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A B S T R A C T

This paper introduces a novel feature selection method, called Feature Selection based on Importance Measures
(FS-IM), to enhance the forecasting of crude oil returns. FS-IM innovatively combines active learning with the
application of Gaussian noise to input features and selects the most relevant features using an optimal threshold
value. The paper applies a ridge regression (RR) model based on FS-IM (FS-RR) to identify the factors that
have important information for crude oil return forecasting. The paper compares FS-IM with other dimension
reduction methods such as Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA),
and Independent Component Analysis (ICA). The results show that FS-IM can significantly improve model
accuracy, demonstrating its effectiveness in finding key features. Moreover, FS-IM is more stable and consistent
than other dimension reduction methods in enhancing the prediction accuracy in different scenarios, indicating
its superior capability in capturing complex relationships between input and output variables. Furthermore,
this study compares FS-RR model with other 13 prediction models by conducting experiments using a series
of evaluation metrics, different statistical tests, and different step-ahead predictions and training sets. The
results confirm that the RR model based on FS-IM can consistently outperform other model in terms of
predictive performance and economic value, proving its effectiveness and robustness. This study contributes
to the literature on crude oil price forecasting by addressing the challenges of high-dimensional and complex
data, and by providing a robust, practical tool for professionals in energy economics and finance.
1. Introduction

Crude oil is a crucial resource in the global economy, significantly
affecting sectors such as energy, transportation, manufacturing, and
finance [1,2]. The price of crude oil is determined by the balance of
supply and demand, as well as factors including geopolitical events,
macroeconomic conditions, market sentiments, and projections of fu-
ture trends. Research by He et al. [3], Zhang et al. [4] and Zhang and
Wang [5] shows that forecasting crude oil returns is essential. These
forecasts are critical for investors planning their portfolio allocation
and hedging strategies, for policymakers in developing economic and
energy policies, and for researchers in proposing new theories and
models [2]. The growing focus among academics on improving the
accuracy of crude oil price predictions [6–8] highlights its importance
in making informed decisions and reducing risks.

Crude oil returns forecasting are influenced by many factors such
as macroeconomic, supply, geopolitical, demand, and so on [9,10]. For
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example, Zhang et al. [4] use a large number of factors to predict the
crude oil returns. However, the high dimensionality of the data poses
computational and statistical challenges, such as the curse of dimen-
sionality, overfitting, multicollinearity, and information redundancy.
Thus, forecasting crude oil returns is a challenging task, as it involves
dealing with high-dimensional and complex characteristics. Therefore,
it is essential to select the most relevant features from a large feature
set that can capture the salient information and patterns in the data
and improve the forecasting performance of the models.

Feature selection is a vital step that aims to reduce the dimen-
sionality and complexity of the data by selecting the most relevant
features from a large feature set. Feature selection can help enhance
the prediction performance of forecasting models, as well as reduce
the computational cost and avoid overfitting [11]. However, feature
selection is not a trivial task, as it requires a proper evaluation of
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Nomenclature

List of abbreviations and their corresponding full names

Abbreviations

ARMA Auto-Regressive Moving Average Model
BR Bagging Regression
CRBSCI Commodity Research Bureau’s Commodity

Index
CSFE Cumulative Squared Forecast Error
CER Certainty Equivalent Return
CW Clark West test
EIA U.S. Energy Information Administration
FS-IM Feature Selection-Importance Measures
FS-RR Feature Selection-Ridge Regression
GBR Gradient Boosting Regression
HA Historical Average
ICA Independent Component Analysis
ICA-RR Independent Component Analysis-Ridge Re-

gression
IM Importance Measures
KPCA Kernel Principal Component Analysis
KPCA-RR Kernel Principal Component Analysis-Ridge

Regression
LASSO Least absolute shrinkage and selection oper-

ator
MLR Multiple linear Regression
MAE Mean Absolute Error
MCS Model Confidence Set
PCA Principal Component Analysis
PCA-RR Principal Component Analysis-Ridge Re-

gression
RDI Real Dollar Index
RF Random Forest
RMSE Root Mean Square Error
RR Ridge Regression
Std Standard Deviation
SVR Support Vector Regression
UG Utility Gain
WTI West Texas Intermediate
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit

the importance of each feature in relation to the forecasting objec-
tive. Importance measures are quantitative indicators that reflect the
contribution of each feature to the system reliability or performance.
Different importance measures may capture different aspects of feature
importance, such as sensitivity, correlation, causality, or information
content.

Existing methods for dimension reduction, such as principal compo-
nent analysis (PCA) [5], kernel principal component analysis (KPCA)
[12], and independent component analysis (ICA) [13], have some lim-
itations when applied to crude oil return forecasting. First, these meth-
ods are based on linear or nonlinear transformations of the original
features, which may result in a loss of interpretability and information.
For instance, PCA transforms the original features into orthogonal
components that explain the maximum variance in the data, but these
components may not have any physical meaning or relevance to the
forecasting objective. KPCA extends PCA by using kernel functions
to map the original features into a higher-dimensional space where
they become linearly separable, but this may introduce additional
2

complexity and parameters that need to be tuned. ICA transforms the
original features into independent components that are assumed to be
generated by latent sources, but these sources may not be identifi-
able or observable in reality. Second, these methods do not consider
the importance of individual features or their interactions with other
features, which may affect the forecasting performance. For example,
PCA selects the components based on their eigenvalues that reflect
their variance contribution to the data, but this may not reflect their
predictive power or relevance to the output variable. KPCA selects
the components based on their kernel coefficients that reflect their
similarity to other features in the kernel space, but this may not reflect
their causal or nonlinear effects on the output variable. ICA selects
the components based on their mutual information that reflects their
independence from other features in terms of information content, but
this may not reflect their sensitivity or correlation with the output
variable. Third, these methods do not account for the uncertainty and
noise in the data, which may lead to inaccurate or unstable results.
For instance, PCA assumes that the data follows a multivariate normal
distribution with zero mean and constant covariance matrix, but this
may not hold inwhich may exhibit non-Gaussianity, heteroscedasticity,
and structural breaks. KPCA assumes that the kernel function is positive
definite and symmetric, but this may not hold in practice when dealing
with noisy or incomplete data. ICA assumes that the latent sources are
statistically independent and non-Gaussian distributed, but this may not
hold in practice when dealing with dependent or Gaussian distributed
sources. Moreover, these methods do not capture the effects of various
factors that may cause large fluctuations or structural breaks in crude
oil prices. These factors include the impact of wars, natural disasters,
pandemics, or policy changes on crude oil supply and demand, such
as the 1973 oil crisis, the 2011 Fukushima nuclear disaster, the 2020
COVID-19 pandemic, and the 2021 OPEC+ agreement [2,14,15]. These
factors also include the advantages and disadvantages of using different
data frequencies and intervals for capturing short-term or long-term
patterns and trends in crude oil prices, such as daily, weekly, monthly,
quarterly, or yearly data. These factors illustrate how crude oil prices
are influenced by various sources of uncertainty and heterogeneity, as
well as by nonlinear and dynamic relationships with other variables.
Therefore, there is a need for a more robust and reliable feature
selection method that can handle high-dimensional and complex data
and enhance prediction performance for crude oil return forecasting.

Many studies use Ridge Regression (RR) model for crude oil price
forecasting. For example, Hao et al. [16] and Wang et al. [17] use
RR model for crude oil price predictions. Moreover, RR model often
exhibits higher computationally efficient, especially on large data sets,
than Least Absolute Shrinkage and Selection Operator (LASSO), Long
Short-Term Memory (LSTM), Random Forest (RF) and so on. Therefore,
we use RR as the base model for feature selection and make predictions.

In this paper, we propose a novel feature selection method based on
importance measures for crude oil return forecasting. Our method uses
active learning to add Gaussian noise to the input features and measure
their importance scores based on the prediction errors. Our method also
uses an optimal threshold value to select the most relevant features with
prediction ability from the original feature set. Our method has several
advantages over existing methods. First, our method can effectively
select the most relevant features from a large feature set without losing
information or interpretability. Second, our method can capture the
interactive effects of features on the forecasting performance by using
importance measures derived from prediction errors. Third, our method
can handle uncertainty and noise in the data by using Gaussian noise to
perturb the input features and active learning to update the importance
scores.

The main contributions of this paper are as follows:

• We introduce a new feature selection method that uses active
learning to add Gaussian noise to the input features and measure
their importance scores based on the prediction error change of a
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base forecasting model. We also use an optimal threshold value to
select the features with crucial information and strong prediction
ability.

• We evaluate our method using different-step-ahead forecasting
and different training sets, and compare it with other dimen-
sion reduction methods and models without feature selection.
We show that our method can improve the forecasting accu-
racy of ridge regression model, and outperform other methods
such as principal component analysis, kernel principal component
analysis, and independent component analysis.

• We assess the economic value of our method for investors and pol-
icymakers, and show that our method can increase the utility gain
and certainty equivalent return of crude oil trading compared to
the historical average model.

The rest of this paper is organized as follows: Section 2 reviews the
elated work. Section 3 introduces the methodology of our proposed
eature selection method in this study. Section 4 describes the data and
xperimental settings used in this study. Section 6 concludes the paper
nd suggests future research directions.

. Related work

In this section, we review the existing literature on crude oil return
orecasting, which can be divided into three main research streams:
eature selection methods, dimensionality reduction methods, and fore-
asting models. Moreover, we also review the related literature on
eature selection based on importance scores. Feature selection methods
im to select the most relevant and informative features from a large
nd diverse feature set that contains various economic, financial, and
eopolitical factors affecting crude oil prices. Dimensionality reduction
ethods aim to reduce the number of features and extract the most

alient and representative features or components from the original fea-
ure set. Forecasting models aim to predict the future returns of crude
il prices based on the selected or reduced features or components. We
iscuss the advantages and disadvantages of different methods in each
esearch stream, and compare them with our proposed method. We also
dentify the main challenges and gaps in the existing literature, and
ow our paper contributes to addressing them.

.1. Impact factors of crude oil return forecasting

Crude oil is one of the most important commodities in the global
conomy, and its price fluctuations have significant implications for
arious sectors and regions. Therefore, forecasting crude oil returns is
crucial task for researchers, policymakers, and investors. However,

orecasting crude oil returns is challenging due to the complex and
ynamic nature of the crude oil market, which is influenced by various
conomic, financial, and geopolitical factors [18]. In this subsection,
e review the existing literature on how these factors affect crude oil
rices and returns, and how different data frequencies and intervals
ay influence the forecasting results.

The dynamics of crude oil prices are influenced by a confluence of
actors, primarily governed by the supply and demand conditions in the
lobal market. Supply considerations encompass the production deci-
ions of major oil producers, such as OPEC and non-OPEC countries,
nd the availability and cost of alternative energy sources like shale oil
nd renewable energy. Demand is shaped by the economic activity and
rowth of major oil consumers, including China, India, and the US, and
s further influenced by the energy efficiency and conservation policies
f various nations (e.g., [10,19–21]). Another significant determinant
f crude oil price fluctuations is the financial market dynamics and
nvestor behavior. The financialization of crude oil markets, charac-
erized by the increased influence of financial investors such as hedge
unds, pension funds, and index traders, has altered the structure of
3

rude oil markets. These investors engage in trading crude oil futures
and options contracts based on their expectations, risk preferences,
and portfolio strategies, potentially affecting the spot price movements
of crude oil. Furthermore, understanding the perspective of market
investors on forecasting crude oil return volatility is crucial, as it im-
pacts general market activities through macroeconomic channels [22].
Additionally, the interconnection between financial markets and crude
oil markets through channels such as stock market performance, cur-
rency exchange rates, and commodity index funds has been examined
(e.g., [23–25]). A third major factor influencing crude oil prices is
the geopolitical events and uncertainties that impact the stability and
security of crude oil production and transportation. The market’s sen-
sitivity to political events, policy decisions, international relations, and
conflicts in key oil-producing or consuming regions, such as the Middle
East, Africa, and Latin America, may result in supply disruptions or
demand shocks, leading to price variations. Moreover, these events may
influence the expectations and sentiments of market participants, fur-
ther affecting price dynamics (e.g., [9,26,27]). The intricate interplay
of these factors necessitates a comprehensive understanding of their
individual and collective impacts on crude oil prices and returns.

