
Knowledge-Based Systems 256 (2022) 109806

a

b

c

d

i
a
h
s
c
p
T
c
c
o

p
m
t
t
F
g

z
x

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Dual-grained directional representation for infectious disease case
prediction
Peisong Zhang a,b, Zhijin Wang a,∗, Yaohui Huang a,c, Mingzhai Wang d

College of Computer Engineering, Jimei University, Yinjiang Road 185, Xiamen 361021, China
School of Science, Jimei University, Yinjiang Road 185, Xiamen 361021, China
College of Electronic Information, Guangxi Minzu University, Daxue East Road 188, Nanning 530006, China
Xiamen Center for Disease Control and Prevention, Shengguang Road 681, Xiamen 361021, China

a r t i c l e i n f o

Article history:
Received 12 October 2021
Received in revised form 23 August 2022
Accepted 27 August 2022
Available online 2 September 2022

Keywords:
Infectious disease
Prediction
Dual-grained time series
Directional representation

a b s t r a c t

The uncertain infection transmission causes challenges in accurate disease prediction. Numerous
methods have been proposed to capture the temporal pictures from past observations within equal
time intervals, which are called single-grained time series. However, these methods are not suitable
for capturing uncertain temporal dynamics from infectious disease time series, since the infectious dis-
eases may propagate in the incubation period. To address this issue, this paper proposes a Dual-Grained
Directional Representation (DGDR) to generate predictions, via consolidating the representations of an
equal-grained time series and several fine-grained time series. Firstly, the proposed DGDR learns a
transformed segmentation into three kinds of representations. And then those representations from
both equal-grained data and fine-grained data are temporally consolidated to connect with outputs.
Extensive experiments on two real infectious disease datasets are done to validate the proposed DGDR.
Compared with the other twelve methods, MAE value is decreased by 31.5%, RMSE value is decreased
by 29.9%, and R2 value is improved by 87.6%.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Infectious diseases have caused hundreds of billions of dollars
n losses, and hundreds of millions of people suffer from them
nnually [1]. The infectious disease surveillance system in China
ad been built up since 2003 [2]. In the past two decades, the
urveillance system is getting powerful, which has prevented and
ontrolled several disease outbreaks [3]. The infectious disease
rediction tools are significant in supporting decision-making [4].
hey effectively help the government and medical-related agen-
ies allocate healthcare resources, which would help prevent and
ontrol disease transmission as well. It is also the core component
f early warning techniques.
Numerous studies have been proposed for infectious disease

rediction [5–7]. From the data perspective, these methods are
ainly based on single-grained time series data. A single-grained

ime series means that the time intervals of past observations and
he time intervals of prediction targets share a common length.
or infectious disease datasets, the predictions based on single-
rained time series commonly ignore effects on the incubation
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periods of infectious disease. To overcome this problem, fine-
grained time series are considered and modeled [8]. When the
time interval length of the time series is smaller than the time
interval length of the prediction target, it is called fine-grained
time series. For the purpose of distinguish, when they have the
same time interval length, we call them equal-grained time series.

The infectious disease prediction is often regarded as a prob-
em of time series prediction [9,10]. Recently, representation
earning achieves great success in time series prediction [11].
hese methods mainly focus on presentation learning with re-
pect to time dimensional. CNN-variant methods [12,13], RNN-
ariant methods [14], and attention mechanisms [15,16] have
een widely applied to this dimension. However, the represen-
ation learning on infectious disease prediction has not been well
tudied. When considering both equal-grained time series and
ine-grained time series, learning representations only on the
ime dimension are not enough [11].

There are two major challenges in accurate disease case pre-
iction: (1) how to organize the time series data of two granu-
arities? (2) how to efficiently and effectively learn the temporal
ynamics from the dual-grained time series data?
To address the above issues for accurate disease prediction,

he Dual-grained Directional Representation (DGDR) model is
roposed. The proposed DGDR consists of five stages: (1) time

eries alignment; (2) time series normalization; (3) directional
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epresentation; (4) temporal fusion; and (5) de-normalization
nd prediction generation. The core part of the DGDR is the direc-
ional representation (DR) component. It learns representations of
he transformed time series tensor from three directions, which
s different from the previous methods.

The major contributions are summarized below:

(1) The alignment of the time series of two granularities is
firstly applied to general disease prediction. This brings the
possibility on observing the disease incubation period in
terms of outpatient visit counts.

(2) The essential and feasibility of learning representations
from different directions of time series have been validated.

(3) The proposed DGDR can learn temporal dynamics from
dual-grained time series with better performance. Techni-
cally, the RMSE value is decreased 29.9% at most.

