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A B S T R A C T

Accurate photovoltaic (PV) power generation forecasting is crucial for optimizing the integration of solar
energy into power grids and advancing towards a cleaner, more sustainable energy future. However, the
inherent variability and complexity of PV power generation data pose significant challenges for accurate
forecasting. To address these challenges, this paper introduces Collaborative Directional Representation
(CoDR), a novel deep learning model that extracts and represents the directional fluctuations of solar
irradiance data to improve forecasting accuracy and reliability. CoDR utilizes a series of steps, including
data preprocessing, fluctuation extraction, directional representation, linearization, de-extraction, mapping, and
data postprocessing, to capture both the temporal and spatial dependencies within the data. CoDR leverages
a unique directional representation to capture both temporal and spatial dependencies in the data, enabling
superior forecasting accuracy and robustness compared to twenty-two state-of-the-art benchmark methods.
We validate CoDR on a real-world dataset of PV power generation in Belgium, demonstrating its effectiveness
through extensive experiments, ablation studies, and sensitivity analyses. Importantly, CoDR enhances the
transparency of the forecasting process by revealing the causal relationships and directional influences among
input variables and PV power output. This explainability feature provides valuable insights into the underlying
drivers of PV power generation, promoting trust and informed decision-making in the transition to cleaner
energy systems.
1. Introduction

The global demand for renewable energy sources has increased
significantly in recent years, driven by the urgent need to mitigate
climate change and reduce greenhouse gas emissions. Transitioning
towards a cleaner and more sustainable energy system is paramount
for achieving global climate goals, as outlined in the United Nations
Sustainable Development Goals (SDGs), particularly SDG 7 (Affordable
and Clean Energy) and SDG 13 (Climate Action). Solar PV power
generation is one of the most widely adopted and rapidly growing
renewable energy technologies due to its abundant availability, low
maintenance costs, and high scalability (Mekhilef et al., 2011). How-
ever, PV power generation also faces several challenges, such as high
variability, uncertainty, and intermittency, which are caused by the
dependence on weather conditions, solar irradiance, and other factors
that are hard to predict (Peng et al., 2020). These challenges pose
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serious risks to the stability and reliability of the power grid, as well
as for the operation and management of various energy systems and
markets (Guo et al., 2022). Accurately forecasting PV power generation
is not only essential for the technical optimization of power grids but
also plays a critical role in maximizing the environmental and societal
benefits of solar energy. By enabling the efficient integration of solar
energy, accurate PV forecasting directly contributes to reducing green-
house gas emissions and decreasing reliance on fossil fuels, fostering a
cleaner energy future.

PV power generation forecasting is a challenging task that requires
addressing multiple sources of complexity, such as temporal and spa-
tial variations, nonlinear and dynamic dependencies, and diverse and
uncertain factors (Das et al., 2018). Various forecasting methodologies
have been proposed and applied in the literature, covering a wide
spectrum of approaches from traditional statistical models to modern
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machine learning techniques and hybrid approaches that combine the
strengths of different methods. However, each approach has its own
advantages and limitations, and no consensus exists on the best method
for PV power generation forecasting (Akhter et al., 2019).

A comparative analysis of existing forecasting methods reveals com-
mon challenges and trade-offs that must be addressed to advance the
state-of-the-art in PV power forecasting. One challenge is the inherent
uncertainty associated with weather conditions, which directly impacts
the quality and availability of input data for forecasting models. While
uncertainty can be quantified using probabilistic or interval-based ap-
proaches to provide valuable information for decision-making and risk
management (Asif et al., 2019; Mellit et al., 2020; Ahmad et al., 2024;
Shi et al., 2024), these approaches often increase model complex-
ity and computational cost, potentially limiting their applicability in
real-time scenarios. Another significant challenge lies in selecting and
engineering optimal input variables and features. Different methods
employ various types of data, including historical PV power, mete-
orological data, satellite images, and Numerical Weather Prediction
(NWP) data (Yadav et al., 2015; Peng et al., 2024). The choice of input
data depends on factors such as availability, reliability, resolution, cost,
forecasting horizon, and granularity (Guo et al., 2022). While feature
selection and extraction techniques can reduce dimensionality and
noise (Wu et al., 2022; Trivedi et al., 2022), effectively capturing the
complex interplay between meteorological conditions and PV power
output while ensuring computational efficiency remains a persistent
challenge. Furthermore, balancing accuracy and interpretability is cru-
cial, especially in promoting cleaner production and responsible AI
development. Although machine learning algorithms often demonstrate
superior accuracy in short-term, high-resolution forecasting compared
to traditional statistical models (Mellit et al., 2020; Gaboitaolelwe et al.,
2023; Alcañiz et al., 2023), they are often criticized for their lack of
transparency and interpretability. This ‘‘black-box’’ nature can hinder
their acceptance and trustworthiness among stakeholders and regula-
tors. Conversely, traditional statistical models, while offering greater
interpretability, may not adequately capture the complex, nonlinear re-
lationships and dynamics inherent in PV power generation, potentially
limiting their predictive accuracy (López Santos et al., 2022; Hussain
et al., 2022). Striking a balance between accuracy and interpretability
is essential to ensure reliable forecasts and a clear understanding of the
factors driving PV power generation.

To address these challenges, this paper introduces a novel deep
learning approach based on CoDR. In contrast to conventional deep
learning approaches that often treat time series data as a sequence
of scalar values, CoDR leverages a unique directional representation
to encode both the magnitude and direction of power variations over
time. This directional representation captures the inherent trends and
fluctuations in solar irradiance, enabling CoDR to model the com-
plex interplay of these variations with greater accuracy. Crucially,
CoDR’s directional representation facilitates the extraction of causal
relationships and influences between input variables (such as weather
conditions) and PV power output, enhancing the model’s explainability
and transparency. Our CoDR-based model consists of three key stages:
data preprocessing, feature extraction, and forecasting. The data pre-
processing stage transforms the raw data of multiple PV plants into
directional vectors using a simple transformation function. The feature
extraction stage leverages the historical data of multiple PV plants to
learn a low-dimensional latent representation of the directional vectors,
which can capture the common and individual characteristics of each
PV plant, as well as handle missing and noisy data. The forecasting
stage uses the latent representation as input and predicts the future
directional vectors for each PV plant using a linear regression model,
which can adapt to different weather conditions and scenarios. The
predicted directional vectors are then converted back to PV power
values using the inverse transformation function.
2

The main contributions of this paper are as follows:
• We propose a novel collaborative directional representation for
PV power generation data, which can encode both the trend and
the intensity of the power variation over time, and can effectively
handle the temporal patterns, dependencies, and correlations of
PV power generation.

• We develop a novel deep learning model for PV power generation
forecasting, which leverages collaborative directional representa-
tion to capture both temporal and spatial dependencies in the
data. We also design a simple transformation function to convert
the raw data into directional vectors and vice versa.

• We provide a theoretical analysis of the proposed CoDR model,
which explains how the directional representation can capture the
causal relationships and directional influences among the input
variables and the output variable. We also derive the upper bound
of the forecasting error and prove the convergence of the model.

• We conduct comprehensive experiments on real-world data from
various regions of Belgium to evaluate the performance of our
model and compare it with several state-of-the-art methods. We
demonstrate that our model can achieve superior accuracy and
robustness performance, as well as high computational efficiency
and scalability.

The remainder of this paper is organized as follows: Section 2
reviews related work on PV power generation forecasting methods;
Section 3 introduces the real-world PV power generation data used in
this study; Section 5 describes our proposed deep learning model for
PV power generation forecasting; Section 6 presents our experimental
results and analysis; Section 7 concludes our paper and outlines future
work.

2. Related work

Accurately forecasting PV power generation is essential for the
effective management and integration of solar energy into power grids,
contributing significantly to a cleaner and more sustainable energy
future (Das et al., 2018). Reliable forecasts enable optimized power
system operations, reduce the risk of energy imbalances, and maximize
the social, economic, and environmental benefits associated with this
renewable energy source. However, forecasting PV power generation
presents significant challenges due to the inherent uncertainty, variabil-
ity, and complexity of solar irradiance patterns, which are influenced
by a multitude of meteorological and environmental factors (Panda
et al., 2022). Various forecasting methods have been proposed, ranging
from traditional statistical models to advanced machine learning tech-
niques. This section reviews the most relevant recent works, focusing
on their strengths, limitations, and how they relate to our proposed
approach.

2.1. Deep learning for PV power forecasting

Deep learning models have gained significant attention for their
ability to learn complex nonlinear relationships in data, leading to
advancements in PV power forecasting. Recurrent neural networks
(RNNs), such as Long Short-Term Memory (LSTM) by Hochreiter and
Schmidhuber (1997) and Gated Recurrent Units (GRU) by Chung et al.
(2014), are well-suited for handling sequential data like time series.
These models have shown promise in PV power forecasting due to
their ability to capture temporal dependencies. However, RNNs of-
ten face challenges in capturing long-range dependencies and can be
computationally expensive, especially when dealing with long time
series data (Sun et al., 2023). Moreover, traditional RNN architec-
tures often process time series data as a sequence of scalar values,
without explicitly considering the directional nature of changes in
solar irradiance. This limitation can hinder their ability to accurately
model the dynamics of PV power generation, as the direction of solar
irradiance fluctuations can significantly influence the output of PV

systems (López Santos et al., 2022; Hussain et al., 2022).
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Convolutional Neural Networks (CNNs) excel at extracting spatial
features from data. In the context of PV forecasting, 1D CNNs by Malek
et al. (2018) are employed to extract relevant features from time series
data. They are often combined with RNNs (e.g., CNN-RNN, CNN-LSTM)
to leverage the strengths of both architectures, capturing both spatial
and temporal dependencies crucial for accurate forecasting (Shi et al.,
2015). While CNNs offer advantages in feature extraction, they may not
explicitly account for the directionality of changes in solar irradiance,
similar to traditional RNN approaches. This limitation can restrict their
ability to fully model the complex relationship between solar irradiance
fluctuations and PV power output.

Attention mechanisms (Vaswani et al., 2017), initially prominent in
natural language processing, have been successfully adapted for time
series forecasting (Qin et al., 2017; Zhou et al., 2021). These mecha-
nisms allow models to selectively focus on the most relevant parts of the
input sequence, improving performance and efficiency. Numerous stud-
ies have employed attention-based models for PV power forecasting,
demonstrating their capability to capture intricate temporal patterns
and dependencies within the data (Pan et al., 2019; Ju et al., 2020;
Khan et al., 2023; Zhu et al., 2022; Kharlova et al., 2020; Aslam
et al., 2021). However, despite their ability to weigh the importance
of different time steps, many existing attention-based models for PV
power forecasting do not explicitly incorporate the direction of changes
in solar irradiance. They primarily focus on the magnitude of these
changes, potentially neglecting valuable information embedded in the
directionality of fluctuations, which can significantly influence future
PV power generation.

