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Abstract
The prediction model is a major component within public health cyber-physical
systems, which supports decisions on prevention and control of diseases. Hand,
foot, and mouth disease (HFMD) is one of the most common global infectious
diseases with the highest incidence rate. Previous HFMD prediction models are
mainly based on the time series that counted in equal-grained time intervals.
However, there are details in the time series counted in fine-grained time inter-
vals. To benefit from both equal-grained and fine-grained data, we proposed a
dual-grained representation (DGR) model. The DGR first represents inputted
data to temporal patterns. Then, the represented patterns are consolidated to
generate predictions. Experimental comparisons of the short-term prediction
performance are figured out by using real outpatient collections in Xiamen,
China.
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1 INTRODUCTION

In the past decade, cyber-physical applications for environment and people monitoring have been reported.1 Cyber-
physical systems (CPS)2 integrate computational and physical processes, where devices interact with the physical world
creating feedback control loops.3 Recently, CPS are employed to support and promote public health policies,4 since they
enable the realization of these activities in a much more efficient and automatic manner.

Those CPS used for supporting public health management are called public health cyber-physical systems (PH-CPS).
The architecture of the centralized PH-CPS is drawn in Figure 1. The PH-CPS consists of four layers: physical layer, com-
munication layer, intelligent service layer, and data analysis layer. The physical layer is designed for devices to interact with
patients. It receives information from health devices, and sends information to the communication layer. The communi-
cation layer links the physical layer and the intelligent service layer, and makes decisions in situations when intelligent
service layer is unavailable. The intelligent service layer manages received information about every single patient, which
includes personal information, current health state, diseases history, and health index tendencies. The data analysis layer
collects information from different clinics, and uses the received information for further study. Such as, data analysis,
data mining, disease discovery, and disease treatments.
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F I G U R E 1 The architecture of the centralized cyber-physical
systems for public health management [Color figure can be viewed at
wileyonlinelibrary.com]

The prediction model is a major component within PH-CPS for forecasting the status of infectious disease. Those
models generate predictions based on the outpatient records collected from physical devices in real time.5 Hand, foot,
and mouth disease (HFMD) is the most common global infectious disease.6 Millions of infections were reported every
year.7 Especially in developing countries, children younger than 5 years is more significant, causing serious economic
and social burden.8 The disease is easy to cause fever, oral ulcers, blisters, and rashes on hands and feet, some serious
and potentially fatal complications will lead to serious sequelae and even death.9 The control and prevention of HFMD is
a public health issue that receives attention from government agencies, medical institutions, and the public. China built
up and updated the network of the national notifiable disease reporting system to control and prevent the outbreak of
infectious diseases. The Regulations on Preparedness for and Response to Public Health Emergency Events (NHFPC) had
been issued in 2003.10 HFMD became a Class C notifiable disease in the reporting system on May 2, 2008.11

We aim to provide an efficient HFMD prediction model, which works well within PH-CPS. The HFMD prediction
techniques have been developed to support the risk management of outbreaks. The HFMD prediction can be viewed as
the problem of time series forecasting.12 Numerous studies have examined the effects of exogenous data in improving
the prediction performance.13 The exogenous data can be climate data, water condition data, and air pollution data.
However, the integration of exogenous data from external system into PH-CPS requires a relative large cost than collection
of internal data.

We assume that big events in the future are hidden in the small details in the past. Technically, the prediction of disease
outbreaks in future weeks can benefit from several past daily outpatient counts. For example, the number of outpatient
visit in the upcoming week is predicted by several observed weekly outpatient visit counts and their daily outpatient visit
counts. To distinguish the different granularities time series data , if the time interval length for each data point is equal
to the interval length of the prediction target, we call them equal-grained data, such as weekly counts; if the time interval
length for each data point is smaller than the interval length of the prediction target, we call them fine-grained data, such
as daily counts.

There are two challenges when consolidating the two different granularities to get better predictions: (1) how to rep-
resent the temporal dynamics of fine-grained data and find key time intervals which related to the disease outbreak? (2)
how to consolidate the temporal dynamics of fine-grained data and equal-grained data to reach better prediction?

To address the above challenges, we propose a dual-grained representation (DGR) model to benefit from fine-grained
data and equal-grained data. The proposed method first extracts the temporal dynamics of fine-grained values and equal-
grained values using two recurrent neural networks (RNN), and then fuse the extracted features to generate predictions.

The major contributions are summarized as follows:

1. To provide supports on disease control within PH-CPS, we develop a DGR model to generate outpatient cases
prediction with better performance.

2. To avoid the cost in integrating exogenous data from external systems into PH-CPS, the DGR solely works with
outpatient cases, which are count in different time intervals, that is, daily counts and weekly counts.

