25.881***
PFS-SVR(STD=0.3) 11.479 20.066*** 6.057 19.367*** 9.655 25.221*** 5.248 38.627*** 3.184 22.574*** 3.249 24.329***
PFS-RF(STD=0.1) 5.051 9.273*** 3.108 9.515*** 2.959 10.866*** 1.841 14.974*** 0.553 28.724*** 0.329 28.278***
PFS-RF(STD=0.2) 9.746 17.777*** 4.895 17.373*** 1.309 5.232*** 0.836 6.468*** 3.194 30.329*** 1.954 61.012***
PFS-RF(STD=0.3) 2.014 2.272** 2.098 3.725*** 1.368 6.702*** 0.934 9.627*** 0.610 28.266*** 0.392 41.413***
PFS-GBR(STD=0.1) 7.290 12.900*** 3.776 11.685*** 4.255 21.499*** 2.646 33.367*** 4.248 29.760*** 2.527 57.380***
PFS-GBR(STD=0.2) 8.557 16.728*** 4.573 16.143*** 4.255 21.499*** 2.646 33.367*** 5.973 33.021*** 3.775 69.955***
PFS-GBR(STD=0.3) 8.557 16.728*** 4.573 16.143*** 4.255 21.499*** 2.646 33.367*** 5.967 33.009*** 3.769 70.538***
PFS-BR(STD=0.1) 0.426 0.905 1.322 2.026** 2.235 6.695*** 1.366 8.822*** 1.715 31.702*** 1.049 40.609***
PFS-BR(STD=0.2) 0.426 0.905 1.322 2.026** 0.031 0.283 0.276 1.870** 1.221 28.591*** 0.752 43.988***
PFS-BR(STD=0.3) 0.426 0.905 1.322 2.026** 0.573 1.829** 0.484 3.066*** 0.815 24.181*** 0.519 24.094***

Note: This table reports the prediction evaluation of the models with the feature selection considering different Gaussian noises. 𝑅2
𝑜𝑠 and MAE𝑔𝑎𝑖𝑛𝑠 are shown in Eq. (25). Taking

he NFS-type model as the benchmark model and the other models with the feature selection as the competing models, we perform 𝑅𝑜𝑠2, MAE𝑔𝑎𝑖𝑛𝑠, a CW test, and a DM test.
In the CW test, the null hypothesis is that the competing and the benchmark models have the same prediction performance or mean square error, and the alternative hypothesis
is that the competing model has a better prediction performance or mean square error. Taking MAE as the loss function, we perform a DM test. The null hypothesis is that the
competing and the benchmark models have the same performance in MAE, and the alternative hypothesis is that the competing model has a better performance. ** and *** are
statistically significant at the 5% and 1% levels, respectively. – represents that the model has the same prediction performance as the benchmark model.
Table 13
𝑝 values of Friedman tests considering different Gaussian noises.

Indicators PFS-LR PFS-RR PFS-SVR PFS-RF PFS-GBR PFS-BR

Using RMSE as the samples
Friedman test 0.913 0.670 0.717 0.717 0.670 0.223
Using MAE as the samples
Friedman test 0.441 0.670 0.717 0.717 0.670 0.441

Note: This table reports Friedman tests considering different Gaussian noises. The null hypothesis is that the prediction performances (RMSE
and MAE) of models has no difference in all data sets, and the alternative hypothesis is that they have difference.
18
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Table A.14
EUA prices and related variables.

Factor group Variable Variables description Source

EUA EUA European Union Allowances price
(Carbon futures price)

Bloomberg

Commodity market factor

Brent Brent crude oil futures price Bloomberg
NGFP Natural gas futures price Bloomberg
Coal Coal Rotterdam futures price Bloomberg
COERI Crude oil excess return index Bloomberg
NGERI Natural gas excess return index Bloomberg
HOERI Heating oil excess return index Bloomberg
ECI Energy commodity index Bloomberg
Spiler GSCI silver total return index Wind
Golden GSCI golden total return index Wind
Live cattle GSCI live cattle total return index Wind
Coffee GSCI Coffee total return index Wind
Cocoa GSCI cocoa total return index Wind
Lean hogs GSCI lean hogs total return index Wind
Sugar GSCI sugar total return index Wind
Soybeans GSCI soybeans total return index Wind
Copper GSCI copper total return index Wind
Wheat GSCI wheat total return index Wind
Zinc GSCI zinc total return index Wind
Corn GSCI corn total return index Wind
Cotton GSCI cotton total return index Wind

Uncertainty
USPU US Equity Market-related Economic

Uncertainty Index
website1

UKPU UK economic uncertainty website1
VIX CBOE Volatility Index Wind

Stock market factor

ESTOXX600 STOXX Europe 600 index Wind
SP500 SS&P 500 stock composite indexindex Wind
ESTOXXOG STOXX Europe 600 Oil & Gas index Bloomberg
NEGI Wilderhill new energy global

innovation index
Bloomberg

CEI Wilderhill clean energy index Bloomberg
NECI Non-energy commodity index Bloomberg