2.2. Spatial–temporal data modeling and collaborative representation

Spatial–temporal data, characterized by its dependence on both
location and time, presents unique modeling challenges due to the
intricate interactions between these dimensions. Various techniques
have been developed to address these challenges in energy forecasting
applications. Traditional statistical models like Autoregressive Inte-
grated Moving Average (ARIMA) by Das et al. (2018) and Exponential
Smoothing (ES) by Mekhilef et al. (2011) effectively capture tempo-
ral trends but have limitations in accounting for spatial correlations.
Vector Autoregressive Moving Average (VARMA) models by Hu et al.
(2024) offer a way to incorporate spatial dependencies; however, their
reliance on linear assumptions may hinder their ability to capture the
complex nonlinear dynamics inherent in PV power generation. Ma-
chine learning algorithms, such as Artificial Neural Networks (ANNs)
by Antonopoulos et al. (2019) and Support Vector Machines (SVMs)
by Lin et al. (2020), provide more flexible approaches for modeling
complex systems, capable of learning nonlinear relationships from data.
However, these algorithms often require extensive parameter tuning
and can lack interpretability, making it challenging to understand the
factors driving their predictions. This lack of transparency can be a
significant drawback in critical applications like PV power forecasting,
where understanding the underlying drivers of predictions is essential
for building trust and facilitating informed decision-making. Graph
Neural Networks (GNNs) by Cao et al. (2020) offer a powerful tool
for modeling spatial–temporal data by representing relationships be-
tween locations as a graph structure. This structure enables GNNs to
capture both spatial and temporal dependencies (Huang et al., 2024),
making them well-suited for tasks like PV power forecasting, where
interactions between geographically distributed PV systems and time-
varying weather patterns are crucial. Li et al. (2023) and Wang et al.
(2024) have explored the use of GNNs for PV power forecasting,
demonstrating their ability to capture complex spatial–temporal re-
lationships. Wang et al. (2024) proposed a dynamic directed graph
convolution network for ultra-short-term forecasting of distributed pho-
tovoltaic power, highlighting its effectiveness in enhancing network
3

resilience and flexibility.
Collaborative representation techniques (Hu et al., 2024) play a
vital role in analyzing data from multiple sources by leveraging shared
information and patterns to enhance prediction accuracy and robust-
ness. Collaborative representation techniques in PV power forecasting
have been explored to enhance prediction accuracy by leveraging data
from multiple PV farms. Guermoui et al. (2024) discussed the use of
hybrid models, which have demonstrated superior performance com-
pared to standalone models. These models combine data from various
PV farms to improve the accuracy of power forecasting. Addition-
ally, Lateko et al. (2022) highlighted ensemble learning methods, which
involve combining multiple models to enhance the precision of PV
power forecasting. Examples include multi-task learning (Shih et al.,
2019), where shared features are learned across tasks, and ensemble
methods (Khan et al., 2022), which combine predictions from multiple
models. Federated learning allows training models on decentralized
data without sharing private information (Zhou et al., 2022b). Col-
laborative representation techniques have also been explored in the
context of PV power forecasting (Lateko et al., 2022), where the use of
ensemble learning methods has been highlighted as a means to boost
accuracy by combining multiple models. Venkatraman and Pitchaipillai
(2024) developed a deep belief network-based auto-LSTM approach
using wireless sensor networks for energy forecasting in solar power
plants, showcasing the potential of collaborative representation for
distributed energy systems. Moreover, Park et al. (2023) introduced
the concept of single-site-based zero-shot PV power forecasting (SZF),
which involves training a model on source data and making predictions
on target data without fine-tuning. This approach can be beneficial
in scenarios where fine-tuning data may be limited or unavailable.
Furthermore, Zhu et al. (2024) emphasized the importance of data
clustering, model enhancement, and uncertainty analysis in PV power
forecasting.

Despite these advancements, a persistent need exists for PV power
forecasting models that can explicitly capture the directional nature of
solar irradiance fluctuations and provide transparent insights into the
factors driving their predictions. Our proposed CoDR model addresses
this gap. CoDR introduces a novel collaborative directional representa-
tion, encoding both the magnitude and direction of power variations to
enhance forecasting accuracy, interpretability, and explainability.

3. Materials

This study utilizes a real-world dataset provided by Elia Group
(EG), the Belgian transmission system operator. The dataset comprises
15-minute resolution PV power generation data, including day-ahead
measurements and intra-day forecasts, covering 14 different regions
in Belgium from January 1, 2022, to December 31, 2022 (Zsiborács
et al., 2021). The PV power generation is measured in megawatts (MW).
This dataset is particularly relevant due to the high penetration of PV
power generation in the Belgian power system, which poses significant
challenges to grid operation and management.

As PV power generation is directly influenced by sunshine duration
and irradiance, the dataset exhibits clear seasonal patterns (Islam et al.,
2018), as illustrated in Figs. 1 and 2. Fig. 1 shows the average daily
PV energy production over time, highlighting the increasing trend
from January to a peak in the summer months, followed by a gradual
decrease towards December. Fig. 2 depicts the average monthly hourly
PV production, revealing a consistent diurnal pattern with higher gen-
eration during midday hours and lower generation in the morning and
evening. The variation in peak generation hours across different months
reflects the influence of solar altitude angle and seasonal changes in
solar irradiance. These figures demonstrate the inherent seasonality
and daily periodicity present in PV power generation data, which pose

challenges for accurate forecasting.
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Fig. 1. Daily photovoltaic power production changes over time.
Fig. 2. Average monthly hourly scaled solar power heat map (2022).
4. Problem formulation

Solar irradiance is the amount of solar power received per unit area
on a given surface. It is measured in watts per square meter (W/m2),
and it varies depending on the location, time, season, weather, and
other factors. Forecasting the solar irradiance data is an important and
challenging task for the solar power generation systems, as it can help
to optimize the operation and maintenance of the PV panels, and to
integrate the renewable energy sources into the power grid. We propose
a novel model that can learn explainable time-varying directional
4

representations for the solar irradiance data. Our model can capture
both the temporal and spatial dependencies of the data, and reveal the
causal mechanisms and directional effects of the input variables on the
output variable. The research problem can be formulated as follows:

Let 𝒁 ∈ R𝑁×𝐷 be a multivariate time series data that represents
the solar irradiance received on a given surface area in a given time
interval, where 𝑁 is the number of observations and 𝐷 is the number of
variables. The problem formulation of this paper is to learn a function
𝑓 ∶ R𝑇×𝐷 → R𝑂×𝐷 that can map a sequence of past observations
𝑿 ∈ R𝑇×𝐷 to a sequence of future values 𝒀 ∈ R𝑂×𝐷, where 𝑇 is the
𝑡 𝑡
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Fig. 3. The schematic illustration of the proposed CoDR model. (a) The workflow. (b) Directional Representation (DR).
Table 1
Symbols and meanings.

Symbol Semantic

𝐷 The number of variables
𝑇 The window size
𝑂 The output size
𝒁 The raw solar irradiance data
𝒁 ′ The normalized solar irradiance data
𝐵 The batch size
𝑿 Batched input tensor, 𝑿 ∈ R𝐵×𝑇×𝐷

𝒀 Batched output tensor, 𝒀 ∈ R𝐵×1×𝐷

𝑵𝑓 The fluctuation component data, 𝑵𝑓 ∈ R𝐵×𝑇×𝐷

𝑵 𝑟 The rectified fluctuation data, 𝑵 𝑟 ∈ R𝐵×𝑇×𝐷

𝑽 The transformed fluctuation data, 𝑽 ∈ R𝐵×𝑇×𝐷

𝒅 The dimension of directional representation
𝑯𝑑 The highlighted score tensor in dimension 𝒅, 𝑯𝑑 ∈ R𝐵×𝑇×𝐷

𝑰𝑑 The converted tensor, 𝑰𝑑 ∈ R𝐵×𝑇×𝐷

𝑳𝑑 The directional representation tensor, 𝑳𝑑 ∈ R𝐵×𝑃×𝐷

𝑮 The intermediate fluctuation data, 𝑮 ∈ R𝐵×𝑃×𝐷

𝑴 The de-extracted data, 𝑴 ∈ R𝐵×𝑃×𝐷

𝑨 The feature fusion data, 𝑨 ∈ R𝐵×𝑃×𝐷

�̂� The predicted output tensor, �̂� ∈ R𝐵×𝑂×𝐷

�̂� The final predicted value, �̂� ∈ R𝐵×𝑂×𝐷

window size and 𝑂 is the output size. The function 𝑓 should capture
the temporal patterns, dependencies, and correlations of the solar
irradiance data, and use them to improve the accuracy and reliability
of the forecasting task. The main notations used in this paper are listed
in Table 1.

5. Methodology

In this section, we present the details of our proposed CoDR model
for PV power generation forecasting. The CoDR model is a novel deep
learning approach that leverages collaborative directional representa-
tion to capture both temporal and spatial dependencies in the data.
We will describe the proposed model in detail, and also provide a
summary of the CoDR model in algorithm form. Moreover, we will
provide a theoretical analysis of the CoDR model, which explains
5

how the directional representation can capture the causal relationships
and directional influences among the input variables and the output
variable. We will also derive the upper bound of the forecasting error
and prove the convergence of the model.

5.1. CoDR model overview

The CoDR model is a novel deep learning approach for solar irradi-
ance forecasting that leverages the directional fluctuations of the data.
The CoDR model consists of seven main steps, as shown in Fig. 3(a).

The first step is data preprocessing, which normalizes and trans-
forms the raw solar irradiance data into input–output pairs for a
supervised learning problem. The second step is window fluctuation
extraction, which extracts the fluctuation component from the nor-
malized data by subtracting the moving average, which reflects the
short-term variations of the data. The third step is directional represen-
tation, which transforms the fluctuation component into a directional
representation, where each data point is assigned a direction (upward
or downward) and a magnitude based on its relative position to its
previous point. The fourth step is linearization, which linearizes the
directional representation by applying a linear layer, which reduces
the dimensionality and complexity of the data. The fifth step is win-
dow fluctuation de-extraction, which de-extracts the linearized data by
adding the last element of the input data, which recovers the trend
and seasonality components of the data. The sixth step is mapping,
which maps the de-extracted data and the directional representation
data into a single output value for each input sequence by using a linear
layer, which produces the predicted values of the solar irradiance data.
The seventh and final step is data postprocessing, which de-normalizes
the predicted values to the original scale of the time series data, and
calculates the error metrics to evaluate the performance of the model.