(4) Extensive experiments of twelve methods on two real dis-
ease datasets in Xiamen have been done.

The remains of this paper are organized as follows. Section 2
addresses this work. Section 3 gives problem definition. Sec-
tion 4 illustrates the proposed DGDR. Section 5 gives datasets,
evaluation metrics, and benchmark methods. Section 6 conducts
experiments and analyses. Finally, a conclusion is drawn in Sec-
tion 7.

2. Related work

This section addresses this research by review infectious dis-
ease prediction methods and temporal representation learning
methods.

2.1. Infectious disease prediction methods

Infectious disease prediction has received increasing atten-
tion from epidemiologists and researchers in recent years. These
methods can be divided into three categories: mechanical meth-
ods, statistical methods, and deep learning methods.

Mechanical methods capture disease transmission dynamics
by utilizing disease progression mechanisms [17]. Susceptible–
Infectious–Recovered (SIR) [18] and Susceptible-Exposed-
Infected–Recovered (SEIR) [19] are famous mechanical predictive
methods. These methods incorporate the causation of disease
population in the inference process and are extensively applied
in the field of public health. However, the performance is much
dependent on the accurate initial parameters. So it is difficult to
adapt to the dynamics of disease progression in the real world.

Statistical methods trace the upcoming trends of infectious
disease based on statistical theories, such as probabilistic dis-
tribution and Bayesian theorem [20]. The ARIMA and seasonal
ARIMA (SARIMA) [21] are two popular approaches to learning
stable time series. Due to the unstable nature of disease transmis-
sion, these methods are not applicable in most cases. Some other
methods, such as Kalman filtering and Bayesian inference, have
also been used for epidemic forecasting [9]. But these methods
rely on some statistical assumptions of the data. It inevitably
limits these methods in achieving better prediction accuracy.

Deep learning methods have superiority in capturing the com-
plex representation information. Recent studies have leveraged
these methods to make predictions about the spread of infec-
tious diseases [22,23]. However, these methods commonly utilize
single-grained time series for prediction. This limits the predictive
performance by ignoring the effect of incubation periods.
2

2.2. Temporal representation learning methods

Recently, numerous temporal representation learning meth-
ods have been proposed to do time series prediction. These meth-
ods can be divided into two categories: traditional deep learning
methods and attention-based methods.

Traditional deep learning methods include some widely used
approaches, such as convolutional neural networks (CNN) and re-
current neural networks. Temporal convolutional network (TCN)
[12] is proposed for time series prediction based on the CNN
component, which has the superiority in capturing local feature
information. However, there are many long-term temporal de-
pendencies are ignored by this method, which significantly affects
the prediction accuracy. The RNNs methods are proposed to solve
the above problem. Dual-grained Representation (DGR) [8] is a
well-designed temporal representation learning method based on
recurrent layers. This method fuses dual-grained epidemic time
series and shows acceptable performance. However, DGR merely
considers the temporal dynamics between different time steps,
neglecting the relationships between different periods.

Attention-based methods have achieved excellent performance
in dealing with time series data. Typically, LSTNet [24] and DA-
RNN [14] are two well-known attention-based methods that
show good performance in extracting time dimension represen-
tation from strong periodic time series. However, due to the weak
periodicity and instability of epidemic time series data, attention-
based methods still have room for improvement in infectious
disease case prediction.

In this paper, we proposed a novel temporal representation
learning method DGDR. From the perspective of the data, DGDR
integrates fine-grained time series to enhance the ability to dis-
cover mechanisms of disease progression. From the perspective
of the method, DGDR learns the temporal representations from
different directions, which captures more internal transmission
patterns from epidemic time series.

3. Problem definition

This section gives notations and problem definition.
A time series is defined as a series of observed values with

dentical time intervals. An equal-grained time series has the same
ength of time intervals as the prediction target. For example,
f the predictive target is the outpatient cases of the upcoming
eek, then the time series of weekly outpatient cases can be
alled equal-grained time series. A equal-grained time series with
ength K is denoted by symbol E ∈ RK×1. A fine-grained time series
has a smaller length of time intervals than the prediction target.
For example, if the prediction target is the outpatient cases of the
upcoming week, then the time series of daily outpatient cases can
be called fine-grained time series. A fine-grained time series with
length L is denoted by symbol F ∈ RL×1.

A look-back segment observes a part of historical values. Let
d2 be the length of a look-back segment. Symbol E1:d2,1 denotes
a segment of the equal-grained time series. Two segments of a
time series may have overlapping values.