3. The extensive experimental results on real HFMD data collections show the effectiveness of the proposed DGR, when
compared with state-of-the-art algorithms.

http://wileyonlinelibrary.com


WANG et al. 3

T A B L E 1 Notations and semantics

Notation Semantic

yt the outpatient count in equal-grained time interval t

xt the outpatient count vector in equal-grained time interval t

xt, i the outpatient count in ith fine-grained time interval within equal-grained time interval t

ŷT+1 the predicted value in the upcoming week

yi
T+1 the ith predicted value in test set

n the number of fine-grained series

M the length of a time series

N the number of samples in test set

[] the concatenated operation of elements or vectors

max(⋅) the maximum value of a given vector

min(⋅) the minimum value of a given vector

T A B L E 2 A summary on recent studies with respect to time series prediction

Type of inputs Category Subcategory Method

Univariate input Stochastic Linear function AR, MA, ARMA, ARIMA, SARIMA

Nonlinear function Polynomial

Learning Linear mapping MLR

Nonlinear function RFR, GBR, SVR, NN

Decomposition STL, RobustSTL, STR

Multivariate input Stochastic The dual-grained inputs are flatten and fed into UTS methods

Learning

Deep learning Basic CNN1d, RNN, LSTM, GRU

Deep Dilated CNN, Dilated RNN, HRHN, LSTNet

Wide Encoder–decoder, DA-RNN, TPA-LSTM

Abbreviations: AR, autoregression; ARFIMA, autoregressive fractionally integrated moving average; ARIMA, autoregressive integrated
moving average; ARMA, autoregression with moving average; GBR, gradient boosting decision tree regression; GRU, gated recurrent unit;
LSTM, long and short term memory; MA, moving average; MLR, multiple linear regression; RFR, random forest regression; RNN,
recurrent neural networks; SARIMA, seasonal autoregressive integrated moving average; SVR, support vector machine regression.

The remainder of this article are organized as follows. Section 2 introduces related work. Section 3illustrates our
proposed approach. Section 4 gives experimental configurations and comparable methods. Section 5 gives experimental
results and analyses. Finally, a conclusion is drawn in Section 6.

The main symbols used are listed at Table 1.

2 LITERATURE REVIEW

This section introduces existing time series prediction techniques with respect to univariate input14-34 and multivariate
input.35-51 Table 2 lists related studies on disease time series prediction.

2.1 Methods based on univariate input

The methods in this category generate predictions, via learning equal-grained historical outpatient cases. These methods
are divided into stochastic methods,14-19 learning methods,20-29 and decomposition methods.30-34
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The stochastic method is said to be a linear or nonlinear function from historical observed values to upcoming values.
These methods include but not limited to autoregression, moving average, autoregression with moving average,14 autore-
gressive integrated moving average (ARIMA),15 autoregressive fractionally integrated moving average,16 and seasonal
autoregressive integrated moving average. ARIMA model and its different variations are based on the famous Box–Jenkins
principle, and so these methods are also broadly known as the Box–Jenkins models. There are also nonlinear methods,
such as polynomial regression,17 cubic spline.18 In the real environment, most of the time series data are nonstationary
and uncertain.19 But these stochastic methods did not work well with nonstationary series.

Learning methods aim to learn a linear or nonlinear mapping from past observations to upcoming values. According
to whether the temporal dynamics of historical observations are considered or not, these methods can be divided into
traditional learning methods or temporal concerned learning methods. (a) The traditional learning methods regard a
lagged past value as an input dimension, and learns from those values to find mappings. These methods include but
not limited to multiple linear regression (MLR),20 support vector machine regression (SVR),21 gradient boosting decision
tree regression (GBR),22 random forest regression (RFR),23 and neural networks.24 (b) The temporal concerned learning
methods consider the inherent temporal dynamics of past values in predicting upcoming values. RNN have been widely
applied to infectious disease prediction,25 for example, long and short term memory (LSTM),26 and the gated recurrent
unit (GRU).27 In the past decade, due to the easy implementation of deep learning methods, the neural network method is
stacked and dilated28,29 to learning complicated temporal patterns. But, the complex models poorly perform on the small
scale disease data. Those methods are easily remember all the trained samples, and lose their generalization abilities in
predicting upcoming values.

Decomposition methods regard a time series is the composition of some components.30,31 Commonly, a time series
is decomposed into a trend sequence, a randomized sequence, and several periodic sequences. The STL32 is a famous
decomposition method for time series prediction, where a time series is factorized into a trend series, a seasonality series
and a randomized series. The STR33 explores the joint extraction of trend, seasonality, and residual without iteration. The
RobustSTL34 improves the prediction performance by decomposing long seasonality period and canceling high noises.
In reality, not all the data can be well decomposed, since the data uncertainty and data missing problem of infectious
disease data.