The choice of data frequency and interval is an essential issue
in forecasting crude oil returns [3]. Different data frequencies and
intervals may reflect different aspects and patterns of crude oil price
dynamics. For example, daily or intraday data may capture more
short-term fluctuations and noise in crude oil prices than monthly or
quarterly data. Moreover, different data frequencies and intervals may
also affect the selection and performance of forecasting models [28].
For instance, employing a principal component analysis combination
approach has shown promise in forecasting crude oil futures market
returns [5]. Additionally, a reduced-rank approach to forecasting has
been recognized for its practical importance and contributions to aca-
demic research in this field [7]. Several studies have used various data
frequencies and intervals, such as daily, weekly, monthly, quarterly,
or yearly data, to forecast crude oil returns using different models
(e.g., [8,29–31]). Notably, employing the default return spread (DFR)
has also been shown to be a powerful predictor of crude oil price re-
turns [32]. These studies have found that the forecasting accuracy may
vary depending on the data frequency and interval used. Therefore, it is
essential to select a suitable data frequency and interval for forecasting
crude oil returns.

The above provides the background and motivation for selecting
a large and diverse feature set for crude oil return forecasting. By
considering various economic, financial, and geopolitical factors, as
well as different data frequencies and intervals, we aim to capture the
complex and dynamic nature of the crude oil market and improve the
forecasting performance.

2.2. Dimensionality reduction methods for crude oil return forecasting

Dimensionality reduction methods are useful for reducing the num-
ber of features and extracting the most relevant and informative ones
for forecasting crude oil returns [33]. However, different methods
have different strengths and weaknesses, and may not capture all the
important information or factors that affect crude oil prices. In the
following, we briefly compare three popular dimensionality reduction
methods, namely PCA, KPCA, and ICA, and highlight their advan-
tages and disadvantages in terms of information loss, interpretability,
computational cost, and prediction performance.

PCA is a linear method that transforms a set of correlated features
into a set of uncorrelated features called principal components (PCs),
which are ordered by the amount of variance they explain in the
data [34]. PCA can reduce noise, redundancy, and multicollinearity
in the data, improve computational efficiency, and facilitate visual-
ization and interpretation of the data. However, PCA may lose some
information due to dimensionality reduction, assume linearity in the
data, be sensitive to outliers and scaling, and ignore higher-order de-

pendencies among the features. Several studies have used PCA for crude
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oil return forecasting (e.g., [3,5,7]). KPCA is a nonlinear extension of
PCA that uses a kernel function to map the original features into a
higher-dimensional feature space, where linear PCA is applied. KPCA
can capture nonlinear relationships among the features that are not
visible in the original space, be more flexible in choosing different
kernel functions, and be more robust to outliers and scaling [12].
However, KPCA may be more computationally expensive than PCA, be
less interpretable than PCA, and require parameter tuning for the kernel
function. Several studies have used KPCA for crude oil return forecast-
ing (e.g., [6,35,36]). ICA is another nonlinear method that transforms
a set of features into a set of statistically independent components
(ICs), which are assumed to be non-Gaussian sources that generate the
observed data through a linear or nonlinear mixing process [13]. ICA
can separate sources that are not orthogonal or uncorrelated, capture
higher-order dependencies among the features, and be more suitable
for analyzing complex systems with multiple factors. However, ICA
may lose some information due to dimensionality reduction, assume
independence among the sources, be sensitive to noise and scaling, and
require parameter tuning for the mixing model and the non-Gaussianity
measure. Several studies have used ICA for crude oil return forecasting
(e.g., [37,38]).

Combining dimensionality reduction methods with neural networks
has been explored to address the challenges of managing a large
number of predictors in crude oil return forecasting. This combination
helps mitigate overfitting risks and enhances out-of-sample forecasts,
particularly crucial in financial applications [39]. A Reduced-Rank
Approach (RRA) is another significant advancement, proving its ro-
bustness and effectiveness by outperforming traditional methods and
offering valuable insights to investors [7]. Furthermore, the use of
uncertainty indicators in tandem with dimensionality reduction tech-
niques has shown promise in boosting predictive accuracy for crude
oil volatility [40]. However, these methods are not without their lim-
itations. Common challenges in dimensionality reduction for crude oil
forecasting include handling rare or unexpected events that can lead to
significant market fluctuations [3]. Additionally, these methods may
overlook feedback effects and causal relationships between different
market variables, potentially impacting the dynamics and interactions
of crude oil prices. There is also a concern about the uncertainty and
variability of the components or features extracted, that can affect the
confidence and robustness of the forecasting models. Moreover, com-
patibility and consistency with various forecasting models, especially
those with specific input requirements, remain key considerations. To
address these challenges, there is a pressing need for innovative feature
selection methods that can effectively harness a large and diverse
feature set without significant information loss, noise, or bias. Such
methods should handle nonlinear and dynamic data, integrate domain
knowledge, combine various techniques, and align with different fore-
casting models. This study aims to propose and develop a novel method
based on importance measures to enhance crude oil return forecasting
performance.

2.3. Forecasting model for crude oil returns

The task of forecasting crude oil future returns is intricate, with
methodologies evolving from traditional statistical techniques to
cutting-edge machine learning algorithms. Traditional statistical meth-
ods, grounded in historical data analysis, have utilized regression [4]
and time series analysis [40] to construct predictive models.

The rise of machine learning has introduced non-linear models
like support vector regression (SVR) and random forests (RF), which
have significantly advanced the forecasting of crude oil returns [41,
42]. These methods excel in capturing the complex dynamics inherent
in crude oil markets. Neural computing has recently emerged as a
transformative force in forecasting, with neural networks such as Long
Short-Term Memory (LSTM) models demonstrating exceptional ability
4

to identify temporal patterns and non-linear relationships in time series
data [43]. LSTM models, in particular, have outperformed traditional
models like ARIMA, offering superior generalization and precision in
forecasting [44]. Innovative hybrid models that combine LSTM with
Convolutional Neural Network (CNN) have been proposed, utilizing
ARIMA and GARCH outputs as features to predict Brent Crude Oil
return, showing remarkable performance improvements over conven-
tional models [45]. Additionally, the predictability of crude oil spot
price movements has been enhanced by considering information from
the term structure of oil futures prices, with LSTM models highlighting
non-linear dependencies within the dataset [46]. Furthermore, the ap-
plication of artificial neural networks has been explored to understand
the impact of monetary policy and other major drivers on crude oil
prices, considering the exhaustible nature of crude oil [47]. These
studies underscore the potential of neural computing in providing more
accurate and computationally efficient forecasts.

While this research does not integrate neural computing methods
into our model, it acknowledges their growing importance in the litera-
ture. The advancements in neural computing offer promising directions
for future research in enhancing the predictive accuracy of crude oil
return models. This paper focuses on the application of ridge regression
(RR) due to its interpretability and computational efficiency, which
are particularly valuable for real-time decision-making in financial
markets [5,16,48].

2.4. Feature selection methods based on importance measures

Feature selection, a critical phase in forecasting, seeks to identify
the most pertinent and informative features from an extensive and
multifaceted feature set [49]. This process often leverages importance
measures, which gauge the significance of each feature to system relia-
bility or performance according to specific criteria. Various importance
measures such as correlation [50], mutual information [51], and chi-
square test [52] can be employed for this purpose. In the following, we
will explore existing methods that utilize these importance measures
for feature selection, contrasting them with our proposed approach.

Correlation-based methods, such as Pearson’s correlation coeffi-
cient [53], Spearman’s rank correlation coefficient [54], and Kendall’s
rank correlation coefficient [55], offer a fast and effective way to
assess linear or nonlinear relationships. However, their limitations lie
in possibly overlooking rare or unexpected events, failing to account
for feedback effects or causal relationships, and being susceptible to
outliers or data scaling. Some examples of correlation-based methods
for feature selection are [56,57] and [58]. Mutual information-based
methods, on the other hand, delve into the dependency between fea-
tures and the target variable through mutual information, a measure
that quantifies shared information between two random variables.
While adept at capturing nonlinear relationships, these methods may
encounter challenges such as information loss due to dimensionality
reduction, sensitivity to noise and scaling, and the need for parameter
tuning [59–61]. Lastly, chi-square test-based methods utilize the chi-
square test to evaluate the association between categorical features and
the target variable. Though simple and straightforward, they may be
constrained by their inapplicability to continuous or ordinal features,
assumptions of independence, sensitivity to sample size and distribu-
tion, and neglect of higher-order dependencies [62–65]. The nuanced
strengths and weaknesses of these methods underscore the importance
of method selection tailored to the specific characteristics of the data
and the problem domain.

Our proposed method introduces an novel approach that integrates
active learning, Gaussian noise, prediction errors, and an optimal
threshold value for feature selection. By combining active learning with
Gaussian noise, our method generates importance scores for each fea-
ture based on their impact on prediction errors. An optimal threshold
value, grounded in standard deviation, then aids in selecting the most
relevant features from a broad and diverse set. Our method’s strengths
lie in its ability to handle nonlinear and dynamic data, incorporate
domain expertise, synergize various methods, and align with diverse
forecasting models, all while preserving information and minimizing

noise or bias.
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3. Methodology

In this section, we will first formulate the research problem of crude
oil return forecasting, then give an overview of our proposed feature
selection method based on importance measures (FS-IM), and finally
describe the components of our method in detail

3.1. Problem formulation

The problem of crude oil return forecasting can be formulated as
follows: Given a dataset 𝐷 = (𝑋, 𝑌 ) of input features and output
ariable, where 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛} is a set of 𝑛 features and 𝑌 =
𝑦1, 𝑦2,… , 𝑦𝑚} is a set of 𝑚 corresponding output values, the goal is
o select a subset of relevant features 𝑈𝑆 ⊆ 𝑋 that can improve the
orecasting accuracy of a base forecasting model 𝑓 for crude oil return
orecasting. The input features include various economic, financial, and
eopolitical factors that may affect the crude oil market. The output
ariable is the crude oil return. The objective function is to minimize
he prediction error 𝐸 of the base forecasting model 𝑓 on the validation
ets 𝑉 𝑎 = {𝑉 𝑎1, 𝑉 𝑎2,… , 𝑉 𝑎𝑘} obtained by k-fold cross-validation, given
y

= 1
𝑘

𝑘
∑

𝑗=1
𝐸𝑗 ,

here 𝐸𝑗 is the prediction error of 𝑓 on the validation set 𝑉 𝑎𝑗 . The
onstraint is to select the optimal number of features |𝑈𝑆 | by using an
ptimal threshold value 𝜏 that minimizes the prediction error 𝐸, given
y

= arg min
𝜏∈[ 1

2𝑛 ∶
1
𝑛 ,

1
6𝑛 ]

𝐸.

he main challenges of this problem are the high dimensionality
nd complexity of the input data, which can cause overfitting, mul-
icollinearity, and noise issues for the forecasting models. Therefore,
e propose a novel feature selection method based on importance
easures that can overcome some of these challenges and enhance the
rediction performance.

.2. Overview of proposed method

This subsection presents our proposed method for crude oil return
orecasting, which consists of two novel feature selection steps based on
mportance measures and the optimal threshold value. Fig. 1 illustrates
he main steps of our method.

Our method aims to select a subset of relevant and informative
eatures from a large number of candidate features that may affect the
rude oil return. We use a normalized dataset of input features and
utput variable, where the input features include various economic,
inancial, and geopolitical factors, and the output variable is the crude
il return. We divide the dataset into training sets and validation sets
y k-fold cross-validation. The first feature selection step evaluates the
mportance of each feature by adding Gaussian noise to it and observing
he change in the prediction error of a base forecasting model. The
ntuition is that the more the prediction error changes, the more
mportant the feature is. The second feature selection step determines
ow many features to select by using a range of possible threshold
alues and selecting the one that minimizes the mean prediction error
f the base forecasting model on the validation sets. After obtaining
he reduced feature set, we use it to train and test a base forecasting
odel for crude oil return forecasting. Ridge regression (RR) is a linear

egression model with L2 regularization that can reduce overfitting
nd improve generalization by penalizing large coefficients. RR is often
sed to forecast the returns of finance assets, such as stock return and
rude oil return [16,66]. We choose RR as our base forecasting model
ecause of its advantages in financial markets and its effectiveness in
5

rude oil market.
3.3. Feature selection based on importance measures

3.3.1. Importance measures of features
In the domain of machine learning, feature selection plays a vital

role in improving the performance and interpretability of predictive
models. Feature selection methods aim to select a subset of relevant
features from a large number of candidate features, which can reduce
the dimensionality, complexity, and computational cost of the model,
as well as enhance the generalization ability and accuracy of the model.
Feature selection methods can be broadly classified into three cate-
gories: filter methods, wrapper methods, and embedded methods. Filter
methods evaluate the features based on some statistical measures, such
as correlation, mutual information, or chi-square test, and select the
features that have a strong relationship with the target variable. Wrap-
per methods use a predefined learning algorithm to assess the quality
of selected features by their predictive power. Embedded methods
incorporate the feature selection process into the model construction
and optimize a predefined criterion function.