Commonly, infectious disease prediction is regarded as a prob-
lem of equal-grained time series prediction, and it is formulated
as:

Êd2+1,1 = f (E1:d2,1), (1)

where Êd2+1,1 ∈ R is the predicted value in the upcoming time
interval, and f (·) is a mapping.

The dual-grained time series prediction leverages both equal-
grained time series and fine-grained time series to predict the
upcoming values. Because the length of equal-grained time series
is smaller than fine-grained time series, the fine-grained time
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eries is aligned with equal-grained time series according to their
pecific time intervals. This can also avoid the problem of timeline
haos in different time series. Given that one time interval of
qual-grained time series consists of d3 time intervals of fine-
rained time series, symbol F ∈ RK×d3 denotes the aligned
ine-grained time series. The problem of dual-grained time series
rediction is formulated as:

ˆd2+1,1 = f (E1:d2,1, F 1:d2,:), s.t. Ei,1 =

d3∑
j=1

Fi,j, (2)

where Êd2+1,1 ∈ R is the predicted value, F 1:d2,: ∈ Rd2×d3 is the
bserved fine-grained values, and f (·) is a mapping. The E1:d2,1
as the same time span as F 1:d2,:.
The consideration of a single predictive point would greatly

imit the model scope and cause training biases. Technically,
ots of small target values usually constrain the model’s abilities
n predicting outbreak transmission events. Hence, the consecu-
ive predictions of dual-grained time series are considered and
ormulated as:
ˆ d2+1:d2+d1,1 = f (E1:d2,1, E2:d2+1,1, . . . , Ed1:d2+d1−1,1,

F 1:d2,:, F 2:d2+1,:, . . . , F d1:d2+d1−1,:),
(3)

here Êd2+1:d2+d1,1 ∈ Rd1×1 denotes consecutive predicted values
ith size d1, [E1:d2,1, E2:d2+1,1, . . . , Ed1:d2+d1−1,d3 ] ∈ Rd1×d2×1

enotes segments of equal-grained time series with size d1, and
F 1:d2,d3 , F 2:d2+1,d3 , . . . , F d1:d2+d1−1,d3 ] ∈ Rd1×d2×d3 denotes seg-
ents of fine-grained time series with size d1, and f (·) is a
apping. For easy representation, symbol T E

∈ Rd1×d2×1 denotes
egments of equal-grained time series, symbol T F

∈ Rd1×d2×d3

denotes segments of fine-grained time series, and symbol T̂
E

∈

Rd1×1 denotes consecutive predicted values.
The representation learning techniques can be leveraged to

learn the temporal dynamics from tensor T E and tensor T F . We
believe that the tensors can be represented from three directions.
These directions are defined as:

Direction 1 observes the associations between past observa-
tions and the consecutive upcoming values. It can be learned from
the first dimension of T F or T F .

Direction 2 observes the associations between different time
steps of a look-back segment. It can be learned from the second
dimension of T F or T F .

Direction 3 observes the associations between different time
series. It can be learned from the third dimension of T F or T F .

In summary, the problem of dual-grained time series predic-
ion via directional representation is formulated as:

ˆ
E

= f (r1(T E), r2(T E), r1(T F ), r2(T F ), r3(T F )), (4)

where r1(·), r2(·), r3(·) are the functions of three directions, re-
spectively.

The main notations are listed in Table 1.

4. The proposed DGDR

This section illustrates the proposed DGDR. The graphical de-
scriptions of the proposed DGDR are plotted in Fig. 1. The DGDR
consists of the five stages below.

The first stage is the alignment of fine-grained time series and
equal-grained time series, see the upper left part of Fig. 1(a).
Given a set of specific outpatient records, they are counted in
different lengths of time intervals to get different granularities
of time series. The fine-grained time series are aligned according
to a specific time interval of a coarse-grained time series. This
makes the observation of periodic events and consecutive events
become possible and easy.
3

Table 1
Notations and meanings.
Notation Meaning

K The length of the equal-grained time series
d1 The number of look-back segments
d2 The time steps of a look-back segment
d3 The length of an aligned period
E Equal-grained time series Z ∈ RK×1

F Aligned fine-grained time series F ∈ RK×d3

E1:d2,1 A look-back segment of E
F 1:d2,d3 A look-back segment of F
Êd2+1,1 A predicted value
Êd2+1:d2+d1,1 Consecutive predicted values
X E Equal-grained tensor X E

∈ R(K−d2+1)×d2×1

X F Fine-grained tensor X F
∈ R(K−d2+1)×d2×d3

Y Output tensor Y ∈ R(K−d2+1)×1

XE Input equal-grained data XE
∈ Rd1×d2×1

XF Input fine-grained data XF
∈ Rd1×d2×d3

Y Target data Y ∈ Rd1×1

r1(·) The representation function on direction 1
r2(·) The representation function on direction 2
r3(·) The representation function on direction 3
f (·) A mapping
[, ] or [; ] Concatenation operation

The second stage is time series normalization. The values
between the two granularities of time series are quite different.
The normalization procedure makes the values of all the time
series have a common or close order of magnitude. It works on
the whole-length dual-grained time series.