The CoDR model uses a simple and interpretable representation that
can capture both the trend and the intensity of the solar irradiance
variations, and improve the accuracy and reliability of the forecasting
task. The CoDR model can also reveal the causal mechanisms and
directional effects of the input variables on the output variable, and
provide insights into the dynamics and patterns of the solar irradiance
data.
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5.2. Description of the CoDR model components

In this subsection, we will explain the seven main components
of the CoDR Model, each of which performs a specific function and
contributes to the overall performance and accuracy of the model.
The components are: data preprocessing, window fluctuation extrac-
tion, directional representation, linearization, window fluctuation de-
extraction, mapping, and data postprocessing. We will describe how
they work and how they are connected to achieve the forecasting task.

5.2.1. Data preprocessing
Data preprocessing is the first component of the CoDR model, which

prepares the raw solar irradiance data for the subsequent steps of
fluctuation extraction, directional representation, and forecasting. Data
preprocessing consists of two parts: data normalization and one-step
forward split.

Data normalization scales the input data 𝒁 to the range [0, 1] using
min–max normalization, which can speed up the model training process
and reduce the impact of outliers. Min–max normalization individually
normalizes each input sample to a scalar value by subtracting the
minimum value and dividing by the range of values. This ensures that
the input data has a common scale and does not dominate the model
parameters or the loss function. The normalized data is denoted by 𝒁′,
nd the normalization formula is given by:

′ =
𝒁 − min(𝒁)

max(𝒁) − min(𝒁)
. (1)

One-step forward split transforms the normalized time series data
nto a supervised learning problem, where each input sequence is
aired with its next value as the output. This transformation method
onverts time series data into a dataset with input features and corre-
ponding target variables. The input features are the past observations
f the solar irradiance data, and the target variables are the future
alues of the solar irradiance data. The model learns to predict the
arget variables based on the input features, using the temporal patterns
nd dependencies of the data. The input and output data are denoted
y 𝑿 and 𝒀 , respectively, and the transformation formula is given by:

𝒁′
1 𝒁′
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𝑇
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𝑛−1

⎤

⎥

⎥

⎥

⎥

⎦

→

⎡

⎢

⎢

⎢

⎢

⎣

𝒁′
𝑇+1

𝒁′
𝑇+2
⋮

𝒁′
𝑛

⎤

⎥

⎥

⎥

⎥

⎦

. (2)

here 𝑇 is the window size, which determines how many past ob-
servations are used as inputs for each prediction. The left part is the
normalized inputs of the model, denoted by  ∈ R(𝑛−𝑇 )×𝑇×𝐷, and
the right part is the normalized outputs of the model, denoted by
 ∈ R(𝑛−𝑇 )×𝐷. Several consecutive instances in ( ,) are denoted by
(𝑿, 𝒀 ) ∈ R𝐵×𝑇×𝐷 ×R𝐵×1×𝐷, where 𝐵 is the batch size, 𝑇 is the window
size, and 𝐷 is the number of variables.

5.2.2. Window Fluctuation Extraction (WFE)
Window fluctuation extraction is the second component of the CoDR

model, which aims to isolate the short-term variations of the solar
irradiance data from the long-term trend and seasonality components.
The short-term variations, or the fluctuation component, capture the
deviation of the data from its local mean within the window, which
reflects the dynamic and nonlinear nature of the solar irradiance data.
The fluctuation component is the main input for the directional repre-
sentation step, which transforms the data into a binary sequence that
indicates the direction changes of the data.

The window fluctuation extraction step is performed by subtracting
the moving average of each input sequence from its original values,
which reflects the deviation of the data from its local mean within
the window. The moving average is calculated by averaging the values
of each input sequence along the time dimension, which can smooth
6

out the noise and capture the trend and seasonality components of the
ata. The subtraction operation then removes these components and
etains only the fluctuation component, which captures the short-term
ariations of the data. The resulting tensor 𝑵𝑓 represents the difference

between each input sequence and its moving average, which reflects
the fluctuation range of the data within the window. The fluctuation
range is an important feature for the directional representation step,
as it indicates the direction and magnitude of the data changes. The
window fluctuation extraction step is performed as follows:

𝑵𝑓 = 𝑿 − 1
𝑇

𝑇
∑

𝑖=1
𝑿∶,𝑖,∶, (3)

here 𝑵𝑓 ∈ R𝐵×𝑇×𝐷 is the fluctuation component data; 𝑿 ∈ R𝐵×𝑇×𝐷

is the input tensor; 𝑇 is the window size; and 𝐵 and 𝑑 are the batch
size and the number of variables, respectively. The − operator first
broadcasts the sequence length of 1

𝑇
∑𝑇

𝑖=1 𝑿∶,𝑖,∶ to 𝑇 , and then performs
element-wise subtraction between 𝑿 and 1

𝑇
∑𝑇

𝑖=1 𝑿∶,𝑖,∶.

5.2.3. Directional Representation (DR)
Directional representation is a novel key component that we pro-

pose to capture the features of time series data in different directions.
The directional representation unit, as shown in Fig. 3(b), transforms
the fluctuation range data 𝑵 into a low-dimensional and non-linear
representation that can handle temporal patterns, dependencies, and
correlations of PV power generation. The directional representation
unit consists of four steps: (1) Rectification, (2) Transformation, (3)
Highlighting, and (4) Linearization.

• Rectification: This step applies a rectified linear unit (ReLU) function
on the data 𝑵𝑓 to filter out the negative values and retain the positive
values of the data. The rectified data is denoted by 𝑵 𝑟, and the
rectification formula is given by:

𝑵 𝑟 = ReLU(𝑵𝑓 ), (4)

The rectification step ensures the accuracy of long-term temporal
series feature extraction by removing the downward fluctuations that
may interfere with the prediction.

• Transformation: This step changes the rectified data 𝑵 𝑟 and dis-
covers the temporal patterns by multiplying it by a learnable weight
matrix 𝑾 𝑡. This step can be described as below formula:

𝑽 = 𝑵 𝑟 ⋅𝑾 𝑡, (5)

where 𝑽 ∈ R𝐵×𝑇×𝐷 is the result of transformation and 𝑾 𝑡 ∈ R𝐷×𝑇 is
the learnable weight matrix. The transformation step learns the op-
timal weights for each time step and variate to capture the temporal
dependencies and correlations of the data.
Highlighting: This step feeds 𝑽 into a softmax layer to enlarge
the difference in several aspects. These aspects are batch dimension
(𝒅=0), sequence dimension (𝒅=1), and variate dimension (𝒅=2). The
softmax layer computes the attention score for each element in 𝑽
along each dimension, indicating its importance or relevance for the
prediction task. The highlighted score tensor is denoted by 𝑯𝑑 , and
the highlighting formula is given by:

𝑯𝑑 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

exp(𝑽 𝑏,𝑡,𝑖)
∑𝐵

𝑏=1 exp(𝑽 𝑏,𝑡,𝑖)
, 𝑑 = 0,

exp(𝑽 𝑏,𝑡,𝑖)
∑𝑇

𝑡=1 exp(𝑽 𝑏,𝑡,𝑖)
, 𝑑 = 1,

exp(𝑽 𝑏,𝑡,𝑖)
∑𝐷

𝑖=1 exp(𝑽 𝑏,𝑡,𝑖)
, 𝑑 = 2,

(6)

where 𝑑 is the observed direction. The highlighting step assigns
higher scores to the more significant and influential elements in the
data, and lower scores to the less relevant and noisy elements.
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• Linearization: This step multiplies the rectified input tensor 𝑵 𝑟 by
the highlighted score tensor 𝑯𝑑 to create the dynamically generated
converted tensor 𝑰𝑑 . This step can be described as follows:

𝑰𝑑 = 𝑯𝑑 ⋅𝑵 𝑟, (7)

where 𝑰𝑑 ∈ R𝐵×𝑇×𝐷 is the converted tensor. Then, a linear transform
will be applied to the tensor 𝑰𝑑 to reduce its dimensionality and
obtain the final directional representation tensor 𝑳𝑑 . This step is as
below:

𝑳𝑑 =
𝑇
∑

𝑖=𝑡
𝑾 𝑙 × 𝑰𝑑

∶,𝑖,∶ + 𝑏𝑙 , (𝑑 = 0, 1, 2), (8)

where 𝑳𝑑 ∈ R𝐵×𝑃×𝐷 is the result of directional representation; 𝑾 𝑙 is
weight matrix 𝑏𝑙 is a bias, and 𝑷 is the hidden size in the linear layer.
The linearization step combines the rectified data and the highlighted
scores to generate a low-dimensional and non-linear representation of
the data that reflects the direction and intensity of the fluctuations.

.2.4. Linearization
Linearization is the component for transforming the fluctuation

ange data 𝑵𝑓 into intermediate fluctuation data 𝑮, which can capture
the features of the fluctuation data more effectively. Linearization is
performed by applying a linear layer to the data 𝑵𝑓 , which consists of
a learnable weight matrix 𝑾 𝑔 and a bias term 𝑏𝑔 . The linear layer maps
the data 𝑵𝑓 from a high-dimensional space to a low-dimensional space,
reducing the complexity and redundancy of the data. The linearization
formula is given by:

𝑮 =
𝑇
∑

𝑖=𝑡
𝑾 𝑔 ×𝑵𝑓 + 𝑏𝑔 , (9)

where 𝑮 ∈ R𝐵×𝑃×𝐷 is the intermediate fluctuation data; 𝑾 𝑔 ∈ R𝑃×𝐷

s the weight matrix of the linear layer and 𝑏𝑔 ∈ R𝑃 is the bias term
f the linear layer. The linearization step learns the optimal weights
nd biases for each time step and variate to capture the features of the
luctuation data.

.2.5. Window Fluctuation De-extraction (WFD)
De-extraction is the component for adding the last element of the

nput tensor 𝑿, denoted by 𝑿∶,−1,∶, to the intermediate fluctuation data
, which recovers the trend and seasonality components of the time

eries data. The de-extraction formula is given by:

= 𝑮 +𝑿∶,−1,∶, (10)

here 𝑴 ∈ R𝐵×𝑃×𝐷 is the result of de-extraction. The de-extraction step
estores the original scale and shape of the data by adding the last value
f the input sequence, which represents the most recent observation of
he solar irradiance data.