In this subsection, we propose a novel feature selection method
based on importance measures (FS-IM) to select the most relevant
features for crude oil return forecasting. The main idea of FS-IM is to
use active learning to evaluate the importance of each feature by adding
Gaussian noise to it and observing the change in the prediction error
of a base forecasting model. The more the prediction error changes,
the more important the feature is. Formally, let 𝐷 = (𝑋, 𝑌 ) be a
ormalization dataset of input features and output variable, where
= {𝑥1, 𝑥2,… , 𝑥𝑛} is a set of 𝑛 features and 𝑌 = {𝑦1, 𝑦2,… , 𝑦𝑚} is a set

f 𝑚 corresponding output values. Let 𝑓 be a base forecasting model,
uch as linear regression, support vector regression, or artificial neural
etwork. Let 𝑘 be the number of folds for cross-validation, and 𝜎 be the
tandard deviation of Gaussian noise. Motivated by random forest [67]
nd mean impact value [68], we use the change of prediction errors to
alculate the importance scores of features. We define the importance
core of feature 𝑥𝑖 as follows:

efinition 3.1. The importance score of feature 𝑥𝑖, denoted by 𝐼𝑀𝑖,
s the average absolute difference between the prediction errors of the
riginal feature and the noisy feature on the validation sets, given by

𝑀𝑖 =
1
𝑘

𝑘
∑

𝑗=1
|𝐸𝑗

𝑥′𝑖
− 𝐸𝑗

𝑥𝑖
|, (1)

here 𝐸𝑗
𝑥𝑖 and 𝐸𝑗

𝑥′𝑖
are the prediction errors of feature 𝑥𝑖 and its noisy

ersion 𝑥′𝑖 on the validation set 𝑉 𝑎𝑗 , respectively.

Algorithm 1 describes the procedural workflow for implementing
ur FS-IM based feature selection. The algorithm takes as input a
ormalized dataset of input features and output variable, the number of
olds for cross-validation, the standard deviation of Gaussian noise, and
he base forecasting model. The algorithm outputs a set of importance
cores for each feature, which can be used to select the most relevant
eatures for crude oil return forecasting. A distinctive aspect of this
lgorithm is its strategic design to mitigate overfitting risks. By em-
loying a cross-validation mechanism and iteratively evaluating feature
mportance across different subsets of data, the algorithm ensures a
obust selection process. This structure not only enhances the model’s
eneralization capabilities but also strengthens its predictive reliability
y preventing the skewing of results due to over-reliance on specific
ata patterns or anomalies. The algorithm consists of the following
teps:

• Step 1: Set the initial feature set 𝑈𝑆 and not-selected feature set
𝑈�̃� . The algorithm initializes the selected feature set and the not-
selected feature set as empty sets, and sets the not-selected feature
set as the original feature set. This step prepares the feature sets

for the feature selection process.
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Fig. 1. Overview of the proposed method.
• Step 2: Set different training sets and validation sets by 𝑘-fold
cross-validation. The algorithm divides the dataset into train-
ing sets and validation sets by 𝑘-fold cross-validation. This step
splits the data into different subsets for training and validation
purposes.

• Step 3: Calculate the importance 𝐼 of each feature. We add
Gaussian noise to each feature of the not-selected feature set
and train the model 𝑓 for each training set according to original
feature and the feature with noise respectively. Then, we calculate
the prediction error 𝐸𝑥′𝑖𝑗

and 𝐸𝑥𝑖𝑗 using each test set of original
feature and the feature with noise respectively. We calculate
the importance score of each feature using the definition given
in Eq. (1). The importance score is the average absolute difference
between the prediction errors of the original feature and the noisy
feature on the validation sets. The intuition is that the more the
prediction error changes, the more important the feature is. This
step uses active learning to perturb the features and measure their
importance based on the prediction errors of the base forecasting
model on the validation sets.

• Step 4: The algorithm selects the feature with the highest impor-
tance score and adds it to the selected feature set, and removes
it from the not-selected feature set. The algorithm repeats steps
3 and 4 until all features are selected. This step selects the most
relevant features from the original feature set in a greedy manner,
based on their importance.

• Step 5: The algorithm normalizes the importance scores by di-
viding each element by the sum of all elements. This step scales
the importance scores to the range of [0, 1] for comparison and
interpretation purposes.

The algorithm returns the importance scores of the features, which
can be used to select the most relevant features for crude oil return
forecasting.

The proposed FS-IM has several advantages over existing meth-
ods. First, it can effectively address issues such as over-fitting, multi-
collinearity, and redundancy. To achieve this, we calculate the impor-
tance of features by adding noise, which can measure the influence
of features on the prediction by the error change. We also extract
the importance information and reduce the number of features to
eliminate the redundant information, which can help the model to
avoid over-fitting and multicollinearity. Moreover, we use k-fold cross-
validation to calculate the average prediction error in FS-IM, which can
6

further mitigate the overfitting problem [69]. Second, it can capture the
nonlinear and interactive effects of the features on the output variable
by measuring the importance of each feature based on the prediction
error of the base forecasting model. Third, it can select the optimal
number of features by using a range of possible threshold values and
minimizing the mean prediction error of the base forecasting model on
the validation sets. This is a novel and effective way to determine the
optimal feature subset size, which is often a challenging and subjective
task in feature selection. We will explain how to select the optimal
threshold value and how it affects the feature selection process and
the forecasting performance in the next subsection. Fourth, it can be
applied to any base forecasting model and any feature set without any
prior assumptions or constraints. Therefore, the proposed FS-IM is a
novel and effective method for crude oil return forecasting.

3.3.2. The optimal threshold value
After obtaining the importance scores of all features, we need to

select a subset of features that can best forecast the crude oil re-
turn. A simple way is to set a threshold value and select all features
whose importance scores are above the threshold. However, different
threshold values may lead to different results, and finding an optimal
threshold value is not trivial. We determine the optimal threshold value
based on the minimum of the average prediction error. Algorithm 2
shows the procedure of selecting the optimal threshold value and the
corresponding features based on importance measurement.

The main objective and challenge of selecting the optimal threshold
value is to balance the number of features and the forecasting accuracy.
A low threshold value may result in selecting too many features, which
may increase the dimensionality, complexity, and computational cost
of the model, as well as introduce noise, bias, or over-fitting. A high
threshold value may result in selecting too few features, which may lose
important information or reduce the explanatory power of the model.
Therefore, the optimal threshold value is the one that can select the
most relevant and informative features that can enhance the forecasting
performance of the base forecasting model without sacrificing much
information or introducing much noise or bias.

Let 𝐼𝑀 = {𝐼𝑀1, 𝐼𝑀2,… , 𝐼𝑀𝑛} be a set of importance scores for
each feature, where 𝑛 is the number of features. Let 𝑓 be a base
forecasting model, and 𝑘 be the number of folds for cross-validation.
We define the optimal threshold value as follows:

Definition 3.2. The optimal threshold value, denoted by 𝑇 ∗, is the

value that minimizes the mean prediction error of the base forecasting
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Algorithm 1: Calculating the importance scores of the features
using active learning

Data: 𝐷 = (𝑋, 𝑌 ), a normalization dataset of input features and
output variable

Result: 𝐼𝑀 = {𝐼𝑀1, 𝐼𝑀2, ..., 𝐼𝑀𝑛}, a set of importance scores
for each feature

Input: 𝑘, the number of folds for cross-validation; 𝜎, the
standard deviation of Gaussian noise; 𝑓 , the base
forecasting model

Output: 𝐼𝑀 , the importance scores of features
1 Initialize 𝑈𝑆 and 𝐼𝑀 as empty sets, and 𝑈�̃� = 𝑋, where 𝑈𝑆

represents the selected representative features, and 𝑈�̃�
represents the not-selected features;

2 Divide 𝐷 into 𝑘 training sets 𝑇 𝑟 = {𝑇 𝑟1, 𝑇 𝑟2, ..., 𝑇 𝑟𝑘} and
corresponding validation sets 𝑉 𝑎 = {𝑉 𝑎1, 𝑉 𝑎2, ..., 𝑉 𝑎𝑘} by
k-fold cross-validation;

3 for 𝑖 from 1 to 𝑛 do
4 Initialize 𝑅𝑖 as an empty set to collect results;
5 for feature 𝑥𝑖𝑗 in 𝑈�̃�(𝑖) do
6 Initialize 𝐼𝑖𝑗 as zero;
7 Generate Gaussian noise 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2) and add it to

feature 𝑥𝑖𝑗 to get noisy feature 𝑥′𝑖𝑗 ;
8 for 𝑚 from 1 to 𝑘 do
9 Train model 𝑓 on 𝑇 𝑟𝑚 using the selected feature set

𝑈𝑆 , merged separately with the original features
𝑥𝑖𝑗 and the noisy features 𝑥′𝑖𝑗 ;

10 Test model 𝑓 on 𝑇 𝑟𝑚 using the selected feature set
𝑈𝑆 , merged separately with the original features
𝑥𝑖𝑗 and the noisy features 𝑥′𝑖𝑗 ;

11 Calculate errors 𝐸𝑥 and 𝐸𝑥′ using absolute errors or
squared errors;

12 Update 𝐼𝑖𝑗 by adding |𝐸𝑥′𝑖𝑗
− 𝐸𝑥𝑖𝑗 |;

13 end
14 Get the average importance 𝐼𝑖𝑗 of feature 𝑥𝑖𝑗 ;
15 Add 𝐼𝑖𝑗 to 𝑅𝑖;
16 end
17 Determine the maximum value 𝐼𝑖𝑗 from 𝑅𝑖;
18 Update 𝑈𝑆 by appending the feature 𝑥𝑖𝑗 corresponding to

𝐼𝑖𝑗 ;
19 Update 𝑈�̃� by removing the feature 𝑥𝑖𝑗 corresponding to 𝐼𝑖𝑗 ;
20 Add 𝐼𝑖𝑗 to 𝐼𝑀 ;
21 end
22 Normalize 𝐼𝑀 by dividing each element by the sum of all

elements;
23 Return 𝐼𝑀 ;

model on the validation sets, given by

𝑇 ∗ = arg min
𝑇∈𝑇𝑉

𝐸∗(𝑇 ), (2)

where 𝑇𝑉 is a range of possible threshold values, and 𝐸∗(𝑇 ) is the mean
prediction error of the base forecasting model using the features whose
importance scores are above 𝑇 on the validation sets. The validation
sets are generated by k-fold cross-validation.

The FS-IM method consists of four steps:

• Step 1: Sort the importance scores in descending order and obtain
the corresponding features; According to Section 3.3.1, we get
the importance score of all features. The features are sorted in
descending order of importance scores.