The third stage is time series transformation. Since supervised
models cannot directly work well on time series data, it needs
to be transformed into supervised data. The ‘‘one-step-forward
plit’’ [6] technique is adopted to transform time series data to
ensor data.

The fourth stage is the representations of transformed tensor
ata, the detailed representation procedures of one direction are
isplayed in Fig. 1(b). To comprehensively capture the temporal
ynamics of an input tensor, three directional representation (DR)
omponents are applied to it.
The final stage is temporal fusion and prediction generation.

he procedures of temporal fusion is in Fig. 1(c). The three repre-
ented tensors of fine-grained tensor and two of equal-grained
ensor are concatenated and pass to a temporal fusion layer,
hich makes connection with the outputs. The predicted values

s the de-normalized model outputs.

.1. Time series data processing

Time series alignment. To ensure the same length of dual-
rained time series, we reordered the sequence of fine-grained
ime series, and arranged them in chronological order. Let symbol
∈ RK×d3 represent the aligned fine-grained time series.
The Min–Max normalization is used to compress time series

into the range [0, 1]. The normalization and de-normalization are
mathematically formulated below:

d ′
=

d − min(d)
max(d) − min(d)

, (5)

d = d ′
∗ (max(d) − min(d)) + min(d), (6)

where d ∈ RK denotes all of the observed samples, d ′
∈ RK is

the normalized samples, max(d) is the maximum value of d, and
min(d) is the minimum value of d. The de-normalization formula
is applied to the model outputs.

The one-step-forward split is used to transform time series
data into supervised data. For a equal-grained time series and
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Fig. 1. The schematic illustration of the proposed Dual-grained Directional Representation (DGDR). (a) Workflow. (b) Directional representation (DR) component. (c)
Temporal fusion layer.
a fine-grained time series, the transformation results are formu-
lated as below:⎡⎢⎣ E1,1 · · · Ed2,1 F 1,d3 · · · F d2,d3

E2,1 · · · Ed2+1,1 F 2,d3 · · · F d2+1,d3
· · · · · · · · · · · · · · · · · ·

EK−d2−1,1 · · · EK−1,1 FK−d2−1,d3 · · · FK−1,d3

⎤⎥⎦
→

⎡⎢⎣Ed2+1,1
Ed2+2,1

· · ·

EK ,1

⎤⎥⎦ ,

here the left part is the inputs, and the right part is the outputs.
or a lucid presentation, let symbol X E

∈ R(K−d2−1)×d−2×1, sym-
ol X F

∈ R(K−d2−1)×d2×d3 and symbol Y ∈ R(K−d2−1)×1 represent
qual-grained inputs, fine-grained inputs and outputs respec-
ively. Several consecutive samples in (X E,X F ,Y) are denoted
y (XE

∈ Rd1×d2×1,X F
∈ Rd1×d2×d3 ,Y ∈ Rd1×1). ET+1:T+B,1 is

denoted by Y , and [E1:d2,1, E2:d2+1,1, . . . , Ed1:d2+d1−1,1] is denoted
by XE , [F , F , . . . , F ] is denoted by X F .
1:d2,d3 2:d2+1,d3 d1:d2+d1−1,d3

4

4.2. Directional Representation (DR) component

The directional representation (DR) component represents the
transformed tensor X ∈ Rd1×d2×d3 by four procedures. The graph-
ical procedures of DR component are shown in Fig. 1(b).

The first two procedures can be formulated as:

S = W ∗ ReLU(X), (7)

where S is element-wise weighted output matrix, X ∈ Rd1×d2×d3

is the input matrix, W ∈ Rd2×d3 is the weight matrix of X , ∗ is the
Hadamard product between X and W , and ReLU(·) is the rectified
linear unit function. The X can be tensors from equal-grained data
or fine-grained data.

The third procedure highlight the key element in three direc-
tions. The three dimensions are formulated as:

Ri,j,k =
exp(Si,j,k)∑d1

v=1 exp(Sv,j,k)
, if d = 1 (8)

Ri,j,k =
exp(Si,j,k)∑d2

, if d = 2 (9)

v=1 exp(Si,v,k)
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i,j,k =
exp(Si,j,k)∑d3

v=1 exp(Si,j,v)
, if d = 3 (10)

here R ∈ [0, 1] is the represented tensor, and S ∈ Rd1×d2×d3 is
the element-wise transformed matrix. A dropout layer is added
in the last procedure to avoid overfitting.