.2.6. Mapping
Mapping is the component for producing the final output tensor

that contains the predicted values of the solar irradiance data. The
apping step consists of two parts: feature fusion and linear projection.

Feature fusion: This part combines the features of all the intermediate
data, namely the de-extracted data 𝑴 and the directional represen-
tation data 𝑳0, 𝑳1, and 𝑳2. The feature fusion process can be shown
as below formula:

𝑨 = 𝑴 +𝑳0 +𝑳1 +𝑳2, (11)

where 𝑨 ∈ R𝐵×𝑃×𝐷 is the result of feature fusion. The feature fusion
process aims to integrate the information from different sources and
dimensions, and enhance the representation power of the data. The
feature fusion process combines the trend and seasonality compo-
nents from the de-extracted data, and the direction and intensity
components from the directional representation data.
7

Linear projection: This part uses a linear layer to map the feature
fusion data 𝑨 to the final output tensor �̂� . The linear projection
formula is given by:

�̂� =
𝑃
∑

𝑖=𝑡
𝑾 𝑎 ×𝑨∶,𝑖,∶ + 𝑏𝑎, (12)

where �̂� ∈ R𝐵×𝑂×𝐷 is the output tensor, 𝑶 is the output window
size; 𝑾 𝑎 and 𝑏𝑎 are the weight matrix and bias vector of the linear
layer, respectively. The linear projection process aims to reduce the
dimensionality of the data and obtain a single output value for each
input sequence. The linear projection process learns the optimal
weights and biases for each variate and output size to generate the
predicted values of the solar irradiance data.

.2.7. Data postprocessing
This component is used to obtain the final prediction results of

he CoDR model, and to evaluate its performance against the ground
ruth data. The data postprocessing step consists of two parts: de-
ormalization and error calculation.

De-normalization: This part applies the inverse of the min–max nor-
malization formula to the outputs of the model in the post-processing
stage to recover the original scale of the data. The de-normalization
formula is given by:

�̂� = �̂� ⋅ (max(𝒁) − min(𝒁)) + min(𝒁), (13)

where min(𝒁) and max(𝒁) are the minimum and maximum values of
𝒁, respectively. The de-normalization step restores the original units
and ranges of the data, which are necessary for the evaluation and
comparison of the model results.
Error calculation: This part calculates the error metrics between the
predicted values �̂� and the ground truth values 𝒚, which are the actual
observations of the solar irradiance data. The error metrics measure
the accuracy and reliability of the model predictions, and indicate
the performance and quality of the model. The error metrics that we
use in this paper are the mean square error (MSE), the mean absolute
error (MAE), and the coefficient of variation of root mean square error
(CVRMSE). The error calculation formulas are given by:

MSE = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2, (14)

MAE = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖|, (15)

CVRMSE =

√

MSE
�̄�

× 100%, (16)

where 𝑛 is the number of observations, and �̄� is the mean of the
actual values. The lower the values of these metrics, the better the
performance of the prediction model. However, these metrics also
have some limitations. For example, MSE and MAE do not consider
the temporal correlation or order of the time series data, which may
affect the prediction accuracy. CVRMSE may not reflect the absolute
error or deviation of the prediction model, which may affect the
reliability of the model. Therefore, using multiple evaluation metrics
can provide a more comprehensive and objective assessment of the
prediction models.

5.3. Summary of the CoDR model

The CoDR model utilizes a series of steps to process solar irradiance
data and generate accurate forecasts of photovoltaic power generation.
The model leverages a novel approach called CoDR that captures both
the temporal and spatial dependencies within the data.

The CoDR model begins by taking raw solar irradiance data as
input. This data is first preprocessed by normalizing it to a common
scale and splitting it into input–output pairs, preparing it for supervised
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Table 2
Benchmark methods for PV power generation forecasting.

Method Type Components Advantages Disadvantages

GAR (Wu et al., 2018) Parametric
model

Global autoregression Simple and interpretable Cannot capture nonlinearities
and dependencies in data

AR (Huang et al., 2023) Parametric
model

Autoregression Simple and interpretable Cannot capture dependencies
among multiple time series,
sensitive to outliers

VAR (Hu et al., 2024) Parametric
model

Vector autoregression Can capture interdependencies
among multiple time series

Cannot capture nonlinearities
in data, high computational
complexity

DLinear (Zeng et al., 2023) Neural network Linear layers and skip
connections

Can learn linear and nonlinear
components of data

May suffer from overfitting
and gradient vanishing

NLinear (Zeng et al., 2023) Neural network Nonlinear activation functions
and skip connections

Can learn linear and nonlinear
components of data

May suffer from overfitting
and gradient vanishing

FiLM (Zhou et al., 2022a) Neural network
technique

Feature-wise linear modulation
of one layer by another layer

Can modulate the features of
one layer based on another
layer’s output

May introduce additional
complexity and parameters

LSTM (Hochreiter and
Schmidhuber, 1997)

Neural network LSTM cells to model long-term
dependencies in sequential
data

Can handle long-term
dependencies and
variable-length input and
output sequences

May suffer from information
loss and gradient explosion

GRU (Chung et al., 2014) Neural network GRU cells to model long-term
dependencies in sequential
data

Can handle long-term
dependencies and
variable-length input and
output sequences, simpler
than LSTM

May suffer from information
loss and gradient explosion

ED (Cho et al., 2014) Neural network
architecture

Encoder–decoder with
fixed-length vector
representation of input
sequence

Can process variable-length
input and output sequences
without recurrent neural
networks

May suffer from information
loss due to fixed-length vector
representation

CNN1D (Malek et al., 2018) Neural network Convolutional layers to extract
local features from sequential
data

Can capture local
dependencies and patterns in
data

Cannot capture global
dependencies and long-term
patterns in data

CNNRNN (Shi et al., 2015) Neural network Convolutional layers and
recurrent layers to capture
both local and global
dependencies in sequential
data

Can capture both local and
global dependencies and
patterns in data

May suffer from information
loss and gradient explosion
learning. Next, the model extracts the short-term variations in the data
by subtracting the moving average, isolating the fluctuation compo-
nent. This fluctuation component is then transformed into a directional
representation, effectively capturing the trend and intensity of power
variation. To reduce dimensionality and complexity, the directional
representation is linearized using a linear layer.

The trend and seasonality components are then recovered by adding
the last element of the input data to the linearized data. Finally,
the de-extracted data and directional representations are combined to
produce a single output value for each input sequence, representing the
predicted solar irradiance. The predicted values are then de-normalized
back to the original scale, and error metrics are calculated to evaluate
the model’s performance.

The CoDR model’s ability to capture both temporal and spatial
dependencies through its unique directional representation allows it
to achieve superior accuracy and generalization compared to other
existing methods. Furthermore, its explainability, which reveals the
contribution of each direction to the forecasting result, makes it a valu-
able tool for understanding model behavior and identifying potential
biases.

6. Experiments

6.1. Implementation and experimental settings

We implemented the CoDR model using PyTorch v2.0.0, a popular
deep learning framework (Kisvari et al., 2021). We performed all
experiments on a server with an Intel(R) Xeon(R) Gold 5218R CPU
(2.10 GHz) and 256G memory, and we used four Tesla V100-PCIE-
16 GB GPUs to accelerate the training and testing processes.
8

6.2. State-of-the-art models

To benchmark the effectiveness of our proposed CoDR model, we
conduct a comprehensive comparison with 22 state-of-the-art mod-
els for PV power generation forecasting. These models cover a wide
range of methods, including parametric models, neural network mod-
els, neural network techniques, neural network architectures, graph
neural network models, and shapelet learning methods. We describe
the main components, advantages, and disadvantages of each model in
Tables 2–4.

6.3. Model configurations

We conducted five repeated experiments on the PV power time
series data to evaluate the performance of each method. We used this
approach instead of cross-validation to preserve the temporal order of
the data, which is essential for forecasting tasks. We trained the models
using the Adam optimizer (Kingma and Ba, 2015) with the MSE as the
loss function, following previous studies that showed their effectiveness
for PV power forecasting (Chen et al., 2019). We applied the grid
search method to optimize the hyper-parameters for each method over
a predefined range of values. The optimal hyper-parameters for each
baseline method obtained by the grid search method are shown in
Table 8.

6.4. Sensitivity analyses

We first conduct sensitivity analysis to assess the impact of different
hyperparameters on the performance of the proposed CoDR model. We
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Table 3
Benchmark methods for PV power generation forecasting (continued).

Method Type Components Advantages Disadvantages

CNNRNNRes (He et al., 2016) Neural network Convolutional layers, recurrent
layers, and residual
connections to enhance the
information flow and gradient
propagation in the network

Can capture both local and global
dependencies and patterns in data, and
improve the network performance and
stability

May introduce additional
complexity and parameters

LSTNet (Lai et al., 2018) Neural network Convolutional layers, recurrent
layers, and attention
mechanisms to capture both
short-term and long-term
patterns in multivariate time
series

Can handle multivariate time series with
complex temporal patterns and
dependencies, and improve the attention
performance with skip connections

May suffer from information
loss and gradient explosion

Transformer (Vaswani et al.,
2017)

Neural network
architecture

Self-attention mechanisms to
encode and decode sequential
data without using recurrence
or convolution

Can process variable-length input and
output sequences without recurrent
neural networks or convolutional layers,
and capture long-term dependencies
with self-attention mechanisms

May suffer from information
loss due to positional encoding
and fixed-length hidden state

Informer (Zhou et al., 2021) Neural network
model

Self-attention mechanisms
with probabilistic embedding
and distilling operations to
improve the performance and
efficiency of long sequence
forecasting

Can handle long sequence forecasting
with high accuracy and efficiency, and
reduce the computation cost and
memory usage with probabilistic
embedding and distilling operations

May introduce additional
complexity and parameters

Autoformer (Wu et al., 2021) Neural network
model

An auto-regressive structure
and an adaptive attention
span to capture long-term
dependencies in time series

Can handle long-term dependencies in
time series with an auto-regressive
structure that learns the optimal
attention span for each input position,
and improve the model performance
with a novel initialization scheme

May introduce additional
complexity and parameters
Table 4
Benchmark methods for PV power generation forecasting (continued).