• Step 2: Calculate a range of possible threshold values based on
the number of features; The range of threshold value is [ 1

2𝑛 ∶
1 , 1 ], where 𝑛 is the number of features and 1 is the increment
7

𝑛 6𝑛 6𝑛
Algorithm 2: Feature selection base on IM
Data: 𝐼𝑀 = {𝐼𝑀1, 𝐼𝑀2, ..., 𝐼𝑀𝑛}, a set of importance scores

for each feature
Input: 𝑛, the number of features
Output: �̃�∗, the reduced feature set

1 The importance scores 𝐼𝑀 = {𝐼𝑀1, 𝐼𝑀2, ..., 𝐼𝑀𝑛} of the input
features are sorted in descending order, resulting in the
importance score 𝐼𝑀 ′ = {𝐼𝑀 ′

1, 𝐼𝑀
′
2, ..., 𝐼𝑀

′
𝑛} and the feature

�̃� =
{

�̃�1, �̃�2, ..., �̃�𝑛
}

;
2 Calculate the range of threshold value 𝑇𝑉 , that is,

𝑇𝑉 = [ 1
2𝑛 ∶ 1

𝑛 ,
1
6𝑛 ];

3 L=len(TV);
4 for 𝑗 from 1 to 𝐿 do
5 if 𝐼𝑀 ′ > 𝑇𝑉𝑗 then
6 Add feature �̃�𝑖 to 𝑋∗;
7 end
8 for 𝑡 from 1 to 𝑘 do
9 Train model 𝑓 using the 𝑇 𝑟𝑗 including the feature set

𝑋∗;
10 Get the prediction results of 𝑉 𝑎𝑗 using the feature set

𝑋∗ and model 𝑓 ;
11 end
12 Calculate the mean prediction errors 𝐸∗

𝑗 of all validation
sets ;

13 Add 𝐸∗
𝑗 to 𝐸𝑟;

14 end
15 Get the optimal threshold value 𝑇 and select the features �̃�∗

by finding the minimum of 𝐸𝑟;
16 Return �̃�∗.

value. As the number of features increases, keeping the threshold
range constant may result in fewer selected features. In other
words, this can lead to the selected features with less information.
Therefore, we adjust the threshold range based on the changing
number of features. On one hand, the optimal threshold can
ensure that the crucial factors for prediction are selected. On
the other hand, adjusting the threshold range helps maintain the
important information content of the features.

• Step 3: Calculate the prediction errors based on the each thresh-
old value. For each threshold value, we select the features whose
importance scores are above it to train a base forecasting model
and calculate the prediction errors of validation sets. According
to k-fold cross validation, we get the mean prediction absolute
errors of each threshold value. In the paper, 𝑘 = 5

• Step 4: Select the optimal threshold value based on the minimum
error of Step 3. We can get the reduced feature set �̃�∗ by the
optimal threshold value.

The proposed FS-IM has several benefits over existing methods.
First, it can optimize the trade-off between the number of features and
the forecasting accuracy by minimizing the mean prediction error of
the base forecasting model on the validation sets. Second, it can adapt
the range of possible threshold values based on the changing number
of features, which can help preserve the information content of the
features. Third, it can be applied to any base forecasting model and
any feature set without any prior assumptions or constraints. Therefore,
the proposed FS-IM is a novel and effective method for crude oil return
forecasting.

3.4. Dimensionality reduction methods

Dimensionality reduction is a process of reducing the number of
features or variables in a dataset while preserving as much information
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as possible. Dimensionality reduction can improve the efficiency, per-
formance, and interpretability of predictive models, as well as reduce
the risk of overfitting and multicollinearity. Dimensionality reduction
methods can be divided into two categories: feature extraction and
feature selection. Feature extraction methods transform the original
features into a new set of features with lower dimensionality by using
some mathematical techniques, such as linear or nonlinear transforma-
tions. Feature selection methods select a subset of features from the
original set based on some criteria, such as relevance, redundancy,
or importance. In this subsection, we compare our proposed feature
selection method based on importance measures (FS-IM) with three
feature extraction methods: principal component analysis (PCA) [34],
kernel principal component analysis (KPCA) [12], and independent
component analysis (ICA) [13]. These methods are widely used in crude
oil return forecasting and have different advantages and disadvantages.

PCA is a linear transformation method that projects the original
features onto a new orthogonal coordinate system, where each coordi-
nate axis is called a principal component (PC). The PCs are ordered by
their variances, which reflect the amount of information they contain.
PCA aims to find a few PCs that can explain most of the variance in
the original data. The advantages of PCA are that it can reduce noise,
redundancy, and correlation among features, as well as simplify the
data structure and visualization. The disadvantages of PCA are that it
may lose some important information that is not captured by variance,
such as nonlinear relationships or outliers. Moreover, PCA may not
be suitable for forecasting problems that require high accuracy and
interpretability, since the PCs are linear combinations of the original
features and may not have clear physical meanings.

KPCA is a nonlinear extension of PCA that uses kernel functions
to map the original features into a higher-dimensional feature space,
where linear PCA is applied. The kernel functions can capture nonlinear
relationships among features that are not visible in the original space.
KPCA can overcome some limitations of PCA by finding more infor-
mative PCs in the kernel space. The advantages of KPCA are that it
can handle nonlinear data and improve the prediction performance of
linear models. The disadvantages of KPCA are that it may increase the
computational complexity and memory requirement due to the kernel
matrix calculation, as well as introduce some parameters that need to
be tuned, such as the kernel function type and parameters.

ICA is another nonlinear transformation method that assumes that
the original features are linear mixtures of some latent independent
components (ICs). ICA aims to find a linear transformation that can
recover the ICs from the observed features by maximizing their statisti-
cal independence. The advantages of ICA are that it can reveal hidden
factors or sources that generate the observed data, as well as separate
noise or interference from signals. The disadvantages of ICA are that it
may not preserve the order or scale of the ICs, which may affect their
interpretation and comparison. Moreover, ICA may not be applicable
to data that do not satisfy the linear mixture assumption or have more
features than observations.

We apply these three feature extraction methods to our dataset of
crude oil return and 33 input features, and compare their results with
our proposed feature selection method based on importance measures
(FS-IM). We use the same base forecasting model, which is ridge
regression (RR) [70], to evaluate the prediction accuracy and economic
value of the reduced features. RR is a linear regression model with L2
regularization, which can be expressed as follows:

min
𝒘

1
2𝑁

𝑁
∑

𝑖=1
(𝒘𝑇 𝒙𝑖 − 𝑦𝑖)2 + 𝜆‖𝒘‖

2
2, (3)

where 𝒙𝑖 is an input feature vector, 𝑦𝑖 is an output value, 𝒘 is a weight
vector, 𝑁 is the number of observations, and 𝜆 is a regularization
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parameter.
3.5. Evaluation metrics

To measure the prediction performance and economic value of our
proposed method and other comparison models, we use the following
evaluation metrics:

3.5.1. Forecasting performance metrics
We use root mean square forecasting error (RMSE) and mean ab-

solute forecasting error (MAE) to measure the prediction error of the
models. They are defined as:

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑁

𝑛
∑

𝑡=1

(

�̂�𝑡 − 𝑦𝑡
)2,

𝑀𝐴𝐸 = 1
𝑁

𝑛
∑

𝑡=1

|

|

�̂�𝑡 − 𝑦𝑡|| ,

(4)

where 𝑁 is the number of observations, �̂�𝑡 and 𝑦𝑡 are the predicted and
the actual values respectively. A lower RMSE or MAE indicates a higher
prediction accuracy of the model.

Following Wang et al. [71], we consider the cumulative squared
forecast error (CSFE) to examine whether the superiority of proposed
model is robust over time, which is defined as

𝐶𝑆𝐹𝐸 = 1
𝑁

𝑁
∑

𝑖=1

[

(

𝑦𝑖 − �̂�𝐶,𝑖
)2 −

(

𝑦𝑖 − �̂�𝐵,𝑖
)2
]

. (5)

The negative value of CSFE indicates that the competing model is better
than the benchmark and has stable superiority over time.

In addition, following Tan et al. [72] and Zhang et al. [4], we
use the out-of-sample 𝑅2 (𝑅2

𝑂𝑆 ) statistic to assess the accuracy of the
forecasts. 𝑅2

𝑂𝑆 are expressed as,

𝑅2
𝑂𝑆 =

(

1 −
𝑀𝑆𝐸𝐶
𝑀𝑆𝐸𝐵

)

∗ 100%, (6)

respectively, where �̂�𝑖 denotes the forecasting value of return at time 𝑖,
𝑀𝑆𝐸𝐶 , and 𝑀𝑆𝐸𝐵 represents the out-of-sample mean squared error of
the competing and benchmark models respectively. The positive 𝑅2

𝑂𝑆
means that the competing model has smaller prediction errors than the
benchmark model.

We also use two statistical test to compare the prediction perfor-
mance of different models: Clark West test [4,73] and model confidence
set (MCS) [39,74]. The CW test is used to the superiority of the
proposed model in statistical significance. The hypothesis of CW test
that the competing and benchmark models have the same prediction
performance, and the alternative hypothesis is that the competing
model has better prediction performance than the benchmark model.
The MCS test is used to identify a set of models that are statistically
indistinguishable from the best model in terms of predictive ability.

3.5.2. Economic value metrics
We assume that investors allocate assets in crude oil and risk-free

assets. Following Zhang et al. [4], we consider that investors pay a
portion of the total value of crude oil to meet margin requirements,
so investors’ gains and losses are magnified by the leverage ratio 𝐿.
The leverage ratio 𝐿 is inversely proportional to the margin. Crude oil
spot trading also requires margin, so it has a similar leverage effect.

To maximize the investor’s utility, in the 𝑡th month, the investor
should allocate the following share 𝜔𝑡 of total assets to crude oil in the
(𝑡 + 1)th month

𝜔𝑡 =
1
𝛾

𝐿(�̂�𝑡+1 − 𝑟𝑓𝑡+1) + (𝐿 − 1)𝑟𝑓𝑡+1
𝐿2�̂�2𝑡+1

, (7)

The portfolio return for the (𝑡 + 1)th month is then:

𝑅 = 𝜔 𝐿�̂� +
(

1 − 𝜔
)

𝑟𝑓 . (8)
𝑝,𝑡+1 𝑡 𝑡+1 𝑡 𝑡+1
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Table 1
Parameter range of models.

Model Parameters Numerical range Component number

RR alpha logspace(−5, 1, 200, base = 3) 200
LASSO alpha logspace(−5, 1, 200, base = 3) 200

C arange(1.03,2.1,0.05)SVR
𝛾 [5e−1,1e−2, 5e−2, 1e−3, 5e−3] 110

max_depth [4,8,12,16]RF n_estimators [10,20,40,50] 16

max_depth [4,8,12,16]
n_estimators [40,60,80]GBR
learning_rate [0.005,0.015,0.025]

24

BR n_estimators [8,10,12,14,16,18,20] 7

Note: This table reports the parameter range of models. The logspace function is used to
construct the geometric progression, and the arange is used to construct the arithmetic
progression.

We employ the certainty equivalent return (CER) as a utility-based
metric to evaluate the economic value of prediction results. The for-
mula for CER is:

𝐶𝐸𝑅𝑝 = 𝜔𝐿�̂� + (1 − 𝜔)𝑟𝑓 − 1
2
𝛾𝜔2𝐿2𝜎2. (9)

We compare the CER of comparison models with that of the histor-
ical average (HA) model and calculate the utility gain (UG) as follows:

𝑈𝐺 = 𝐶𝐸𝑅𝑝,𝑐 − 𝐶𝐸𝑅𝑝,𝐻𝐴. (10)

𝐶𝐸𝑅𝑝,𝑐 and 𝐶𝐸𝑅𝑝,𝐻𝐴 are the CER of the comparison and HA
model respectively. A higher UG indicates a higher economic value of
comparison model compared to HA model.

4. Experiments

4.1. Experimental settings

We conducted our experiments on a computer equipped with an
Intel(R) Core(TM) i7-9700F CPU, which is a desktop processor with 8
cores and 8 threads. It has a base frequency of 3.0 GHz and a maximum
turbo frequency of 4.7 GHz. We used Python 3.7 for the modeling and
prediction process, and Matlab for the evaluation process. We use 5-fold
cross validation to determine the parameters of RR, LASSO, SVR, GBR
and BR models, and the range of the related parameters is shown in
Table 1. The parameters of the MLR and ARMA models can be directly
estimated, so the parameter settings of these two models are not shown
in Table 1. The epochs of LSTM and GRU, and their neuron number are
both 30.

4.2. Data description

We use monthly data of crude oil price and related indicators
from January 2000 to December 2021, mainly from the U.S. Energy
Information Administration (EIA).2 We choose West Texas Intermediate
(WTI) crude oil spot price as the output variable, as it is one of the most
important benchmarks for crude oil prices in the world market [75,76].
We calculate the return of WTI by taking the natural logarithm of
the ratio of current price to previous price. We use 34 input features
including lag H-order crude oil return, supply, demand, economic,
financial, and geopolitical factors. In test set, the input of lag H-order
crude oil return is updated by the prediction results. We normalize both
the input features and output variable by subtracting their means and
dividing by their standard deviations. To prevent information leakage,
the training and test sets are standardized respectively. This makes the
data more comparable and reduces the influence of outliers or extreme

2 https://www.eia.gov/.
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values. We divide the dataset into training sets and validation sets
by 5-fold cross-validation. This helps us evaluate the performance and
generalization ability of our forecasting models. We also add Gaussian
noise to each input feature to evaluate its importance by using our
proposed feature selection method based on importance measures. This
helps us reduce the dimensionality and complexity of our data.