4.3. Fusion on directional representations

The temporal fusion layer fuses the transformed tensor and
represented tensors to connect with the model output. The graph-
ical procedures of the temporal fusion layer is displayed in
Fig. 1(c). The fusion process consists of a tensor concatenation
procedure and a temporal connection procedure.

For both equal-grained tensors and fine-grained tensors, their
representations are symbolized as:

RE
j = DR(XE, d = j), (11)

F
j = DR(X F , d = j), (12)

here XE
∈ Rd1×d2×1 is the equal-grained tensor, X F

∈ Rd1×d2×d3

is the fine-grained tensor, RE
j ∈ Rd1×d2×1 is the represented tensor

of XE in jth direction, RF
j ∈ Rd1×d2×d3 is the represented tensor

of XF in jth direction, and DR(·) is the directional representation
component. All the values of RE

j and RF
j are in range [0, 1]. The j

is in {1, 2, 3}.
The transformed tensors and represented tensors are concate-

nated as follows:

X = [XE
;RE

1;R
E
2;X

F
;RF

1;R
F
2;R

F
3], (13)

where X ∈ Rd1×d2×(1×3+d3×4) is the concatenated representation
outputs tensor, and [; ] is the concatenation operation.

To reduce the model complexity and highlight the impact
of time step dimension, the global autoregression (GAR) [5] is
employed. The linear outputs is formulated as:

O = (WgX T
+ Bg )T, (14)

where O ∈ Rd1×1×(1×3+d3×4) is the global auto-regressive outputs
on the concatenated outputs X , Wg ∈ R1×d2 is the weighted
matrix, and Bg ∈ R is bias term.

Finally, a linear layer fuses the above outputs and generate
predictions. The model outputs are formulated as:

P̂ = WoO + Bo, (15)

where the P̂ ∈ Rd1×1×1 is the consecutive predictions, Wo ∈

R1×(3×1+4×d3), and Bo ∈ R is bias term.
Although some other methods can be used to combine and

fuse all the immediate tensors, such as CNN, skip network, and
highway network, the simplest method is adopted in this paper.

5. Experimental settings

This section gives data preparation, performance metrics, and
benchmark methods.

5.1. Data preparation

Owing to not public dual-grained time series data that can be
directly used to validate the methods. The raw outpatient records
were collected and shared by the Xiamen City Center for Disease
Control and Prevention (XMCDC). These records were collected
in the duration from January 1, 2011 to December 31, 2020, for
a total of 3652 days. These records were cleaned, extracted, and

transformed into time series data.

5

Two types of infectious diseases have been collected: hand,
foot, and mouth disease (HFMD) and hepatitis beta (HB). For each
disease, the daily outpatient visit cases and weekly outpatient
visit cases are counted according to the diagnosed disease onset
time. The weekly time series of outpatient cases are plotted
in Fig. 2(a) and Fig. 2(i), respectively. The correlations between
periodic daily time series and weekly time series are plotted in
subfigures.

The prediction target is set the outpatient case prediction in
the upcoming week. The weekly outpatient time series can be
regarded as equal-grained time series. The daily outpatient time
series can be regarded as fine-grained time series.

5.1.1. HFMD datasets
68730 HFMD outpatient visit records were collected. Some

observations from visualized analyses of Figs. 2(b)–2(h) are sum-
marized as follows:

(1) The activities on Friday have the strongest correlations
with the activities of the whole week than any other day
of the week. The activities on Saturday have second place.

(2) The activities on Monday have the weakest correlation
with the activities of the whole week.

(3) For HFMD datasets, all days of the week are strongly corre-
lated with the activities of the whole week. All the Pearson
Correlation Coefficient (PCC) values are great than 0.9, and
their corresponding p-values are less than 0.001.

(4) HFMD frequently occurs in children under five years old
[25]. Since the social activities on weekdays are frequent,
adults are possibly exposed to the virus and spread it to
children after home.

(5) Adults infected with HFMD typically appear milder symp-
toms, so they may intend to seek medical on weekends.

5.1.2. HB datasets
75891 HB outpatient visit records were collected. The HB

cases are reported when the transaminase exceeds the twice
standard. Some main observations from visualized analyses of
Figs. 2(j)–2(p) are summarized as follows:

(1) The activities on weekdays were significantly correlated
with the activities of the whole week. Most patients with
HB have no obvious symptoms, and about 76% outpatient
cases were diagnosed through physical examination [26].