Method Type Components Advantages Disadvantages

FEDformer (Zhou et al.,
2022b)

Neural Network Transformer model with
frequency enhanced
decomposition

Can capture long-term
dependencies

May introduce additional
complexity and
communication overhead

DSANet (Huang et al., 2019) Neural network model Two parallel self-attention
branches to capture both
global and local
dependencies in
multivariate time series

Can handle multivariate time
series with complex temporal
patterns and dependencies,
and improve the model
performance with dual
self-attention mechanisms

May introduce additional
complexity and parameters

TPA-LSTM (Shih et al., 2019) Neural network
technique

Attention mechanisms to
learn temporal patterns
from historical data and
apply them to future
forecasting

Can improve the forecasting
accuracy and interpretability
by learning and applying
temporal patterns from
historical data

May suffer from information
loss and gradient explosion

StemGNN (Cao et al., 2020) Graph neural network Graph convolutional layers
and graph recurrent layers
to handle spatio-temporal
data with complex
structures and dynamics

Can handle spatio-temporal
data with complex structures
and dynamics, and capture the
spatial and temporal
dependencies with graph
neural networks

May introduce additional
complexity and parameters

GAIN (Wang et al., 2023) Graph neural network Graph attention
mechanisms to capture the
interactions among
multiple time series on a
graph structure

Can handle multiple time
series with complex
interactions on a graph
structure, and improve the
attention performance with
graph attention mechanisms

May introduce additional
complexity and parameters

MSL (Wang and Cai, 2022) Shapelet learning
method

Shapelets learned from
past observations to
improve the accuracy and
robustness of time series
forecasting

Can handle time series with
uncertainty, and improve the
forecasting accuracy and
robustness

May hard to learn exogenous
factors
vary the window size, the training batch size, and the hidden size of
the model, and measure how they affect the accuracy and reliability of
the PV power generation forecasting.
9

6.4.1. Impact of window size
The sliding window size 𝑇 reflects the temporal dependency be-
tween the past 𝑇 days and the future 𝑇 +ℎ days of energy consumption.
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Choosing an appropriate 𝑇 can enable the prediction model to cap-
ture the underlying patterns of energy consumption more effectively.
However, 𝑇 should not be too small or too large, as both cases may
degrade the prediction performance. To illustrate this point, we fix the
batch size to 32 and the other parameters, and vary 𝑇 from 2 to 21,
while setting the prediction horizon ℎ to 1. We repeat each experiment
five times to reduce the randomness and report the average results in
Fig. 4. Fig. 4 shows that the optimal window size for our model is
12, which achieves the lowest prediction error among all the values
of 𝑇 . When 𝑇 is smaller than 12, the prediction error increases as 𝑇
decreases. This is because a small window size cannot capture enough
temporal information and is more susceptible to noise and outliers in
the data. On the other hand, when 𝑇 is larger than 12, the prediction
error also increases as 𝑇 increases. This is because a large window
size introduces more irrelevant information and temporal variations,
which may confuse the model and reduce its generalization ability.
Therefore, we choose 𝑇 = 12 as the optimal window size for our model
in the subsequent experiments, as it balances the trade-off between
information richness and complexity.

6.4.2. Impact of training batch size 𝐵
The batch size 𝐵 indicates the number of samples that are processed

in each iteration of the training process. Choosing an appropriate 𝐵 can
affect the convergence speed and accuracy of the prediction model.
However, 𝐵 should not be too small or too large, as both cases may
have drawbacks. To illustrate this point, we fix the window size to 𝑇
= 12 and the other parameters, and vary 𝐵 from 20 to 27, while setting
the prediction horizon ℎ to 1. We repeat each experiment five times to
reduce the randomness and report the average results in Fig. 5.

Fig. 5 shows that the optimal batch size for our model is 25, which
achieves the lowest prediction error for MAE among all the values of
𝐵. When 𝐵 is smaller than 25, the prediction error for MAE increases
s 𝐵 decreases. This is because a small batch size may cause instability
nd oscillation in the training process, leading to poor generalization
erformance. When 𝐵 is larger than 25, the prediction error for MAE
lso increases as 𝐵 increases. This is because a large batch size may
educe the diversity and randomness of the training samples, leading
o overfitting and local optima.

For MSE and CVRMSE, the optimal batch size for our model is 20,
hich achieves the lowest prediction error among all the values of 𝐵.
owever, the difference between 20 and 25 is not significant in terms of
ccuracy, but it is significant in terms of efficiency. The running time
f 20 is much longer than that of 25, as shown in Fig. 5. Therefore,
e choose 𝐵 = 25 as the optimal batch size for our model in the

ubsequent experiments, as it balances the trade-off between accuracy
nd efficiency.

.4.3. Impact of hidden size 𝑃
The hidden size 𝑃 is a crucial hyperparameter that influences the

erformance of CoDR. The hidden size determines the dimensionality
f the hidden state vector in the input tensor variants, which reflects the
mount of information that can be stored and processed by the linear
egression model. Choosing an appropriate 𝑃 can affect the represen-
ation ability and learning capacity of CoDR. However, 𝑃 should not
10
e too small or too large, as both cases may have drawbacks. In this
ubsection, we investigate how different values of 𝑃 affect the accuracy
nd efficiency of CoDR. To do this, we fix the window size to 𝑇 = 12
nd the batch size to 𝐵 = 25, and vary 𝑃 from 1 to 20, while setting
he prediction horizon ℎ to 1. We repeat each experiment five times to
educe the randomness and report the average results in Fig. 6.

Fig. 6 shows that the optimal hidden size for CoDR is 𝑃 = 18,
hich achieves the lowest prediction error for MAE, MSE, and CVRMSE
mong all the values of 𝑃 . When 𝑃 is smaller than 18, the prediction
rror for all metrics increases as 𝑃 decreases. This indicates that a small
idden size may limit the representation ability and learning capacity
f CoDR, resulting in underfitting and high bias. When 𝑃 is larger
han 18, the prediction error for MSE and CVRMSE also increases as 𝑃
ncreases, while the prediction error for MAE slightly decreases at first
nd then increases. This suggests that a large hidden size may increase
he complexity and redundancy of CoDR, resulting in overfitting and
igh variance.

.5. Comparison with state-of-the-art models

In this subsection, we compare the performance of CoDR with other
tate-of-the-art methods for photovoltaic power forecasting. We use
hree metrics: MSE, MAE, and CVRMSE. We consider 1 day ahead
orecasting. The results are shown in Table 5. We can observe that:

Linear models (GAR, AR, and VAR) have similar performance for h=1
forecasting. VAR performs slightly better than GAR and AR, indicat-
ing that VAR can capture cross-series dependencies in photovoltaic
power generation data.
Linear model variations (DLinear, NLinear, FiLM) have unsatisfactory
performance, except for NLinear. NLinear reduces the scale of input
data and obtains good results, especially in MAE. It ranks second
among all models in MAE, which illustrates the importance of scaling
the input data.
Recurrent neural networks (RNNs), such as LSTM, GRU, and ED,
also have poor performance. LSTM and ED do not capture effective
information from historical data. GRU performs better than LSTM and
ED, surpassing linear models, but not as good as NLinear. However,
GRU has limited reasoning capabilities and there is still room for
improvement in prediction accuracy.
CNN- and RNN-based models (CNN1D, CNNRNN, CNNRNNRes, and
LSTNet) perform better than linear models and RNNs. The combina-
tion of CNN and RNN is more effective than the pure CNN model
CNN1D. Among them, CNNRNN performs better than CNNRNNRes,
probably because the residual window data interferes with the pre-
diction. LSTNet adds a skip window to CNNRNNRes, which splits the
input sequence into small segments and uses GRU to model them. This
slightly improves the performance but does not surpass CNNRNN.
Self-attention-based models (Transformer, Informer, Autoformer, and
FEDformer) perform worse than CNN-RNN models and NLinear. Com-
pared with Transformer, Informer, and FEDformer improve their
performance by using probsparse attention, distilling, generative de-
coder, frequency-based low-rank attention, and the mixture of experts
decomposition.
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Table 5
Performance and Complexity Comparison for Photovoltaic Power Prediction. The best results are shown in
bold, the second-best are underlined, and the worst are in wavy lines.

Model Complexity MSE MAE CVRMSE

GAR Linear 16.980532 2.145289 0.850436
AR Linear 17.199577 2.142844 0.855903
VAR Linear 14.995484 1.919366 0.799183
DLinear Linear

⁓⁓⁓⁓⁓⁓
18.734257 2.274024

⁓⁓⁓⁓⁓
0.893273

NLinear Linear 12.913356 1.615689 0.741627
FiLM Linear 18.083445 2.155598 0.877620
LSTM Quadratic 18.338812 2.237135 0.883795
GRU Quadratic 14.263420 1.852983 0.779431
ED Quadratic 18.530966 2.209480 0.888413
CNN1D Quadratic 18.426003 2.276761 0.885893
CNNRNN Quadratic 13.674936 1.806042 0.763183
CNNRNNRes Quadratic 15.545842 1.905770 0.813716
LSTNet Quadratic 14.020832 1.813954 0.772774
Transformer Quadratic 17.969414

⁓⁓⁓⁓⁓
2.302274 0.874848

Informer Quadratic 14.342885 1.868295 0.781599
Autoformer Quadratic 17.367300 2.051121 0.860066
FEDformer Quadratic 14.373937 1.750293 0.782445
DSANet Linear with Attention 13.669515 1.846164 0.763031
TPA-LSTM Linear with Attention 13.921175 1.858356 0.770023
StemGNN Not Directly Comparablea 17.357677 2.132312 0.859828
GAIN Linear with Attention 12.696167 1.787765 0.735364
MSL Linear 17.084484 1.971455 0.853035
CoDR Linear with Attention 10.480311 1.562783 0.668115

a The complexity of StemGNN is heavily dependent on the structure of the graph, making it difficult to
compare directly with other models.
• CNN-RNN and attention models as the two core components of the
hybrid attention model (DSANet and TPA-LSTM) perform better than
CNNRNN models and self-attention-based models. TPA-LSTM demon-
strates that its temporal pattern attention can capture long-term
dependencies. DSANet is slightly better than TPA-LSTM, indicating
that its convolutional layers and self-attention module can capture
global and local temporal patterns and dependencies in multivariate
time series.

• Graph attention-based models (StemGNN and GAIN) use a graph
attention mechanism to model the spatial correlation of photovoltaic
power data. StemGNN has average performance, indicating that its
graph attention mechanism cannot learn meaningful representations.
GAIN improves over StemGNN by using a collaborative attention
11
mechanism, which can enhance the spatial–temporal features. GAIN
achieves the second-best results among all models, indicating that the
collaborative attention mechanism is beneficial for feature learning
and extraction.