Table 2 shows the crude oil price and related indicators that we
use in our data analysis. The table categorizes the variables into four
groups: crude oil return, supply, demand, and macroeconomics. The ta-
ble also provides the name, meaning, and data source of each variable.
Table 3 shows the statistic description of variables that we use in our
data analysis. The table provides the mean, standard deviation, median,
minimum, maximum, and correlation coefficient of each variable. The
table shows that WTI has a positive mean and median, indicating an
upward trend over time. It also shows that WTI has a high standard
deviation and a large range between the minimum and maximum
values, indicating high volatility and uncertainty. It also shows that
WTI has a strong positive correlation with CRBSCI (0.852), which is a
commodity index, and a strong negative correlation with RDI (−0.376),

hich is a real dollar index.
To test the robustness of our proposed model, we use different

-step-ahead predictions and different training sets to predict the
ame test set. Many studies examine the forecasting ability of models
n one-step-ahead or multi-step-ahead prediction [77]. Following Lv
nd Qi [78], we set 𝐻 = 1, 3, and 6. These values correspond to
ne-month-ahead, one-quarter-ahead, and six-month-ahead forecasting
espectively. For the different-step-ahead forecasting experiment, the
raining set covers January 2000 to December 2017, and the test set
overs January 2018 to December 2021. For the training sets experi-
ent, we use three groups of training sets that cover January 2000 to
ecember 2017, January 2001 to December 2017, and January 2002

o December 2017 respectively, and we use the same test set for all
roups, i.e., January 2018 to December 2021.

.3. Prediction result analysis

To verify the effectiveness of the FS-RR model, we establish various
odels for making predictions and comparisons. We consider both

inear and nonlinear models. For linear models, we include RR, Multiple
inear Regression (MLR), LASSO, and Autoregressive Moving Average
ARMA) models. For nonlinear models, we consider Support Vector
egression (SVR), Random Forest (RF), Gradient Boosting Regression
GBR), Bagging Regression (BR), LSTM, and Gated Recurrent Unit
GRU). These models are widely used in financial forecasting stud-
es [4,66,79–81]. Additionally, we also apply PCA, KPCA, and ICA for
imension reduction, which helps to demonstrate the superiority of the
roposed feature selection method in dimensionality reduction.

.3.1. The results of different-step-ahead forecasting
In this section, we build models and make 𝐻-step-ahead forecasts

ased on the training set 1, that is,

𝑡 = 𝑓 (𝑋𝑡−𝐻 ), (11)

n which, 𝑓 (.) is the base model, 𝑦𝑡 is the output variable at 𝑡 time, and
𝑡−𝐻 is the input variable set at 𝑡−𝐻 . This means that we use 𝐻-order

ag input variables to establish model.
Table 4 shows the prediction errors in different-step-ahead forecast-

ng. We use RMSE and MAE as the prediction error metrics, as shown
n Eq. (4). Smaller RMSE and MAE values indicate smaller differences
etween predicted and true values, implying a smaller prediction error
or the model. When 𝐻 = 1, FS-RR achieves a RMSE of 0.1484 and

MAE of 0.0896, and RR achieves a RMSE of 0.1585 and a MAE of
.0914. For 𝐻 = 3 and 𝐻 = 6, FS-RR also has smaller RMSE and MAE
han RR. This demonstrates that the FS-RR model produces predictions

loser to the actual data, thereby improving the accuracy of the RR



Neurocomputing 581 (2024) 127470Y. Zhao et al.
Table 2
Crude oil price and related indicators.

Factor group Variable description Data source

Crude oil return WTI: Return of WTI crude oil spot price EIA

Supply

USPP: Relative change in U.S. (50 States) Petroleum Production EIA
OPECPP: Relative change in OPEC Petroleum Production EIA
WTPP: Relative change in World Total Petroleum Production EIA
NOPECPP: Relative change in Non-OPEC Petroleum Production EIA
USPU: Relative change in U.S. Percent Utilization of Refinery Operable Capacity EIA
USTCOI: Change in U.S. (50 States) Total Crude Oil Inventory EIA
WTCOI: Change in World Total Crude Oil Inventory EIA

Demand

WTPC: Relative change in World Total Petroleum Consumption EIA
USPC: Relative change in U.S. (50 States) Petroleum Consumption EIA
OECDPC: Relative change in OECD Petroleum Consumption EIA
NOECDPC Relative change in Non-OECD Petroleum Consumption EIA
USPCI: Change in US Petroleum Net Imports EIA
USPPCI: Change in US Petroleum Product Net Imports EIA
USRSP: Relative change in US Raw Steel Production EIA

Macroeconomics

SER: Relative change in Spot Exchange Rate:USD to CNY Wind
MSCIWI: Relative change in MSCI World index Bloomberg
RDI: Relative change in Real Dollar Index Wind
FFR: Relative change in Federal Funds Rate Wind
USTBR: Relative change in U.S. Treasury Bill Rate Wind
GDP: Relative change in Real GDP EIA
NFER: Relative change in Non-farm Employment Rate EIA
IPI: Relative change in Industrial Production Index EIA
CPI: Relative change in Consumer Price Index EIA
EPPI: Relative change in European 27: PPI Wind
USPMI: Relative change in US PMI index Wind
EPCI: Relative change in Economic Policy Uncertainty Index https://www.policyuncertainty.com/
MPCI: Relative change in Money Policy Uncertainty Index https://www.policyuncertainty.com/

Finance market

SP500: Relative change in S&P 500 Wind
VIX: Relative change in VIX index Wind
CRBSCI: Relative change in CRB Spot Commodity Index Wind
NG: Relative change in Natural gas price Wind
GSCINEI: Relative change in S&P GSCI Non-Energy index Bloomberg

Geopolitics GRI: Relative change in Geopolitical Risk Index Wind

Note: This table reports the various factors required for modeling, including their factor group, description, and data source. WTI crude oil return (the change of crude oil price)
is as the dependent variable and it is written by 𝑟𝑡 = log 𝑝𝑡

𝑝𝑡−1
, in which 𝑟𝑡 and 𝑝𝑡 is crude oil price and return at time 𝑡 respectively. We take the change of the remaining factors

as the independent variable, and the crude oil return with 𝐻-order lag is also added to the independent variables.
Table 3
Statistic description of variables.

Variable Mean Std Med Min Max Cor Variable Mean Std Med Min Max Cor

WTI 0.004 0.106 0.016 −0.568 0.546 RDI 0.000 0.012 0.001 −0.034 0.063 −0.376***
USPP 0.003 0.031 0.003 −0.203 0.158 −0.033 FFR −0.016 0.222 0.002 −2.554 0.715 0.439***
OPECPP 0.001 0.019 0.001 −0.184 0.059 −0.230*** USTBR −0.011 0.168 −0.007 −1.444 0.594 0.309***
WTPP 0.001 0.011 0.002 −0.121 0.036 −0.179*** GDP 0.002 0.009 0.000 −0.094 0.073 0.312***
NOPECPP 0.001 0.011 0.002 −0.087 0.051 −0.077 NFER 0.000 0.010 0.001 −0.146 0.033 0.433***
USPU 0.000 0.037 0.001 −0.167 0.147 0.099 IPI 0.000 0.013 0.001 −0.146 0.061 0.447***
USTCOI 0.003 0.720 −0.010 −2.440 2.190 0.137** CPI 0.002 0.004 0.000 −0.019 0.015 0.445***
WTCOI 0.015 2.173 −0.030 −9.680 15.330 0.282*** EPPI 0.002 0.007 0.002 −0.021 0.049 0.487***
WTPC 0.001 0.022 0.002 −0.119 0.055 0.224*** USPMI 0.000 0.040 −0.002 −0.168 0.199 0.426***
USPC 0.000 0.030 0.002 −0.238 0.100 0.277*** EPCI 0.003 0.269 −0.020 −0.813 1.198 −0.194***
OECDPC 0.000 0.029 0.000 −0.212 0.083 0.238*** MPCI 0.004 0.504 −0.046 −1.345 1.767 −0.097
NOECDPC 0.003 0.021 0.003 −0.087 0.067 0.166*** SP500 0.004 0.044 0.010 −0.186 0.119 0.333***
USPCI −0.038 0.607 −0.070 −1.660 1.860 0.035 VIX 0.000 0.210 −0.016 −0.614 0.853 −0.330***
USPPI −0.020 0.391 −0.050 −1.010 1.490 0.095 CRBSCI 0.001 0.044 0.008 −0.223 0.086 0.852***
USRSP −0.001 0.050 0.003 −0.341 0.211 0.375*** NE 0.002 0.147 −0.006 −0.714 0.680 0.165***
SER −0.001 0.007 0.000 −0.025 0.038 −0.168*** GSCINE 0.004 0.040 0.003 −0.205 0.120 0.250***
MSCIWI 0.003 0.045 0.011 −0.211 0.119 0.239*** GRI 0.001 0.213 −0.012 −0.509 1.839 −0.049

Note: This table reports the statistic description of variables. Std, Min, and Max are the standard deviation, minimum, and maximum of the dataset. Corr is the correlation
coefficient between the independent variable and WTI. ‘‘*’’, ‘‘**’’ and ‘‘***’’ are statistically significant at the 10%, 5%, and 1% levels, respectively.
model through our feature selection method. In comparison with MLR,
LASSO, ARMA, SVR, RF, GBR, BR, LSTM, and GRU, the FS-RR model
exhibits lower RMSEs and MAEs across different 𝐻-step-ahead forecast-
ing scenarios, indicating superior prediction performance. Furthermore,
the FS-RR model consistently shows smaller prediction errors than PCA-
RR, KPCA-RR, and ICA-RR models, suggesting that our feature selection
method is more effective at extracting useful information than PCA,
KPCA, and ICA. Consequently, FS-RR consistently achieves the smallest
10
RMSE and MAE among these 14 models in various step-ahead forecast-
ing scenarios, indicating that it is closest to the real data. Based on
the above analysis, the proposed feature selection method significantly
enhances the prediction accuracy of the RR model. Additionally, the FS-
RR model demonstrates superior prediction accuracy compared to RR,
MLR, LASSO, ARMA, SVR, RF, GBR, BR, LSTM, and GRU. Moreover,
our feature selection method proves to be more effective in information
extraction and dimensionality reduction than PCA, KPCA, and ICA.
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Table 4
Prediction errors in different-step-ahead forecasting.