(2) The activities on weekends were weakly correlated with
the activities of the whole week. The reason is that HB
diagnosis requires blood testings, and the hospitals have
not this exam on weekends. Hence, the reported number
of HB outpatient cases on weekends is relatively small.

5.2. Metrics

To evaluate the model performance, Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), correlation coefficient
(R2) are combined to validate the models. They are formulated
as:

MAE =
1
n

n∑
i=1

|Zi − Ẑi|, (16)

RMSE =

√1
n

n∑
i=1

(Zi − Ẑi)2, (17)

2
= 1 −

∑n
i=1(Zi − Ẑi)2∑n 2

, (18)

i=1(Zi − Z̄)
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Fig. 2. The weekly distributions of hand, foot, and mouth disease (HFMD) outpatient counts and hepatitis beta (HB) outpatient counts. The visualized correlations
etween weekly variables and daily variables. For HB diagnosis, only the transaminase exceeding the standard twice will be reported.
here Zi, Ẑi denotes real values and predictive values, respec-
ively. Z̄ is defined as the mean value of the test set, n represents
he number of time steps in the test samples.

The lower MAE, RMSE values, and the higher R2 value are the
etter performance.

.3. Benchmarks

Some benchmarks are implemented to investigate the effec-
iveness of the proposed DGDR. These methods are:

(1) Multiple Linear Regression (MLR) [27] models the linear
relationship between inputs and outputs.

(2) Long and short term memory (LSTM) [28] is a variation
of the RNN, which equips various gate units to overcome
RNN’s limitation of the long-term dependency.

(3) Gate Recurrent Unit (GRU) [29] is a variation of the LSTM,
which replaces the hidden gates and cell gates by an up-
dating gate.

(4) Encoder–decoder (ED) [30] is composed of two RNN com-
ponents which are separated in the encoder stage and the
decoder stage to capture the non-linear dependencies.

(5) Convolutional Neural Network (CNN) [31] extracts tempo-
ral patterns of sequential data, and uses a fully-connected
layer to generate predictions.
6

(6) CNNRNN [32] extracts the local temporal pattern with CNN,
and uses a RNN to learn the temporal dynamics from CNN
outputs.

(7) DGR [8] extract temporal patterns from both equal-grained
and fine-grained data with GRU, and uses a fully-connected
layer to generate predictions.

6. Results

This section conducts extensive experiments to validate
datasets and models. These experiments intend to address the
following questions:

(1) How the parameter d1 (i.e., model scope) affects the pre-
diction performance?

(2) How the past observations affect the prediction perfor-
mance?

(3) How the directional representations affect the prediction
performance?

(4) Can the methods benefit from fine-grained time series
data?

(5) Could the DGDR outperforms other benchmark methods?



P. Zhang, Z. Wang, Y. Huang et al. Knowledge-Based Systems 256 (2022) 109806
Fig. 3. The DGDR performance with varying d1 in terms of MAE, RMSE, and R2 . The optimal values are found at red dash lines. d2 is fixed at 4.
6.1. Parameter d1

The constant parameters of the DGDR are d1, d2, d3. When
observing the prediction performance, the target parameter is
varied while holding the others. For weekly data and daily data,
d3 is always fixed at 1 and 7, respectively. For HFMD datasets,
parameter d2 is held at 11. For HB datasets, parameter d2 is held
at 3.

The investigation of parameter d1 on the both disease datasets
are plotted in Fig. 3. The major observations are summarized
below:

(1) For HFMD datasets, the optimal values of MAE, RMSE, and
R2 are found at d1 = 4.

(2) For HB datasets, the optimal value of MAE is found at d1 =

2, and the optimal values of RMSE and R2 are found at
d1 = 4.

(3) For all the experiments on parameter d1, the experiments
on weekly data and daily data have the best performance
than only one kind of data.

(4) For the experiments solely based on weekly data, they
usually have the worst performance.

(5) The performance degrades when d1 is less or greater than
4.

(6) The poorest performance was found at d1 = 1. d1 = 1
means that the first directional representation has not been
used.

For HFMD datasets, see Figs. 3(a)–3(c), the optimal perfor-
mance are found at d1 = 4. Parameter d1 is the number of
look-back segments. The adult-to-child transmission is a major
cause of children infected with HFMD. Adults do not be infected
by HFMD due to strong resistance, but they are carriers of the
virus [33]. This period is similar to the period that Enterovirus
(EV) continues to survive in the body.