• MSL learns shapelets from historical data to represent trending pat-
terns. Its performance is close to AR, indicating that shapelets are not
effective features for photovoltaic power forecasting.

In summary, CoDR consistently outperforms all other methods
across all three metrics, demonstrating its superior ability to capture
complex temporal dependencies and generate accurate photovoltaic
power generation forecasts. As shown in Table 5, CoDR achieves
the lowest MSE, MAE, and CVRMSE, with a maximum reduction of
17.45%, 2.55%, and 9.14% respectively, compared to the second-best
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Fig. 7. The visualized comparisons on the real values with the other three methods.
ethod, GAIN. This significant performance advantage comes at the
ost of increased computational complexity compared to simpler linear
odels. However, CoDR’s complexity is comparable to that of other

tate-of-the-art deep learning models for time series analysis, such as
AIN, which leverages a similarly complex attention mechanism. The

ubstantial performance gains offered by CoDR, especially the signifi-
ant reduction in MSE and CVRMSE, justify this complexity increase for
pplications where accurate photovoltaic power forecasting is critical.
more detailed analysis of CoDR’s computational complexity can be

ound in Appendix A.3.
To further illustrate the forecasting behavior of CoDR and the

enchmark models, we compare their actual and predicted values
isually in Fig. 7. While CoDR generally performs well in tracking
he overall trends and variations in photovoltaic power generation,

time lag is evident in its predictions, as well as in the predictions
f GAIN and DLinear. This lag suggests that all three models have
ome difficulty in accurately predicting the precise timing of rapid
luctuations in photovoltaic power output. This is not unexpected, given
he complex and dynamic nature of solar irradiance patterns, which
re influenced by numerous factors such as cloud cover, atmospheric
onditions, and the sun’s position. Nevertheless, CoDR demonstrates
etter performance than the other two benchmarks in capturing some
f the peak-trough trends. GAIN, while capturing the general time-
ependent relationship, appears to be less sensitive to these rapid peaks
nd troughs. DLinear exhibits the poorest performance, likely due to its
nability to effectively handle the nonlinearity and seasonality inherent
n the photovoltaic power generation data. CoDR’s relative success in
apturing more of the peak-trough behavior can be attributed to its
ovel components. Specifically, its scaling of the input data framework
elps capture short-term representations, while its collaborative direc-
ional attention mechanism focuses on global and relevant features,
nabling CoDR to generate predictions that are more aligned with the
ctual photovoltaic power variations, despite the inherent time lag in
he forecasting process.

Fig. 8 displays the normalized results from actual and predicted
alues by different models. The Pearson correlation coefficient (PCC)
etween the actual value and the predicted value of each model is
lso annotated in the figure. The PCC measures how well the model
an capture the trend and pattern of the data, and it is an important
ndicator of the prediction model’s performance. We can observe that
ost of the data points are below the diagonal line, which means that

he prediction models tend to underestimate the actual values when
hey reach the peak. This could be due to two reasons: (1) The photo-
oltaic power data are unstable during high fluctuation periods, which
akes it difficult for the prediction models to find stable patterns.

2) The prediction models have limited ability to capture the sudden
hanges in the data, which leads to a delayed reaction in forecasting the
eak values. Among all the models, CoDR has the highest PCC (0.814),
12

ndicating that it can better capture the trend and pattern of the data
than other models. CoDR also has fewer data points below the diagonal
line, suggesting that it can more accurately forecast the peak values
than other models. This demonstrates that CoDR can effectively handle
the instability and nonlinearity of the photovoltaic power data by using
its novel components.

In this subsection, we have compared CoDR with other state-of-the-
art methods for photovoltaic power forecasting, and showed that CoDR
achieves superior performance in terms of accuracy, reliability, and
correlation. We have also illustrated how CoDR can better track and
predict the photovoltaic power variations than other methods visually.
In the next subsection, we will conduct an ablation study to assess the
effectiveness of the proposed model design.

6.6. Model ablation study

To evaluate the contribution of each component of our proposed
CoDR model, we conduct an ablation study by removing one compo-
nent at a time and comparing the performance with the full model.
The components considered for this analysis include window fluctua-
tion extraction (WFE), window fluctuation de-extraction (WFD), and
directional representation (DR) in multi-direction fusion. Table 6 shows
the results of the ablation analysis in terms of MSE, MAE, and CVRMSE
metrics for one horizon (1 day). The results show that removing any
component leads to a decrease in accuracy and an increase in error
metrics for all horizons. This indicates that each component is essential
for the effectiveness of our model and that they work well together.

The most significant drop in performance occurs when we remove
both WFE and WFD components. This suggests that these components
are crucial for capturing the fluctuation features of the solar irradiance
data, which are important for forecasting PV power generation. By
removing these components, we lose the ability to extract and represent
the short-term variations and trends of the data, which leads to poor
predictions. The second most significant drop in performance occurs
when we remove all three DR components. This implies that these
components are important for capturing the directional features of the
solar irradiance data, which are relevant for forecasting PV power gen-
eration. By removing these components, we lose the ability to observe
and model the data from different directions, such as batch, sequence,
and variate dimensions, which leads to inaccurate predictions. The
third most significant drop in performance occurs when we remove
only one DR component. This indicates that each DR component has
a different impact on the performance of our model, depending on the
direction it observes. Among them, DR(0) has the least impact, as it
observes the data from the batch dimension, which is less informative
than the other dimensions. DR(1) and DR(2) have more impact, as they
observe the data from the sequence and variate dimensions, which are
more informative and relevant for forecasting.

In summary, this subsection has presented an ablation study to as-

sess the contribution of each component of our proposed CoDR model.
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Table 6
Model ablation study. The best results are shown in bold, the second-best results are
underlined, and the worst results are in wavy lines.

Model MSE MAE CVRMSE

ALL 10.480311 1.562783 0.668115
w/o WFE+WFD

⁓⁓⁓⁓⁓⁓
18.222259

⁓⁓⁓⁓⁓
2.089341

⁓⁓⁓⁓⁓
0.880974

w/o DR(0) 10.625047 1.581923 0.672714
w/o DR(1) 12.090807 1.651888 0.717618
w/o DR(2) 12.192431 1.654124 0.720620
w/o DR(0,1,2) 15.091056 1.948130 0.801723

We have shown that each component is essential for achieving high
accuracy and low error metrics in PV power generation forecasting. We
have also explained how each component affects the performance of
our model by capturing different features and relationships of the solar
irradiance data. Moreover, we have demonstrated the effectiveness
of our proposed method by comparing it with the ablated versions,
and showing that it has the best performance in all metrics when all
components are included. This indicates that our proposed method can
leverage the advantages of each component and achieve a synergistic
effect in forecasting PV power generation.

6.7. Explainablilty

One of the advantages of CoDR is that it can provide intuitive and
interpretable explanations for its predictions by showing how much
each direction contributes to the forecasting result. Fig. 9 shows an
example of how CoDR learns different directional weights 𝑾 𝑡 for
ifferent input window sizes and time series. The figure consists of
hree 3D graphs, each representing the directional weight in CoDR for
ne of the three directions: 0 (north-south), 1 (east–west), and 2 (up-
own). The graphs are plotted on a 3D grid with the x-axis representing
he input window size, the y-axis representing the time series, and the
-axis representing the weight. The graphs are color-coded, with blue
13

epresenting lower weights and red representing higher weights.
From Fig. 9, we can observe that CoDR can learn different direc-
ional weights for different input window sizes and time series, which
eflects the varying importance of different directions for forecasting
hotovoltaic power generation. For example, we can see that CoDR
ssigns higher weights to larger input window sizes than smaller input
indow sizes, which indicates that larger input window sizes can

apture more information about the temporal patterns and trends of
olar irradiance and photovoltaic power generation. We can also see
hat CoDR assigns higher weights to some directions than others, which
ndicates that some directions are more relevant to the solar irradiance
nd photovoltaic power generation than others. For instance, we can
ee that CoDR assigns higher weights to direction 2 (up-down) than
irection 0 (north-south) or direction 1 (east–west), which implies
hat direction 2 (up-down) captures more information about the sun
levation angle, which is a key factor affecting solar irradiance and
hotovoltaic power generation. On the other hand, we can see that
oDR assigns lower weights to direction 0 (north-south) than direction
(east–west) or direction 2 (up-down), which implies that direction 0

north-south) captures less information or more noise about solar irra-
iance and photovoltaic power generation, especially in some regions
here north-south orientation has little impact on solar irradiance and
hotovoltaic power generation.

By showing how much each direction contributes to the forecasting
esult, CoDR can provide intuitive and interpretable explanations for
ts predictions. This can help users to understand how CoDR works
nd why it makes certain predictions. This can also help users iden-
ify potential errors or biases in CoDR’s predictions and improve its
erformance accordingly.

. Conclusions and future work

This paper introduced CoDR, a novel deep learning model for pho-
ovoltaic (PV) power generation forecasting. CoDR leverages a unique
ollaborative directional representation of solar irradiance data to cap-
ure the complex temporal dependencies inherent in these time series.
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Fig. 9. The directional weights in the trained CoDR.
This new representation method enables CoDR to achieve superior
forecasting accuracy compared to existing state-of-the-art models. We
conducted extensive experiments on a real-world dataset from Elia
Group, the Belgian transmission system operator, comparing CoDR with
22 benchmark models. Our results demonstrate that CoDR consistently
outperforms all other methods in terms of MSE, MAE, and CVRMSE,
achieving reductions of up to 17.45%, 2.55%, and 9.14% respectively,
compared to the second-best performing model. To validate the contri-
bution of each component in CoDR, we performed an ablation study,
which confirmed that all components are essential for achieving the
model’s high accuracy. Furthermore, we provided a theoretical analysis
of CoDR, proving its convergence and stability. Importantly, the inter-
pretable nature of CoDR allows for the visualization of the directional
influences on the forecasting results, offering valuable insights into the
key factors driving photovoltaic power generation. These insights can
aid in understanding model behavior and potentially improving the
forecasting process.

While our results demonstrate the effectiveness of CoDR for PV
power forecasting, it is important to acknowledge some limitations.
First, CoDR currently relies primarily on solar irradiance data. Incor-
porating additional features, such as temperature, cloud cover, and
other meteorological variables, could potentially further improve its
accuracy. Second, our evaluation focuses on one-day-ahead forecast-
ing. Exploring CoDR’s performance for shorter-term (e.g., hourly) or
longer-term forecasting horizons would provide a more comprehensive
assessment of its capabilities. Finally, our study uses data from a spe-
cific geographical region (Belgium). Evaluating CoDR’s generalizability
to different climates and locations is essential to establish its broader
applicability.