Model H = 1 H = 3 H = 6

RMSE(1e−2) MAE(1e−2) RMSE(1e−2) MAE(1e−2) RMSE(1e−2) MAE(1e−2)

FS-RR 14.841 8.964 16.197 9.810 16.217 9.818
RR 15.845 9.135 16.550 10.388 16.920 10.685
MLR 15.319 9.810 19.491 12.369 18.979 11.984
LASSO 15.689 9.551 16.232 9.843 16.233 9.866
ARMA 16.284 9.944 16.251 10.103 16.390 10.181
SVR 16.014 9.374 16.298 9.999 16.266 9.843
RF 17.217 9.920 16.657 10.327 16.638 10.802
GBR 16.096 9.766 16.435 9.934 16.273 9.987
BR 16.011 9.560 16.754 10.856 16.397 10.572
LSTM 16.335 10.512 16.908 11.631 22.477 15.312
GRU 17.312 11.569 19.170 12.779 21.476 13.093
PCA-RR 17.196 9.747 16.526 10.009 17.437 11.248
KPCA-RR 15.931 9.606 16.278 9.907 16.349 10.032
ICA-RR 16.264 9.625 16.293 9.859 16.451 10.254

Note: This table reports the prediction errors in different-step-ahead forecasting. RMSE and MAE are shown in Eq. (4).
Table 5 shows the MCS test in different-step-ahead forecasting. We
use MSE and MAE as the loss functions for the MCS test. The 𝑝-value
and ranking are connected on a one-to-one basis, where a higher 𝑝-
value corresponds to a higher rank. When 𝑝-values are the same, a
lower loss function leads to a higher rank. A greater 𝑝-value or higher
rank means a better prediction performance [82]. Using MSE as the
loss function, we find that FS-RR has 𝑝-value of 1 and rank of 1 in
three different 𝐻-step-ahead forecasting scenarios (𝐻 = 1, 𝐻 = 3,
and 𝐻 = 6). This means that FS-RR is consistently superior to other
models in terms of MSE. When using MAE as the loss function, FS-RR
consistently has a 𝑝-value of 1 and a rank of 1. Regardless of whether
MSE or MAE is used as the loss function, FS-RR consistently has a higher
𝑝-value than the other models in different 𝐻-step-ahead forecasting
scenarios, which demonstrates that FS-RR model outperform RR model
in statistical significance. Regardless of using MSE or MAE as the loss
function, the rank of FS-RR model is higher than RR, MLR, LASSO,
ARMA, SVR, RF, GBR, BR, LSTM and GRU, indicating that FS-RR
model has better prediction accuracy. The 𝑝-value of FS-RR model
is always 1, but the 𝑝-values of other models is fluctuant in three
different 𝐻-step-ahead forecasting. This means that FS-RR model has
stable prediction performance. On the other hand, PCA-RR, KPCA-RR,
and ICA-RR models do not show consistent or significant improvement
over RR. For example, PCA-RR, KPCA-RR, and ICA-RR models do not
consistently have higher 𝑝-values or ranks than RR model, and PCA-RR
model has greater RMMSE and MAE than RR model. This demonstrates
that PCA, KPCA, and ICA cannot obviously improve the prediction
accuracy of RR model in statistical significance. Therefore, according to
MCS test FS-RR has better and more stable prediction performance than
other models in statistical significance. Summarizing the finding from
Tables 4 and 5, it can be demonstrated that FS-RR model is effective
and stable in feature selection and improving prediction accuracy.

Table 6 reports the prediction evaluation of different models in
different-step-ahead forecasting. Following Wang et al. [71] and Tan
et al. [72], we use CSFE, 𝑅2

𝑂𝑆 and CW test to further verify the effec-
tiveness and superiority of FS-RR model. The negative CSFEs means
that the competing model has less prediction errors. The greater 𝑅2

𝑂𝑆
and CW statistics means that prediction accuracy of the competing
model is more significantly superior to the benchmark model. By taking
the FS-RR model as the competing model and the other 13 models as
benchmarks, we calculate these three indicators. Taking RR and FS-RR
as the benchmark and competing models respectively, CSFE less than
0 and 𝑅2

𝑂𝑆 greater than 0 indicate that our feature selection method
enhance the prediction accuracy of RR model. Moreover, CW test reject
the null hypothesis at 10% or better significance level when 𝐻 = 3
and 𝐻 = 6. This indicates that FS-RR can extract effective information
and significantly improve the prediction accuracy of RR model. When
11

taking MLR, LASSO, ARMA, SVR, RF, GBR, BR, LSTM, and GRU as the
benchmark models, all CSFE values are less than 0 across different-
step-ahead prediction, indicating that FS-RR model has excellent and
stable forecasting performance over time. All 𝑅2

𝑂𝑆 values are more
than 0 in three 𝐻-step-ahead prediction, and most of CW test results
reject the null hypothesis, indicating that FS-RR model has better
predictive performance. Using PCA-RR, KPCA-RR and ICA-RR models
as the benchmark models, the negative CSFE and positive 𝑅2

𝑂𝑆 values
show that FS-RR model has more superior prediction performance.
Moreover, most of CW test reject the null hypothesis at 10% or better
significance level. These CSFE, 𝑅2

𝑂𝑆 and CW test imply that our feature
selection can extract more effective information than PCA, KPCA and
ICA. In contrast to the RR model, the absolute values of CSFE and 𝑅2

𝑂𝑆
for the PCA-RR, KPCA-RR, and ICA-RR models are not consistently less
than those of the RR model, meaning that PCA, KPCA and ICA do not
have stable performance in improving the prediction accuracy of RR
model. Thus, Table 6 again verifies that PCA-RR, KPCA-RR, and ICA-
RR models do not show consistent or significant improvement over RR
model. CSFE, 𝑅2

𝑂𝑆 and CW test also demonstrate the superiority and
stabilityn of FS-RR model again.

4.3.2. The prediction results using different training sets
To verify the robustness of FS-RR model, we also employ different

training sets to build model. We use three different training sets in
this section, such as 2000.1–2017.12, 2001.1–2017.12 and 2002.1–
2017.12, to establish model. We set 𝐻 = 1 and predict the same test
set based on these three different training sets.

Table 7 shows the prediction errors using different training sets. All
RMSEs and MAE of FS-RR model are less than these of other models
in three training sets, indicating that its prediction results are closet
to the real data. Using three training sets, all RMSEs of FS-RR model
are less than 15.4, and their MAEs are less than 9.2. However, all
RMSEs of RR model are more than 15.8. Meanwhile, MAEs of FR-
RR also exhibit more superior performance than these of RR model.
This means that FS-RR model can effectively extract the predictor
information and has less prediction errors than RR model. RMSEs and
MAEs of FS-RR model are obviously less than these of MLR, LASSO,
ARMA, SVR, RF, GBR, BR, LSTM and GRU, indicating the effectiveness
and superiority of FS-RR model. RMSEs and MAEs of PCA-RR model
are more than RR model using different training sets, suggesting that
PCA cannot extract effective feature information. KPCA-RR and ICA-
RR do not consistently show less RMSEs and MAEs based on different
training set, implying that KPCA and ICA cannot reliably improve the
prediction accuracy of RR model. Contrasted with PCA, KPCA and ICA,
our feature selection method by extracting the most related features can
get more effective predictors to enhance the prediction performance of
RR models. Contrasted with MLR, LASSO, ARMA, SVR, RF, GBR, BR,
LSTM and GRU, FS-RR model has significant superiority in crude oil

return forecasting.
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Table 5
MCS test in different-step-ahead forecasting.

Model Loss function: MSE Loss function: MAE

H = 1 H = 3 H = 6 H = 1 H = 3 H = 6

𝑝-value Rank 𝑝-value Rank 𝑝-value Rank 𝑝-value Rank 𝑝-value Rank 𝑝-value Rank

FS-RR 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1
RR 0.882 4 0.925 5 0.240 13 1.000 2 0.642 9 0.280 9
MLR 0.965 2 0.900 7 0.583 7 0.766 6 0.819 7 0.502 6
LASSO 0.836 6 0.915 6 0.969 4 0.364 10 0.993 4 – –
ARMA 0.587 13 0.998 3 0.304 11 0.315 13 0.448 12 – –
SVR 0.805 8 0.860 9 0.832 5 0.159 14 0.484 11 1.000 2
RF 0.688 10 0.517 12 0.462 9 0.842 4 0.643 8 0.150 11
GBR 0.664 11 0.938 4 0.994 3 0.755 7 1.000 2 0.952 3
BR 0.743 9 0.474 13 0.998 2 0.866 3 0.378 13 0.724 4
LSTM 0.916 3 1.000 2 0.279 12 0.767 5 0.959 5 0.209 10
GRU 0.524 14 0.686 11 0.322 10 0.348 11 0.372 14 0.337 8
PCA-RR 0.860 5 0.405 14 0.600 6 0.345 12 0.934 6 0.545 5
KPCA-RR 0.603 12 0.892 8 0.217 14 0.528 9 0.567 10 0.113 12
ICA-RR 0.807 7 0.858 10 0.466 8 0.606 8 1.000 3 0.485 7

Note: This table reports MCS test in different-step-ahead forecasting. In MCS test, the statistics is TR, and its loss functions is mean square
error (MSE) and MAE. The greater 𝑝-value means the better prediction performance of models. ‘–’ means that the model is eliminated at the
significant level of 0.1.
Table 6
Prediction evaluation in different-step-ahead prediction.

Model H = 1 H = 3 H = 6

CSFE 𝑅2
𝑂𝑆 (%) CW test CSFE 𝑅2

𝑂𝑆 (%) CW test CSFE 𝑅2
𝑂𝑆 (%) CW test

RR −0.148 12.271 1.140 −0.055 4.218 1.438* −0.112 8.132 2.609***
MLR −0.069 6.152 1.411* −0.564 30.942 1.682** −0.467 26.987 1.592*
LASSO −0.124 10.519 1.510* −0.005 0.424 1.597* −0.003 0.199 0.811
ARMA −0.216 16.946 1.497* −0.008 0.664 1.039 −0.027 2.097 1.490*
SVR −0.174 14.12 1.590* −0.016 1.226 0.972 −0.008 0.596 1.052
RF −0.366 25.703 1.472* −0.072 5.441 2.181** −0.066 4.999 2.600***
GBR −0.186 14.994 2.217** −0.037 2.87 1.570* −0.009 0.685 0.971
BR −0.173 14.083 1.395* −0.088 6.536 3.103*** −0.028 2.183 1.357*
LSTM −0.224 17.456 2.010** −0.113 8.223 2.197** −1.163 47.945 3.675***
GRU −0.381 26.514 2.773*** −0.505 28.607 2.653*** −0.952 42.981 3.059***
PCA-RR −0.362 25.516 1.085 −0.052 3.940 1.814** −0.197 13.507 1.813**
KPCA-RR −0.161 13.217 1.667** −0.013 0.989 1.453* −0.021 1.613 2.649***
ICA-RR −0.213 16.741 1.842** −0.015 1.166 1.242 −0.037 2.828 2.332***

Note: This table reports the prediction evaluation in different-step-ahead forecasting. In CW test, the null hypothesis is that the benchmark
and competing model has the same prediction performance, and the alternative that the competing model has better prediction performance.
Taking the FS-RF model as the competing model and others as the benchmark models respectively, we can get CSFE, 𝑅2

𝑂𝑆 and CW test. ‘***’,
‘**’, and ‘*’ indicate the statistical significance level of 1%, 5%, and 10% levels respectively.
Table 8 shows the MCS test using different training sets. We use
MSE and MAE as the loss functions for the MCS test. A greater 𝑝-
value or higher rank indicates higher prediction accuracy. Based on
three different training sets, the 𝑝-values and ranks of FS-RR model
re always 1 in both MSE and MAE loss functions. The rank of FS-
R model is consistently higher than that of RR model, indicating that
S-RR model outperforms RR model in statistical significance. Using
SE as the loss function, FS-RR model has higher rank than MLR,

ASSO, ARMA, SVR, RF, GBR, BR, LSTM and GRU across three training
ets. Using MAE as the loss function, FS-RR model also ranks higher
han other models. The higher rank of FS-RR model means that it is
tatistically superior to other models in terms of both MSE and MAE.
aking MAE as the loss function, PCA-RR is eliminated when we use
raining set 2 and 3 to train model, and RR is always remained in MCS
est, which means that PCA cannot extract the useful information from
riginal features. Although KPCA-RR and ICA-RR do not be eliminated
ased on three training sets, their 𝑝-values and ranks are less than
hese of RR model. This imply that KPCA and ICA cannot enhance the
rediction performance of RR model in statistical significance. Based on
he MCS test, it can be concluded that for different training sets, FS-RR
as better prediction performance than other 13 models in statistical
ignificance. This further proves the effectiveness and superiority of our
eature selection method, and also confirms the prominent and stable
rediction accuracy of the FS-RR model in different training scenarios.