For HB datasets, see Figs. 3(d)–3(f), the optimal RMSE value,
optimal R2 value, and the second optimal MAE value are found at
d = 4.
1
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For HFMD datasets and HB datasets, the DGDR has the worst
performance when d1 is set to 1. The first directional representa-
tion is not working when d1 = 1. In reality, the model scope is
limited at a single data point when d1 = 1. Parameter d1 controls
the model scope, which affects the learning ability of the first
direction. This also reflects the effectiveness the first directional
representations.

6.2. Parameter d2

To investigate the effects on parameter d2, parameter d1 is
held at 4 for HFMD datasets and HB datasets. The experimental
results are shown in Fig. 4. The main observations are summa-
rized below:

(1) For HFMD datasets, the optimal MAE value, RMSE value,
and R2 value are found at d2 = 11.

(2) For HFMD datasets, the experiments based on both weekly
data and daily data (see the yellow line with triangle
marks) have the best performance when compared with
experiments on other datasets.

(3) For HFMD datasets, the experiments based on weekly data
(see the blue line with diamond marks) have the worst
performance when compared with experiments on daily
data or experiments on both.

(4) For HFMD datasets, the performance exists fluctuations,
among which using weekly data fluctuates the most.

(5) For HB datasets, the optimal MAE value, RMSE value, and
R2 value are found at d2 = 2.

(6) For HB datasets, the experiments based on daily data (see
the green line with square marks) usually have the worst
performance than other experiments on other datasets.

(7) For HB datasets, the experiments based on weekly data
show a steady performance.

The experimental results on HFMD datasets are plotted in
Figs. 4(a)–4(c). The optimal performance are found at d2 = 11.
HFMD has been proved to be seasonal trends [34]. The Chinese
Center for Disease Control and Prevention (CDC) pointed out that
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Fig. 4. The DGDR performance with varying d2 in terms of MAE, RMSE, and R2 . The optimal value is marked using red dash line. d1 is fixed at 4.
the high incidence of HFMD usually occurs in southern China
from April to June, with a small peak in autumn [35]. The second-
best and third-best performance are found at d2 = 7 and d2 =

14, respectively. This means that the coming values have strong
correlations with the observations in the past seven weeks and
fourteen weeks. In reality, seven weeks and fourteen weeks are
two HFMD high-incidence periods in Xiamen.

Figs. 4(d)–4(f) show the experiments on HB datasets. The opti-
mal values of MAE, RMSE and R2 are found at d2 = 2. This means
that the activities of the upcoming week have the strongest
correlations with the activities of the past two weeks. HB disease
is a type of chronic disease, which means the healthcare strategies
are not urgent. The incubation period of HB may be long or very
short, such as disease with birth.

When d2 is set to, the second directional representations do
not work, the performance would greatly degrade for HFMD
datasets and HB datasets. This reveals the effectiveness of the
second directional representations.

6.3. DR consolidation

To investigate the effects on consolidations of directional
representations, parameters d1, d2 are both fixed while measur-
ing the combinations of directional representations. For HFMD
datasets, parameter d1 is fixed at 4 and parameter d2 is fixed at
11. For HB datasets, parameter d1 is fixed at 4 and parameter d2
is fixed at 2.

The experimental results on combinations of directional rep-
resentations are plotted in Fig. 5. Some results are summarized
below:

(1) For HFMD datasets and HB datasets, when observing the
experiments on the first or second directional represen-
tations, the performance of daily data is better than the
performance of weekly data.

(2) For HFMD datasets and HB datasets, the combination of all
directional representations have the optimal performance

in terms of three metrics.
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(3) When observing the performance on different directional
representations, the first direction have better performance
than the performance of second direction or third direction.

When observing the experiments in a single direction, the first
direction achieves the best prediction accuracy. For the experi-
ments of first directional representation on HFMD datasets, the
RMSE value is decreased by 15.3% at most. For the experiments of
first directional representation on HB datasets, the RMSE value is
decreased by 27.1% at most. This means that the highlight of data
points may be more important than the highlight of time steps.
Past time steps are relative values to the upcoming time step. The
highlight of some time steps usually does not have good results.

The second directional representation and third directional
representation affect prediction accuracy by highlighting time
steps and a dimension of exogenous time series. For the ex-
periments of representation combinations on HFMD datasets,
the RMSE value is decreased by 5.9% at most compared with
the first representation. For the experiments of representation
combinations on HB datasets, the RMSE value is decreased by
1.9% at most compared with the first representation. Although the
second direction and the third direction show poor performance
when working alone, they hold some temporal dynamics that the
first direction does not have.

The experiments based on daily data outperforms the exper-
iments based on weekly data. For the experiments on the same
directional representations on HFMD datasets, the methods based
on daily data decrease the RMSE value by 18.3% at most. For
the experiments on the same directional representations on HB
datasets, the methods based on daily data decrease the RMSE
value by 5.8% at most. This shows that the DGDR learns the
temporal dynamics from fine-grained data more efficiently than
equal-grained data.