Bond market factor

USCBYS, Difference between Moody’s BAA-and
AAA-rated US corporate bond yields)

FRED

USBY3M Euro area 3-month 3A bond yield FRED
USBY10Y US 10-year Treasury constant

maturity rate
FRED

USTS Difference between US 10-year
Treasury constant maturity rate and
US 1-year Treasury constant maturity
rate)

FRED

EUBY3M Euro area 3-month 3A bond yield European Central Bank
EULTBY Euro area 10-year 3A government

bond yield
European Central Bank

EUTS Excess of the yield on Euro Area
government 10-year bond over the
yield on its 1-year bond)

European Central Bank

Note: This reports EUA prices and related variables, including their description, sample frequency, and data source.
website1: https://www.policyuncertainty.com/EMV_monthly.html
FRED: https://fred.stlouisfed.org/
European Central Bank: https://sdw.ecb.europa.eu/intelligentsearch/.
of PFS across diverse distributions. Additionally, different split ratio
datasets may contain different levels of outliers and noise, which aids
in assessing the model’s robustness to such factors. Taking into account
financial market fluctuations, we partition the test data into four dis-
tinct periods: high volatility, low volatility, high uncertainty, and low
uncertainty. Moreover, we consider different evaluation metrics, such
as error indicators and statistical tests, to testify to the effectiveness and
superiority of PFS. Furthermore, we set different standard deviations
for the Gaussian noise in PFS to conduct sensitivity analysis. Different
split ratio datasets represent the suitability of PFS for data with varying
distributions and test set lengths. Test sets from different periods rep-
resent the adaptability of PFS to diverse financial market conditions.
Different standard deviations illustrate the effect of PFS parameters on
the results. Different evaluation indicators are employed to confirm
the consistency and superiority of the prediction results obtained using
PFS. Across different split ratio datasets, distinct test data accounting
for financial market changes, diverse evaluation metrics, and Gaussian
19
noises with varying standard deviations, PFS consistently demonstrates
superior advantages in feature selection and improving the accuracy of
carbon futures price forecasting, thereby verifying its robustness.

5. Conclusions and future work

In this paper, we have proposed a novel feature selection method
for carbon futures price forecasting based on importance measures. Our
method adds Gaussian noise to the input features, calculates the impor-
tance scores of the features based on the error difference between the
original and noisy feature sets, and determines the optimal threshold
value for feature selection based on the minimum of mean prediction
errors. We have applied our method to a real-world carbon futures
dataset from Europe and compared it with other feature selection
methods, including variance threshold and analysis of variance. We
have used different forecasting models including LR, RR, SVR, FR,
GBR and BR to perform feature selection by our method, and to train

https://www.policyuncertainty.com/EMV_monthly.html
https://fred.stlouisfed.org/
https://sdw.ecb.europa.eu/intelligentsearch/
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and test models for carbon prices forecasting, We also evaluated the
prediction performance using different metrics and statistical tests. The
experimental results have shown that our method can select the most
effective and informative features for carbon futures price forecasting,
and improve the forecasting performance by reducing the dimension-
ality and noise of the input features. Our method is also robust in
selecting effective features and improving prediction accuracy for dif-
ferent models, test sets, periods, and noise levels. Moreover, our method
outperforms variance threshold and analysis of variance in feature se-
lection and improving prediction accuracy. The results have also shown
that linear models outperform non-linear models, suggesting that linear
models can capture the main trend of carbon futures prices, while non-
linear models may overfit the data and have poor generalization ability.
The factor analysis has revealed some common and consistent factors
that have a stable and strong impact on carbon futures prices, such
as Coffee, SP500, Sugar, USBY3M, USCBYS and EULTBY. The factor
analysis has also identified some varying and moderate factors that
have a fluctuating and weak impact on carbon futures prices, such as
CEI, NGERI, and Zinc.

Based on our experimental findings, we offer several recommenda-
tions for participants in the carbon futures market and policymakers.
First, linear prediction models are more effective than non-linear mod-
els in forecasting carbon futures prices, highlighting the importance
of model selection. Second, appropriate feature selection methods are
crucial, as they enhance prediction accuracy and aid in identifying
key features. Market participants and decision-makers should employ
feature screening to filter out irrelevant or redundant elements in their
predictive models. Third, specific factors, such as SP500, EULTBY,
Coffee, Sugar, USBY3M, and USCBY, exert a stable and significant
influence on carbon futures prices, and should be considered as critical
references in decision-making processes.

For future work, we aim to extend our feature selection method
in several directions. First, we will investigate techniques to handle
nonlinear relationships between features and carbon futures prices, al-
lowing for more flexible and potentially more accurate models. Second,
we will explore a wider range of factors that may influence carbon
prices, such as environmental policies, social media sentiments, and
technological innovations. This will provide a more comprehensive
understanding of the drivers of carbon market dynamics. Third, we will
investigate the scalability of our method to larger datasets and explore
its applicability to other financial forecasting tasks, such as stock price
prediction and exchange rate forecasting. This will provide insights
into the generalizability and robustness of our method across different
domains and data scales.
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