Table 9 shows the prediction evaluation using different training
ets. Using the FS-RR model as the competing model and other 13
12
models as the benchmark respectively, we get the evaluation metrics
in Table 9. Using RR and FS-RR as the benchmark and competing
models respectively, all CSFEs are less than 0, and 𝑅2

𝑂𝑆 are more
than 0, meaning that FS-RR model outperforms RR model and its
prediction results are stable over time for different training scenarios.
In addition, most of CW tests reject the null hypothesis at 10% or better
significance level, which verifies that FS-RR is significantly superior to
RR model in statistical significance. Taking MLR, LASSO, ARMA, SVR,
RF, GBR, BR, LSTM, and GRU as the benchmark model, all CSFEs less
0 and 𝑅2

𝑂𝑆 over 0 mean that the competing model (FS-RR) has smaller
prediction errors in different training scenarios. Moreover, the results
of CW test are consistent with 𝑅2

𝑂𝑆 , verifying the excellent prediction
accuracy of FS-RR model again. Taking PCA-RR, KPCA-RR, and ICA-
RR as the benchmark model, the negative CSFEs and positive 𝑅2

𝑂𝑆
indicate that FS-RR model has better prediction accuracy. Using three
training sets, all absolute values of CSFE and 𝑅2

𝑂𝑆 of PCA-RR model
are more than RR model, which indicates that PCA cannot improve the
prediction performance of RR model. Contrasting RR, KPCA-RR, and
ICA-RR, KPCA-RR and ICA-RR do not consistently have less absolute
values of CSFE and 𝑅2

𝑂𝑆 than RR model. This implies that KPCA and
ICA cannot extract the effective information to enhance the prediction
accuracy of RR model. However, the negative CSFE and positive 𝑅2

𝑂𝑆
mean that FS-RR has better prediction accuracy than PCA-RR, KPCA-RR
and ICA-RR. Thus, compared with PCA, KPCA, and ICA, the proposed

feature selection can not only reduce the dimension by extracting the
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Table 7
Prediction errors using different training sets.

Model Training set 1 Training set 2 Training set 3

RMSE(1e−2) MAE(1e−2) RMSE(1e−2) MAE(1e−2) RMSE(1e−2) MAE(1e−2)

FS-RR 14.841 8.964 15.321 9.167 15.236 9.015
RR 15.845 9.135 16.417 9.388 15.965 9.224
MLR 15.319 9.810 15.730 9.631 15.374 9.428
LASSO 15.689 9.551 15.827 9.647 16.191 9.770
ARMA 16.284 9.944 16.229 9.851 16.132 9.796
SVR 16.014 9.374 16.107 9.376 16.039 9.451
RF 17.217 9.920 16.761 9.568 16.438 9.506
GBR 16.096 9.766 16.032 9.743 16.026 9.764
BR 16.011 9.560 17.075 9.931 16.632 9.528
LSTM 16.335 10.512 15.691 11.292 15.691 11.292
GRU 17.312 11.569 15.714 10.620 15.714 10.620
PCA-RR 17.196 9.747 17.022 9.731 16.479 9.536
KPCA-RR 15.931 9.606 15.932 9.607 15.964 9.593
ICA-RR 16.264 9.625 16.193 9.603 16.068 9.539

Note: This table reports the prediction errors in different training sets. RMSE and MAE are shown in (4).
Table 8
MCS test using different training sets.

Model Loss function: MSE Loss function: MAE

Training set 1 Training set 2 Training set 3 Training set 1 Training set 2 Training set 3

𝑝-value Rank 𝑝-value Rank 𝑝-value Rank 𝑝-value Rank 𝑝-value Rank 𝑝-value Rank

FS-RR 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1
RR 0.882 4 0.859 5 0.874 5 1.000 2 0.999 2 0.986 3
MLR 0.965 2 0.883 4 1.000 3 0.766 6 0.992 3 0.994 2
LASSO 0.836 6 0.855 6 0.840 8 0.364 10 0.466 11 0.328 10
ARMA 0.587 13 0.486 13 0.811 11 0.315 13 0.461 12 0.533 8
SVR 0.805 8 0.763 10 0.750 13 0.159 14 0.933 5 0.318 11
RF 0.688 10 0.784 8 0.854 7 0.842 4 0.990 4 0.931 4
GBR 0.664 11 0.709 12 0.775 12 0.755 7 0.675 9 0.283 12
BR 0.743 9 0.108 14 0.723 14 0.866 3 0.605 10 0.924 5
LSTM 0.916 3 1.000 2 1.000 2 0.767 5 0.862 6 0.737 6
GRU 0.524 14 1.000 3 0.999 4 0.348 11 0.811 7 0.635 7
PCA-RR 0.860 5 0.826 7 0.870 6 0.345 12 – – – –
KPCA-RR 0.603 12 0.756 11 0.813 10 0.528 9 0.447 13 0.262 13
ICA-RR 0.807 7 0.772 9 0.821 9 0.606 8 0.679 8 0.448 9

Note: This table reports MCS test using different training sets. In MCS test, the statistics is TR, and its loss functions is mean square error (MSE) and MAE. The greater 𝑝-value
means the better prediction performance of models. ‘–’ means that the model is eliminated at the significant level of 0.1.
most related and useful factors but also steadily improve the prediction
accuracy. Summarizing RMSE, MAE, MCS test, CSFE, 𝑅2

𝑂𝑆 and CW test,
FS-RR model consistently has the smallest predication errors among
these 14 models in different training scenarios.

According to Tables 4, 5, 6, 7, 8 and 9, FS-RR always has the best
prediction accuracy in different 𝐻-step-ahead prediction and different
raining windows. This verified the prominent prediction and robust-
ess of FS-RR model. Compared to RR model, FS-RR model improves
he prediction accuracy, which proves that the proposed method can
ffectively extract the factors related to crude oil return and improve
he prediction accuracy. Compared with other linear and nonlinear
odels, FS-RR also has better and more stable prediction accuracy.
ompared to the models with PCA, KPCA, and ICA, the proposed model
an consistently enhance the prediction performance of RR model,
hich verifies that the proposed method may have certain advantages

n information extraction end dealing with the complex relationship of
he input and output variables. It can be considered that FS-RR model
ith robustness can significantly improve the predictive performance
f the RR model and our proposed feature selection method is more
ffective than PCA, KPCA and ICA. Therefore, the proposed model is
obust, and it can not only extract the features related to crude oil
eturn forecasting effectively but also capture the complex relationship
o get excellent prediction performance.

.4. Economic value analysis

In Section 4.3, we focus on the prediction performance of models,
13

ut it does not reflect their actual significance. In this section, we
apply the forecasting results to make investments and calculate the
economic values. We assume that the assets are crude oil and risk-free
bills, and we find their optimal allocation by using the mean–variance
model [83]. We do not consider the borrowing and short sell in the
portfolio of crude oil and risk-free bills, that is, 𝜔 ∈ [0, 1]. There is a
leverage effect in crude oil futures or spot markets. Following Zhang
et al. [4], we set that the margin accounts remain at 20%, that is the
leverage ratio is 𝐿 = 5. We set risk aversion coefficients 𝛾 = 4 and 6
to reflect different risk aversion of investors. Following [4,72,84], we
compare the economic values of models using the historical average
(HA) model as the benchmark model.

Table 10 shows the economic values of different-step-ahead fore-
casting. We use CER as a utility-based metric to evaluate the economic
value of prediction results, as shown in Eq. (9). We also calculate UG
as the difference between CER of comparison models and CER of HA
model, as shown in Eq. (10). A higher CER indicates that the model
has a higher economic value. CER over 0 means that the model can
help investors to gain benefits. A higher UG means a higher economic
value of the comparison model compared to HA model. As can be seen
from Table 10, for 𝛾 = 4, the CERs of all models except MLR, LSTM,
and GRU are positive in different-step-ahead forecasting, meaning that
these model can help investors to make money. The negative CERs of
MLR, LSTM, and GRU means that these model cannot help investors
to gain returns in different 𝐻-step-ahead forecasting. For 𝛾 = 4,
we find that FS-RR, RR, LASSO, ARMA, SVR, RF, BR, KPCA-RR, and
ICA-RR models consistently have positive UGs in different-step-ahead
predictions, implying that these models have more economic values



Neurocomputing 581 (2024) 127470Y. Zhao et al.

m
(

𝐻
𝛾
s
d

𝛾
s
H
a
t
m
m
L
c
t
C
t
w
o
i
R
𝐻
a
v

f
i
t
p

Table 9
Prediction evaluation in different training sets.

Indicators Training set 1 Training set 2 Training set 3

CSFE 𝑅2
𝑂𝑆 (%) CW test CSFE 𝑅2

𝑂𝑆 (%) CW test CSFE 𝑅2
𝑂𝑆 (%) CW test

RR −0.148 12.271 1.140 −0.167 12.908 0.958 −0.109 8.927 1.159
MLR −0.069 6.152 1.411* −0.061 5.140 1.359* −0.020 1.787 0.769
LASSO −0.124 10.519 1.510* −0.076 6.301 0.931 −0.144 11.452 1.179
ARMA −0.216 16.946 1.497* −0.138 10.885 1.271 −0.135 10.799 1.240
SVR −0.174 14.120 1.590* −0.119 9.521 1.310* −0.121 9.763 2.004**
RF −0.366 25.703 1.472* −0.222 16.447 1.322* −0.183 14.089 1.526*
GBR −0.186 14.994 2.217** −0.107 8.679 1.981** −0.119 9.621 1.933**
BR −0.173 14.083 1.395* −0.273 19.490 1.507* −0.214 16.084 1.645*
LSTM −0.224 17.456 2.010** −0.055 4.660 2.361*** −0.068 5.713 2.290**
GRU −0.381 26.514 2.773*** −0.059 4.938 1.466* −0.071 5.987 1.508*
PCA-RR −0.362 25.516 1.085 −0.264 18.989 0.965 −0.189 14.523 1.055
KPCA-RR −0.161 13.217 1.667** −0.092 7.533 1.313* −0.109 8.918 1.259
ICA-RR −0.213 16.741 1.842** −0.132 10.482 1.734** −0.125 10.086 1.496*

Note: This table reports the prediction evaluation in different training sets. In CW test, the null hypothesis is that the benchmark and competing
model has the same prediction performance, and the alternative that the competing model has better prediction performance. Taking the FS-RF
model as the competing model and other models as the benchmark model respectively, we can get CSFE, 𝑅2

𝑂𝑆 and CW test. ‘***’, ‘**’, and ‘*’
indicate the statistical significance level of 1%, 5%, and 10% levels respectively.
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than HA model. The negative UGs of MLR, GBR, LSTM, GRU, and PCA-
RR indicate these models gain less returns than HA model. For 𝛾 = 6,
the CER of HA model is negative, indicating that HA model does not
help investors to achieve returns. Moreover, only FS-RR model, LASSO,
ARMA, SVR, KPCA-RR, and ICA-RR model consistently have positive
CERs for different-step-ahead prediction, which means that only these
models can always earn money. While RR, MLR, RF, GBR, BR, LSTM,
GRU, and PCA-RR models with CERs less than 0 may make investors
lose money. When 𝛾 = 6, all FS-RR, LASSO, ARMA, SVR, KPCA-RR, and
ICA-RR models have positive UGs in different-step-ahead predictions,
meaning that they can get more benefits than HA models. Whatever
𝛾 = 4 or 𝛾 = 6, FS-RR model, LASSO model, ARMA model, SVR

odel, KPCA-RR model, and ICA-RR model always have positive gains
CERs) and UGs in different 𝐻-step-ahead predictions. This indicates

that they have stable and excellent performance in economic values.
Furthermore, for different-step-ahead predictions and different risk
aversion coefficients, the CERs and UGs of FS-RR model are always
in the top 4 among these models. For instance, when 𝐻 = 1 and

= 3, FS-RR model has the highest CERs and UGs for 𝛾 = 4 or
= 6. When 𝐻 = 6, the CERs and UGs are always in the top 4. This

hows that FS-RR model has outstanding and stable economic values in
ifferent-step-ahead predictions.

Table 11 shows the economic values for different training sets. For
= 4, all models except LSTM have positive CERs for different training

ets, meaning that they consistently help investors earn money. Taking
A as the benchmark model, the UGs of all models except MLR, LSTM,
nd GRU are consistently over 0 for different training sets, meaning
hat they have greater CERs than HA model. Moreover, only FS-RR
odel has CERs and UGs that are always among the top 4 of these
odels for different training sets. For 𝛾 = 6, the CERs of FS-RR, RR,

ASSO, ARMA, SVR, RF, BR, PCA-RR, KPCA-RR, and ICA-RR models are
onsistently more than 0 for different training scenarios, indicating that
hese models can help investors to make favorable decisions. While the
ERs of MLR, LSTM and GRU models are not always over 0, meaning
hat they cannot consistently help investors to gain money. In addition,
e can conclude the same conclusion as CERs through UGs. Regardless
f 𝛾 = 4 or 𝛾 = 6, the CERs and UGs of only FS-RR model are always
n the top 4 for different training sets. For example, when 𝐻 = 1, FS-
R model has the highest CERs and UGs for 𝛾 = 4 or 𝛾 = 6. When
= 3 and 𝐻 = 6, the CERs and UGs are always in the top 4. These

lso verify that FS-RR model has more obvious advantages in economic
alues than other models of Table 11.