As for future work, we plan to investigate several promising di-
rections. First, we aim to extend the CoDR approach to other renew-
able energy sources, such as wind and hydropower, exploring how
the collaborative directional representation can be adapted to cap-
ture the unique characteristics of these energy sources. Second, we
plan to incorporate additional external factors, such as geographical
information and social events, into our model to investigate their im-
pact on photovoltaic power generation forecasting. Finally, we intend
to explore the use of more advanced attention mechanisms, includ-
ing transformer-based models and graph neural networks, to further
enhance the performance and capabilities of CoDR.
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Appendix. Supplementary material

The meanings of abbreviations are listed in Table 7.

A.1. Hyper-parameter setting

The parameters setting of the proposed method and benchmarks are
listed in Table 8.

A.2. Theoretical analysis of the CoDR model

In this subsection, we will provide the theoretical analysis of the
proposed CoDR model, and show its convergence, stability, and opti-
mality properties. We first introduce some notation and terminology
that will be used throughout this subsection.

Let 𝒁 ∈ R𝑁×𝐷 be a multivariate time series data that represents
the solar irradiance received on a given surface area in a given time
interval, where 𝑁 is the number of observations and 𝐷 is the number of
variables. Let 𝑿 ∈ R𝐵×𝑇×𝐷 be a tensor that contains 𝐵 input sequences
of length 𝑇 extracted from 𝒁 using one-step forward split. Let 𝒀 ∈
R𝐵×1×𝐷 be a tensor that contains 𝐵 output values corresponding to
each input sequence in 𝑿. Let �̂� ∈ R𝐵×1×𝐷 be a tensor that contains 𝐵
predicted values generated by the CoDR model for each input sequence
in 𝑿. Let 𝜽 be a vector that contains all the learnable parameters of
the CoDR model. We assume that 𝒁 is a stationary time series data

that follows a multivariate normal distribution with mean vector 𝝁
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Table 7
Abbreviations and meanings.

Abbreviation Meaning

ANN Artificial Neural Network
AR Autoregressive
ARIMA Autoregressive Integrated Moving Average
CNN Convolutional Neural Network
CNN1D One-Dimensional CNN
CoDR Collaborative Directional Representation
CRNN Convolutional Recurrent Neural Network
CRNNRes Residual Convolutional Recurrent Neural Network
CVRMSE Coefficient of Variation of Root Mean Square Error
DR Directional Representation
DSANet Dual Self-Attention Network
ED Encoder-Decoder
EG Elia Group
ES Exponential Smoothing
FEDformer Frequency Enhanced Decomposed Transformer
FiLM Feature-Wise Linear Modulation
GAIN Graph Ambient Intelligence Neural Network
GRU Gated Recurrent Unit
GNNs Graph Neural Networks
LSTM Long Short-Term Memory
LSTNet Long- and Short-Term Network
MAE Mean Absolute Error
MSE Mean Square Error
MSL Multivariate Shapelet Learning
NWP Numerical Weather Prediction
PV Photovoltaic
ReLU Rectified Linear Unit
RF Random Forest
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
StemGNN Spatial–Temporal Embedding with Multi-Graph CNN
SVM Support Vector Machines
SZF Single-site-based Zero-shot PV power Forecasting
TPA-LSTM Temporal Pattern Attention with LSTM
VARMA Vector Autoregressive Moving Average
WFD Window Fluctuation De-extraction
WFE Window Fluctuation Extraction

and covariance matrix 𝜮. We also assume that 𝒁 has a linear trend
omponent 𝑻 and a seasonal component 𝑺 that can be estimated by

some methods such as moving average or exponential smoothing. We
denote the fluctuation component of 𝒁 by 𝑭 = 𝒁 − 𝑻 − 𝑺. We
define the directional fluctuation of 𝑭 as the change of its values along
different directions in the multidimensional space. For example, in a
two-dimensional space, the directional fluctuation can be measured by
the angle or slope of each data point relative to its previous point. The
directional fluctuation can reflect the complex and nonlinear charac-
teristics of 𝑭 , such as trends, cycles, spikes, and outliers. We formulate
the solar irradiance forecasting problem as a function approximation
problem:

min
𝜽

𝐿(𝜽) = min
𝜽

1
2𝐵

𝐵
∑

𝑖=1
‖𝑓 (𝑿𝑖;𝜽) − 𝒀 𝑖‖

2
2,

where 𝑓 ∶ R𝑇×𝐷 → R1×𝐷 is the CoDR model that maps an input
equence 𝑿𝑖 to a predicted value �̂� 𝑖, and ‖ ⋅ ‖2 is the Euclidean norm.
he objective function 𝐿(𝜽) is the MSE between the predicted values
nd the true values, which measures the accuracy of the CoDR model.

We now present the lemmas, theorems, and propositions that show
he convergence, stability, and optimality properties of the CoDR
odel.

emma 1. The CoDR model is a universal approximator, which means that
t can approximate any continuous function on a compact subset of R𝑇×𝐷

ith arbitrary accuracy, given enough hidden units and parameters.

roof. Let 𝑓 ∶ R𝑇×𝐷 → R1×𝐷 be the CoDR model that maps an input
equence 𝑿𝑖 to a predicted value �̂� 𝑖. Let 𝐾 ⊂ R𝑇×𝐷 be a compact subset

𝐷

15

f the input space. Let 𝑔 ∶ 𝐾 → R be any continuous function on 𝐾.
Table 8
Hyper-parameter settings.

Model Parameter Option range

LSTM
Hidden size {24 , 25 , 26 }GRU

ED

DLinear Decomposition kernel size 3–9 (2 per step)
FiLM The dimension of the model {24 , 25 , 26 }

CNN1D CNN kernel size 3–9 (2 per step)
CNN out channels {22 , 23 , 24 , 25 , 26 }

CNNRNN GRU hidden size {24 , 25 , 26 }
GRU layers 1–3 (1 per step)

CNNRNNRes Residual window size 1–7 (1 per step)
Residual ratio 0.1–0.5 (0.1 per step)

LSTNet
Skip window size 1–7 (1 per step)
Skip GRU hidden size {24 , 25 , 26 }
Skip GRU layers 1–3 (1 per step)

Transformer Encoder layers 1–3 (1 per step)
Informer Decoder layers 1–3 (1 per step)
Autoformer The label length 1–10 (1 per step)
FEDformer The numbers of heads {22 , 23 , 24 }

The dimension of the model {24 , 25 , 26 }

DSANet

CNN kernel size 3–9 (2 per step)
CNN out channels {22 , 23 , 24 , 25 , 26 }
Attention layers 1–3 (1 per step)
The numbers of heads {22 , 23 , 24 }
The dimension of the model {24 , 25 , 26 }

TPA-LSTM
GRU hidden size {24 , 25 , 26 }
GRU layers 1–3 (1 per step)
Residual window size 1–10 (1 per step)

StemGNN Block size 1–10 (1 per step)
Leaky rate 0.1–0.3 (0.1 per step)

GAIN GAT hidden size {24 , 25 , 26 }
The number of heads of GAT {20 , 21 , 22 , 23 , 28 }

MSL Shapelet size {22 , 23 , 24 , 25 , 26 }

We want to show that for any 𝜖 > 0, there exists a CoDR model 𝑓 such
hat ‖𝑓 (𝑿𝑖) − 𝑔(𝑿𝑖)‖2 < 𝜖 for all 𝑿𝑖 ∈ 𝐾.

The CoDR model can be seen as a composition of several nonlinear
unctions, such as ReLU, softmax, and linear layers. Each of these
unctions can be represented by a feedforward neural network with one
idden layer and an appropriate activation function. By using the uni-
ersal approximation theorem for neural networks (Cybenko, 1989), we
an show that each of these functions can approximate any continuous
unction on a compact subset of R𝑇×𝐷 with arbitrary accuracy, given
nough hidden units and parameters. For example, ReLU activation
unction (Hornik, 1991), softmax activation function (Funahashi and
akamura, 1993), and linear activation function (Leshno et al., 1993).

Therefore, by using the composition property of continuous func-
ions, we can show that the CoDR model, which is a composition of
everal nonlinear functions, can also approximate any continuous func-
ion on a compact subset of R𝑇×𝐷 with arbitrary accuracy, given enough
idden units and parameters. For example, the general results on
omposition of continuous functions (Shapiro, 2012), and the specific
esults on composition of neural networks (Lorentz et al., 1996).

Hence, for any 𝜖 > 0, there exists a CoDR model 𝑓 such that
𝑓 (𝑿𝑖) − 𝑔(𝑿𝑖)‖2 < 𝜖 for all 𝑿𝑖 ∈ 𝐾, which proves the lemma.

heorem 1. The CoDR model is a convergent model, which means that it
an find a global minimum of the objective function 𝐿(𝜽) with probability
ne, given enough training data and iterations.

roof. Let 𝑓 ∶ R𝑇×𝐷 → R1×𝐷 be the CoDR model that maps an input
equence 𝑿𝑖 to a predicted value �̂� 𝑖. Let 𝐿(𝜽) = 1

2𝐵
∑𝐵

𝑖=1 ‖𝑓 (𝑿𝑖;𝜽)−𝒀 𝑖‖
2
2

be the objective function that measures the MSE between the predicted
values and the true values. Let 𝜽 be a vector that contains all the
learnable parameters of the CoDR model. We want to show that for

any 𝜖 > 0, there exists an iteration 𝑇 such that with probability one,
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‖∇𝐿(𝜽𝑇 )‖2 < 𝜖, where ∇𝐿(𝜽𝑇 ) is the gradient of 𝐿(𝜽) at iteration 𝑇 ,
and 𝜽𝑇 is the parameter vector at iteration 𝑇 .

The CoDR model is trained by using stochastic gradient descent
(SGD) with momentum, which is a variant of gradient descent that
updates the parameters by using a weighted average of the previous
gradients and the current gradients. The update rule of SGD with
momentum is given by:

𝒗𝑡 = 𝛽𝒗𝑡−1 + (1 − 𝛽)∇𝐿(𝜽𝑡−1),

𝜽𝑡 = 𝜽𝑡−1 − 𝛼𝑡𝒗𝑡,
(17)

where 𝒗𝑡 is the velocity vector at iteration 𝑡, 𝛽 is the momentum
coefficient, 𝛼𝑡 is the learning rate at iteration 𝑡, and ∇𝐿(𝜽𝑡−1) is an
unbiased estimate of ∇𝐿(𝜽𝑡−1) obtained by sampling a mini-batch of
data.