The consolidation of dual-grained data on three kinds of di-
rectional representations achieves the optimal performance. This
reveals that the temporal dynamics captured from equal-grained
and fine-grained data both have their unique part. It also shows

the effectiveness of the proposed DGDR.
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Fig. 5. The performance of directional representations and their combinations in terms of MAE, RMSE, and R2 . For HFMD dataset, d1 is fixed at 4, and d2 is fixed at
11. For HB datasets, d1 is fixed at 4, and d2 is fixed at 2.
6.4. Comparison

To validate the prediction performance of all the mentioned
methods, extensive experiments of twelve methods are con-
ducted on two disease datasets. For these methods, d1 and d2 are
set to be the same, and the parameters of benchmark methods
are tuned at the optimal performance.

The experimental results are displayed in Fig. 6. Some major
observed results are listed below:

(1) The DGDR significantly outperforms the other methods.
(2) For two disease datasets, CNN1D obtain the worst perfor-

mance among benchmark methods.
(3) For RNN-variant methods, the number of hidden neurons

has slight effects on prediction performance.
(4) The methods based on daily data significantly outperform

the methods based on weekly data.
(5) The consolidation of weekly and daily data further im-

proves the prediction performance.

The CNN1D gets poor performance in two disease datasets. A
possible reason is that the CNN would filter small values, which
may ignore the temporal dynamics within the incubation period.

The number of hidden neurons has little effect on the pre-
diction performance. A possible reason is that the disease trans-
mission may have not strong periodic events. Hence, the model
cannot be well trained for disease datasets.

From the data aspect, the benchmark methods have better
performance on daily data than weekly data. For two disease
datasets, the RMSE value is decreased by 15.1% and 3.2% when fed
9

with daily data and weekly data, respectively. This reveals that
fine-grained datasets provide sufficient the temporal dynamics.
However, for the HB datasets, MLR has a poorer performance on
daily data than weekly data. A possible reason is that the daily
HB time series greatly fluctuates, which is not belong to linear
distributions.

The experiments on the combination of daily data and weekly
data have better performance than only one kind of data. For
the experiments of DGR on HFMD datasets, the RMSE value is
decreased by 26.3% at most. For the experiments of DGR on
HB datasets, the RMSE value is decreased by 12.6% at most.
This demonstrates that the temporal dynamics from the different
granularities have overlaps but are different. This reveals that the
dual-grained data are essential.

The proposed DGDR outperforms the benchmark methods,
and the improvements are significant. For the experiments on
weekly data, the RMSE value is decreased by 12.2% and 22.78%
at most on HFMD datasets and HB datasets, respectively. For the
experiments on daily data, comparing the DGDR with other meth-
ods, the RMSE value is decreased by 18.82% and 26.51% at most,
respectively. It demonstrates that the proposed DR component is
efficient to capture temporal dynamics from both equal-grained
time series and fine-grained time series. For two disease datasets,
DGDR decreases the RMSE value by 8.0% and 3.3% when compared
with DGR. The DGR is designed for dual-grained time series, but
it only has the ability in representing the time step dimension.
This shows the impact of the DR component in capturing and
consolidating the temporal dynamics.

In summary, the main reasons for the improvement are as
follows: (1) dual-grained data can provide with more sufficient
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Fig. 6. The performance comparisons of all methods. For both HFMD and HB datasets, d1 is both fixed at 4, and d2 is fixed at 11 and 2, respectively.
temporal dynamic; (2) the DR component can efficiently capture
the temporal dynamic from the dual-grained time series. They
both efficiently help DGDR to learn the various kinds of temporal
patterns.

7. Conclusion

This paper proposed a common infectious disease prediction
method, which is named Dual-grained Directional Representa-
tion (DGDR), to predict the outpatient number in the upcoming
week. The core directional representation (DR) component is
designed to extract the temporal dynamics of a time series from
three directions with high fusion ability. The proposed DGDR
learns those representations from both equal-time series data and
fine-grained time series data.

Extensive experiments on the hand, foot, and mouth disease
(HFMD) dataset and the hepatitis beta (HB) dataset show the
effectiveness of the DGDR. The experimental analyses show the
HFMD high-incidence period is around 7 weeks. Moreover, the
DGDR has been discussed and its predictions have been adopted
by the Xiamen City Center for Disease Control and Prevention
(XMCDC).

In the future, we will further study the associations between
different infectious diseases, which would provide better control
of disease transmission.
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