For different-step-ahead forecasting, different training sets, and dif-
erent investors with risk aversion, the economic value of FS-RR model
s always positive and in the top 4 among these models. This suggests
hat FS-RR model has good robustness, and it has high profits in the
14

ortfolio, which can help investors to gain income or avoid risks. c
. Discussion

From the experiments, our findings are consistent with some previ-
us studies that have demonstrated the benefits of feature selection for
rude oil return forecasting, such as [2,14]. These studies have shown
hat feature selection can reduce the dimensionality and complexity of
he data, enhance the generalization ability and accuracy of the models,
nd reveal the key factors affecting the oil market dynamics. However,
ur findings also differ from some previous studies that have used
ifferent dimension reduction methods, models, or data sets for crude
il return forecasting, such as [2,15,85]. These studies have reported
ixed results on the performance of PCA, KPCA, ICA, LASSO, SVR,
F, GBR, and ARMA for crude oil return forecasting, depending on the
ata characteristics, model assumptions, and evaluation metrics. One
ossible reason for the differences is that our method can handle high-
imensional and complex data better than other methods by using our
mportance measures, which are derived from prediction errors and can
eflect the nonlinear and non-Gaussian relationships between the input
eatures and the output variable. Another possible reason is that our
ethod can select the optimal number of features by using a threshold

alue that minimizes the mean prediction error of the base forecasting
odel, which can avoid overfitting or underfitting problems. A third
ossible reason is that our method can use RR as the base forecasting
odel, which is a simple and robust model that can reduce overfitting

nd improve generalization by penalizing large coefficients.
Our method has excellent and stable prediction performance in

ifferent-step-ahead forecasting scenarios and different training sets.
ur method can adapt to different market conditions and data char-
cteristics, and provide reliable forecasts for crude oil returns. Our
ethod can also handle different-step-ahead forecasting horizons. Our
ethod has high economic value for investors who allocate assets

n crude oil futures or spot markets. Our method can help investors
ain income or avoid risks by providing optimal portfolio allocation
ased on the forecasted returns. Our method can also provide valuable
nformation for policymakers who are concerned about the impact of
rude oil price fluctuations on the economy. Our method proposes a
ovel feature selection method for neurocomputing that can enhance
he prediction performance of AI models for crude oil return fore-
asting, a challenging and relevant problem for the field. We also
over practical aspects with contributions on advances in software
evelopment environments for neurocomputing, such as identifying
mportant features.

Our feature selection method can also be applied to other domains
esides energy, such as signal processing and image processing, which
re relevant to the field of neurocomputing. For example, our method

an be used to select the most informative features from a large set
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Table 10
Economical values of different-step-ahead forecasting.

Model H = 1 H = 3 H = 6

CER (%) UG (%) CER (%) UG (%) CER (%) UG (%)

𝛾 = 4 𝛾 = 6 𝛾 = 4 𝛾 = 6 𝛾 = 4 𝛾 = 6 𝛾 = 4 𝛾 = 6 𝛾 = 4 𝛾 = 6 𝛾 = 4 𝛾 = 6

HA 0.019 −0.009 0.019 −0.009 0.019 −0.009
FS-RR 0.062 0.033 4.333 4.256 0.044 0.016 2.491 2.541 0.041 0.013 2.212 2.203
RR 0.055 0.014 3.673 2.370 0.020 −0.022 0.151 −1.299 0.044 0.001 2.579 1.031
MLR 0.018 −0.096 −0.057 −8.690 −0.195 −0.423 −21.335 −41.375 −0.083 −0.272 −10.126 −26.242
LASSO 0.045 0.015 2.591 2.479 0.043 0.015 2.430 2.447 0.040 0.012 2.152 2.149
ARMA 0.038 0.010 1.929 1.936 0.042 0.015 2.363 2.414 0.035 0.005 1.651 1.495
SVR 0.056 0.022 3.751 3.139 0.039 0.010 2.003 1.971 0.052 0.024 3.299 3.364
RF 0.041 0.008 2.226 1.738 0.021 −0.012 0.185 −0.237 0.037 0.003 1.810 1.238
GBR 0.030 −0.002 1.161 0.767 0.017 −0.017 −0.188 −0.784 0.038 0.010 1.958 1.951
BR 0.052 0.012 3.285 2.167 0.021 −0.011 0.214 −0.152 0.025 −0.011 0.668 −0.141
LSTM −0.006 −0.098 −2.457 −8.823 0.016 −0.080 −0.270 −7.029 0.075 −0.024 5.585 −1.433
GRU 0.011 −0.047 −0.785 −3.799 −0.012 −0.096 −3.044 −8.639 0.021 −0.107 0.214 −9.752
PCA-RR 0.062 0.019 4.329 2.811 0.035 0.004 1.603 1.387 0.008 −0.065 −1.041 −5.551
KPCA-RR 0.043 0.014 2.465 2.329 0.038 0.010 1.927 1.955 0.037 0.008 1.815 1.791
ICA-RR 0.039 0.009 2.006 1.894 0.035 0.008 1.623 1.711 0.038 0.007 1.901 1.650

Note: This table reports economical values of different-step-ahead forecasting. CER can be got by Eq. (9), and UG can be got by Eq. (10).
Taking HA and other model as the benchmark and competing models, we get UG.
Table 11
Economical value of different training sets.

Model Training set 1 Training set 2 Training set 3

CER (%) UG (%) CER (%) UG (%) CER (%) UG (%)

𝛾 = 4 𝛾 = 6 𝛾 = 4 𝛾 = 6 𝛾 = 4 𝛾 = 6 𝛾 = 4 𝛾 = 6 𝛾 = 4 𝛾 = 6 𝛾 = 4 𝛾 = 6

HA 0.019 −0.009 0.019 −0.009 0.019 −0.009
FS-RR 0.062 0.033 4.333 4.256 0.054 0.023 3.503 3.229 0.056 0.023 3.692 3.276
RR 0.055 0.014 3.673 2.370 0.057 0.015 3.834 2.464 0.060 0.020 4.167 2.927
MLR 0.018 −0.096 −0.057 −8.690 0.026 −0.060 0.699 −5.101 0.055 −0.005 3.601 0.441
LASSO 0.045 0.015 2.591 2.479 0.044 0.018 2.544 2.743 0.049 0.021 2.986 3.093
ARMA 0.038 0.010 1.929 1.936 0.033 0.005 1.433 1.486 0.027 0.001 0.821 1.083
SVR 0.056 0.022 3.751 3.139 0.056 0.022 3.687 3.111 0.055 0.024 3.662 3.310
RF 0.041 0.008 2.226 1.738 0.049 0.016 3.016 2.589 0.048 0.018 2.952 2.794
GBR 0.030 −0.002 1.161 0.767 0.033 0.001 1.458 1.059 0.048 0.015 2.900 2.405
BR 0.052 0.012 3.285 2.167 0.047 0.011 2.798 2.012 0.092 0.058 7.349 6.751
LSTM −0.006 −0.098 −2.457 −8.823 0.018 −0.071 −0.051 −6.199 0.018 −0.071 −0.051 −6.199
GRU 0.011 −0.047 −0.785 −3.799 0.026 −0.039 0.744 −2.919 0.026 −0.039 0.744 −2.919
PCA-RR 0.062 0.019 4.329 2.811 0.060 0.016 4.173 2.540 0.064 0.023 4.508 3.204
KPCA-RR 0.043 0.014 2.465 2.329 0.043 0.014 2.470 2.333 0.048 0.018 2.886 2.796
ICA-RR 0.039 0.009 2.006 1.894 0.039 0.010 2.048 1.955 0.045 0.016 2.619 2.528

Note: This table reports economical values of different-step-ahead forecasting. CER can be got by Eq. (9), and UG can be got by Eq. (10).
Taking HA and other model as the benchmark and competing models, we get UG.
of signals or images, and improve the performance of neural networks
or other AI models for classification, segmentation, or recognition
tasks. Some references that have used feature selection methods for
signal processing and image processing are [65,86,87]. Our feature
selection method offers a novel perspective in feature selection by
integrating principles from neurocomputing, such as active learning
and Gaussian noise perturbation, which are inspired by the biological
neural network modeling and machine learning. Active learning is a
learning strategy that selects the most informative samples to train a
model, which mimics the human brain’s ability to focus on the most
relevant information and ignore the irrelevant ones. Gaussian noise
perturbation is a technique that adds random noise to the input data,
which simulates the biological neural network’s robustness to noise and
uncertainty. These principles can enhance the prediction performance
of AI models by capturing the complex and nonlinear relationships
between the features and the output variable, which are essential for
forecasting. Our feature selection method is not only a data processing
technique, but also a crucial step in the development of efficient and
effective AI models. By reducing data dimensionality and complexity,
our method improves the computational efficiency and performance of
AI models, which is a key concern in the field of neurocomputing. Our
method can also help to avoid the curse of dimensionality, which is
a problem that occurs when the data has too many features and the
model becomes overfitted or underfitted. Our method can also help to
15
improve the interpretability and explainability of AI models, which is
a challenge that arises when the models are too complex and opaque.

Despite the promising results of our study, we acknowledge that
there are some limitations that may affect the interpretations and
implications of our findings. One limitation is the data quality, as
we used monthly data from different sources that may have different
definitions, measurements, and accuracies, which may affect the fea-
ture selection and forecasting performance. Another limitation is the
model assumptions, as we assumed that the relationship between the
input features and the output variable is linear and additive in RR
model, which may not capture the complex and nonlinear dynamics of
the oil market. A third limitation is that we implement static feature
selection rather than dynamic feature selection. We select the same
features in both the training set and the test set according to FS-IM,
which cannot reflect the time-varying effects of the features on the
prediction. These limitations may affect the accuracy, validity, and
causality of our results. For example, the data quality may introduce
some biases or errors in the feature selection and forecasting process,
which may reduce the confidence and precision of our results. The
model assumptions may limit the explanatory power and the predictive
power of our results, as they may not account for the nonlinear and
non-Gaussian features of the data. Over time, the characteristics and
distribution of the data may change. Static feature selection cannot
adapt to this change, and then affect the prediction accuracy. To
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address or mitigate these limitations, we suggest some possible direc-
tions for future research. First, we recommend using more reliable and
consistent data sources to improve the data quality. Second, we suggest
relaxing the model assumptions by using some nonlinear and non-
Gaussian models, such as neural networks, support vector machines,
or Gaussian mixture models, to capture the complex and nonlinear
relationships between the input features and the output variable. Third,
a new dynamic feature selection strategy should be proposed based on
FS-IM to quantify the varying influence.

6. Conclusions

This paper presented a novel feature selection method based on
importance measures (FS-IM) to enhance the forecasting of crude oil
returns. FS-IM innovatively combined active learning with Gaussian
noise distribution to assess the importance of each feature by the
change in the prediction errors of a ridge regression (RR) model. FS-IM
also determined the optimal number of features by using a threshold
value that minimized the mean prediction error of the RR model. We
applied FS-IM to a West Texas Intermediate crude oil spot price dataset,
which consisted of 34 input features and one output variable. We
compared FS-RR model with PCA-RR, KPCA-RR, and ICA-RR model
using RMSE, MAE, CSFE, 𝑅2

𝑂𝑆 , and statistical tests (MCS and CW
ests). The results show that FS-RR model has much better prediction
ccuracy for different training and prediction windows and more stable
conomic value for different investors and policymakers. Our findings
erified that FS-IM could also extract more useful information than
rincipal component analysis, kernel principal component analysis,
nd independent component analysis and could capture the complex
elationships between the features and the output variable, which
re essential for forecasting. Compared with RR model, FS-RR model
as evident superiority in prediction accuracy and economic profits.
ur finding demonstrated that FS-IM could effectively select the most

elevant features from a large feature set and improve the forecasting
ccuracy of the RR model. Moreover, we also compared FS-RR model
ith other prediction models, such as MLR, LASSO, ARMA, SVR, RF,
BR, BR, LSTM, and GRU using different-step-ahead forecasting, dif-

erent training sets and various evaluation metrics. The superiority and
obustness of FS-RR model are also proved. According to the compar-
tive analysis, we confirm its effectiveness in feature selection and its
erit in improving prediction performance and economic values.
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