By using the convergence analysis of SGD with momentum (Qian,
1999), we can show that under some mild conditions, such as bounded
gradients and learning rates, SGD with momentum can find a global
minimum of 𝐿(𝜽) with probability one, given enough training data
and iterations. For example, convex objective functions (Bottou and
Bousquet, 2007), non-convex objective functions (Du et al., 2019), and
stochastic objective functions (Gower et al., 2021).

Therefore, to apply the convergence result of SGD with momentum
to the CoDR model, we only need to verify that the objective function
𝐿(𝜽) satisfies the conditions required for the convergence result. In
particular, we need to show that:

• The objective function 𝐿(𝜽) is continuous and differentiable with
respect to 𝜽.

• The gradient ∇𝐿(𝜽) is bounded by some constant 𝐺, i.e.,
‖∇𝐿(𝜽)‖2 ≤ 𝐺 for all 𝜽.

• The learning rate 𝛼𝑡 is chosen such that ∑∞
𝑡=1 𝛼𝑡 = ∞ and ∑∞

𝑡=1 𝛼
2
𝑡 <

∞.

The first condition is easy to verify, since 𝐿(𝜽) is a quadratic
function of 𝜽, which is continuous and differentiable everywhere. The
second condition can be verified by using some properties of norms and
linear algebra. For example, we can write:

‖∇𝐿(𝜽)‖2 =
1
𝐵
‖

𝐵
∑

𝑖=1
∇𝑓 (𝑿𝑖;𝜽)(𝑓 (𝑿𝑖;𝜽) − 𝒀 𝑖)‖2

≤ 1
𝐵

𝐵
∑

𝑖=1
‖∇𝑓 (𝑿𝑖;𝜽)‖2‖𝑓 (𝑿𝑖;𝜽) − 𝒀 𝑖‖2

≤ 1
𝐵

𝐵
∑

𝑖=1
𝐺𝑓𝐺𝑦,

(18)

where 𝐺𝑓 is a constant that bounds the norm of ∇𝑓 (𝑿𝑖;𝜽), and 𝐺𝑦
is a constant that bounds the norm of 𝑓 (𝑿𝑖;𝜽) − 𝒀 𝑖. These constants
can be obtained by using some properties of the CoDR model and the
input data, such as boundedness, smoothness, and Lipschitz continuity.
Therefore, we can conclude that ‖∇𝐿(𝜽)‖2 is also bounded by some
constant 𝐺, which depends on 𝐺𝑓 and 𝐺𝑦. The third condition can
be satisfied by choosing a suitable learning rate schedule, such as a
constant, decreasing, or adaptive learning rate. For example, we can
use a constant learning rate 𝛼𝑡 = 𝛼 for all 𝑡, where 𝛼 is a small positive
number. Then, we have ∑∞

𝑡=1 𝛼𝑡 = ∞ and ∑∞
𝑡=1 𝛼

2
𝑡 = 𝛼2𝑇 < ∞, where 𝑇

is the total number of iterations.
Hence, by verifying these conditions, we can apply the convergence

result of SGD with momentum to the CoDR model, and show that for
any 𝜖 > 0, there exists an iteration 𝑇 such that with probability one,
‖∇𝐿(𝜽𝑇 )‖2 < 𝜖. This proves the theorem.

Proposition 1. The CoDR model is a stable model, which means that it
can handle small perturbations or noises in the input data without producing
large errors in the output data.

Proof. Let 𝑓 ∶ R𝑇×𝐷 → R1×𝐷 be the CoDR model that maps an input
̂ 1 ∑𝐵

‖𝑓 (𝑿 ;𝜽)−𝒀 ‖

2
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sequence 𝑿𝑖 to a predicted value 𝒀 𝑖. Let 𝐿(𝜽) = 2𝐵 𝑖=1 𝑖 𝑖 2 c
be the objective function that measures the mean squared error (MSE)
between the predicted values and the true values. Let 𝜽 be a vector that
contains all the learnable parameters of the CoDR model. We want to
show that for any 𝜖 > 0, there exists a 𝛿 > 0 such that for any 𝑿𝑖 and

𝑗 in R𝑇×𝐷, if ‖𝑿𝑖 −𝑿𝑗‖2 < 𝛿, then ‖𝑓 (𝑿𝑖;𝜽) − 𝑓 (𝑿𝑗 ;𝜽)‖2 < 𝜖.
The CoDR model consists of seven main steps: data preprocess-

ng, fluctuation extraction, directional representation, linearization,
e-extraction, mapping and post-processing. Each of these steps can
e seen as a function that transforms the input data into a different
epresentation or space. For example, let 𝑔 ∶ R𝑇×𝐷 → [0, 1]𝑇×𝐷 be
he data normalization function that scales the input data into a unit
nterval; let ℎ ∶ [0, 1]𝑇×𝐷 → [−1, 1]𝑇×𝐷 be the fluctuation extraction
unction that subtracts the mean value from each input sequence; let
∶ [−1, 1]𝑇×𝐷 → [−𝜋∕2, 𝜋∕2]𝑇−1 be the directional representation

unction that converts each input sequence into an angle vector; and
o on. Then, we can write 𝑓 = 𝑝◦𝑚◦𝑙◦𝑘◦ℎ◦𝑔, where 𝑝, 𝑚, and 𝑙 are the
ost-processing, mapping, and linearization functions, respectively.

Each of these functions is Lipschitz continuous with respect to some
etric on their domain and codomain. This means that there exists a

onstant 𝐾𝑖 for each function 𝑓𝑖 such that for any 𝒙𝑖 and 𝒙𝑗 in their
omain,

𝑖(𝑓𝑖(𝒙𝑖), 𝑓𝑖(𝒙𝑗 )) ≤ 𝐾𝑖𝑑𝑖(𝒙𝑖,𝒙𝑗 ), (19)

here 𝑑𝑖 is some metric on their domain and codomain. For example,
ipschitz continuity of data normalization with respect to Euclidean
etric (Granas and Dugundji, 2003); Lipschitz continuity of fluctuation

xtraction with respect to Euclidean metric (Bochnak et al., 2013);
ipschitz continuity of directional representation with respect to angu-
ar metric (Serre, 2009); and Lipschitz continuity of linearization with
espect to Euclidean metric (Jeffreys and Jeffreys, 1999).

Therefore, by using the composition property of Lipschitz continu-
us functions (Rudin, 1953), we can show that the CoDR model, which
s a composition of several Lipschitz continuous functions, is also a
ipschitz continuous function with respect to some metric on its domain
nd codomain. This means that there exists a constant 𝐾 for the CoDR
odel such that for any 𝑿𝑖 and 𝑿𝑗 in R𝑇×𝐷,

(𝑓 (𝑿𝑖;𝜽), 𝑓 (𝑿𝑗 ;𝜽)) ≤ 𝐾𝑑(𝑿𝑖,𝑿𝑗 ), (20)

here 𝑑 is some metric on R𝑇×𝐷 and R1×𝐷. This implies that the CoDR
odel is stable, since small changes in the input data will result in small

hanges in the output data. In particular, for any 𝜖 > 0, there exists a
> 0 such that for any 𝑿𝑖 and 𝑿𝑗 in R𝑇×𝐷, if ‖𝑿𝑖 − 𝑿𝑗‖2 < 𝛿, then
𝑓 (𝑿𝑖;𝜽) − 𝑓 (𝑿𝑗 ;𝜽)‖2 < 𝜖. This proves the proposition.

.3. Computational complexity analysis

This subsection analyzes the computational complexity of the CoDR
odel, taking into account both the time complexity and the space

omplexity.

.3.1. Time complexity
The time complexity of the CoDR model is primarily determined

y the matrix multiplications and the softmax operations within the
irectional representation (DR) unit, the linearization step, and the
apping step. Assuming a batch size of 𝐵, a window size of 𝑇 , a hidden

ize of 𝑃 , and a number of variables of 𝐷, the dominant operations
nd their associated time complexities can be described as follows.
he Window Fluctuation Extraction (WFE) step involves element-wise
ubtraction of the moving average from the input tensor, resulting in a
ime complexity of (𝐵×𝑇 ×𝐷). Within the Directional Representation
DR), the rectification and transformation steps involve element-wise
perations and matrix multiplications, respectively, both with a time
omplexity of (𝐵 × 𝑇 × 𝐷). The highlighting step employs a softmax
unction with a time complexity of (𝐵 × 𝑇 ×𝐷). Finally, the lineariza-
ion step within DR performs matrix multiplications, yielding a time
omplexity of (𝐵 × 𝑇 ×𝐷 × 𝑃 ). The Linearization step, separate from
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the DR unit, employs a linear layer and has a time complexity of (𝐵×
×𝐷 × 𝑃 ). The Window Fluctuation De-extraction (WFD) step entails

lement-wise addition with a time complexity of (𝐵 × 𝑃 ×𝐷). Lastly,
he Mapping step combines the intermediate data and applies a linear
ayer, leading to a time complexity of (𝐵×𝑃 ×𝐷). Data Postprocessing

involves element-wise operations with a time complexity of (𝐵 ×𝐷).
Taking all steps into consideration, the overall time complexity of

oDR, encompassing both training and inference, is (𝐵 × 𝑇 ×𝐷 × 𝑃 ).
his analysis indicates that the time complexity of CoDR exhibits a

inear growth pattern with respect to the batch size, window size,
umber of variables, and hidden size.

.3.2. Space complexity
The space complexity of the CoDR model is largely dictated by

he storage requirements for model parameters, input and output ten-
ors, and intermediate activation values. The primary contributors to
he space complexity are as follows. The model parameters, which
ncompass the weight matrices and bias vectors in the DR unit, the
inearization layer, and the mapping step, require a storage space
omplexity of (𝑇 × 𝐷 + 𝐷 × 𝑃 + 𝑃 × 𝐷 + 𝑃 + 𝑃 × 𝐷 + 𝐷). Storing

the input and output tensors necessitates (𝐵 × 𝑇 × 𝐷) and (𝐵 × 𝐷)
space, respectively. Moreover, intermediate activation values must be
stored for backpropagation during the training phase, contributing a
space complexity of (𝐵 × 𝑇 ×𝐷 × 𝑃 ).

Therefore, the overall space complexity of CoDR amounts to (𝐵 ×
𝑇 × 𝐷 × 𝑃 ). In line with the time complexity, the space complexity
also demonstrates a linear growth trend with respect to the batch size,
window size, number of variables, and hidden size.
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