2.2 Methods based on multivariate input

To alleviate the problem of data uncertainty, multiple exogenous data sources are collected and fused into the above
stochastic methods35-41 and learning methods.42-51

The stochastic method learns a linear or nonlinear function from historical observed target values and exogenous
values to upcoming target values. These methods linearly combine past outpatient counts and exogenous data to generate
predictions.35-41 The main differences between them are the regression of target variables, functions on exogenous data
and the composition of exogenous data. The climate factors,35-38 air pollution,39,40 and search engine query data38,41 have
been found effects on some infectious diseases, and HFMD is included.

In recent years, the learning methods using exogenous data have been intensively studied. These methods can be
divided into three parts as below. (a) Traditional learning methods using exogenous inputs. For this subcategory, histor-
ical outpatient data and exogenous data are directly concatenated as the input of models. To achieve stable predictions,
feature selection and model selection need to be further validated.42,43 (b) Temporal learning methods using exogenous
inputs. For this subcategory, the temporal dynamics of input data are captured using RNN structures, and a nonlinear
mapping from inputs to the target is learned from training data. For example, NARX-RNN enhances vanilla RNN using
additional exogenous features.44 To differently treat exogenous inputs and target inputs, the encoder–decoder structure45

is employed to do time series prediction task. The encoder–decoder framework consists of two RNN layers, and maps
input sequence to output sequence.46,47 (c) Temporal attention learning methods using exogenous inputs. Recently, the
attention mechanism is fused into sequential models to forecast upcoming values, for example, TPA-LSTM,48 DA-RNN,49

HRHN,50 and LSTNet.51 These models have strong memory abilities in keeping numerous samples. Especially for small
scale infection data, the training loss value would be very small, but the validation errors would be larger than simple
machine learning methods.

However, the exogenous data has the same time span with target data, which misses particulars of historical observa-
tions. This article focus on predictions based on observed data and their fine-grained data. For example, using several past
weekly observed data and several past daily observed data to predict upcoming HFMD outpatient counts, which refined
the association of the information context of each week and reduce the loss of equal-grained data prediction accuracy.
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3 APPROACH

This section presents problem formulation, and illustrates the proposed DGR. The workflow of the proposed DGR is
shown in Figure 2.

First, we normalize both fine-grained and equal-grained time series data, see the upper left part in Figure 2. The value
range of each time series is quite different to others. Moreover, the RNN work well with data in range [0, 1]. Hence, the
time series data are normalized, and this can speed up the training process as well.

Second, we use “one-step forward split” to transform time series data to supervised data, see the upper left part in
Figure 2. The time series data cannot be directly fed into a machine learning model. Hence, we do this transformation,
and use inputs and outputs of the supervised data to train models.

Third, the supervised data are fed into the proposed DGR, see light blue shade parts in Figure 2. To benefit from both
fine-grained data and equal-grained data, we design two representation stages: (1) equal-grained representation stage, (2)
fine-grained representation stage. In equal-grained representation stage, a GRU layer and a linear layer are exploited to
extract temporal dynamics from equal-grained inputs. The fine-grained representation stage contains consecutive com-
ponents as follows: a linear layer, a softmax layer, a GRU layer and a linear layer. To maximize the effects from fine-grained
data, the DGR uses softmax function to extract key information from fine-grained inputs. The outputs of the model are
generated by linearly combining equal-grained representation outputs and fine-grained representation outputs.

Finally, the denormalization from model outputs to predicted values, see the upper right part in Figure 2. To obtain
the predictions, we denormalize the model outputs, since the model are trained using normalized data.

3.1 Problem formulation

A time series is defined as a sequential observed values within consecutive identical interval lengths. In this article, we
deal with two kinds of time intervals, for example, week and day. Given the interval length of a prediction target as a
reference, if the time interval length for each data point is equal to the interval length of the prediction target, we call them

F I G U R E 2 The workflow of dual-grained representation [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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equal-grained data; if the time interval length for each data point is smaller than the interval length of the prediction target,
we call them fine-grained data. For example, if the prediction target is the outpatient count in the upcoming week, then
the past weekly outpatient counts are called equal-grained data, and past daily outpatient counts are called fine-grained
data.

Let yt ∈ R denote the observation measured at time interval t, and let xt ∈ Rn denote the fine-grained data points mea-
sured within time interval t, where n is the number of fine-grained time intervals. Hence, the equal-grained time series is
denoted by [y1, y2, … , yt, … , yM], and the fine-grained time series is denoted by [x1, x2, … , xt, … , xM]. Furthermore,
let T be a time window size. The known fine-grained series with window size T is symbolized as [x1, x2, … , xT], as well
as the historical target observations as [y1, y2, … , yT].

The goal is to predict the value of a future time point ŷT+1, given equal-grained outpatient count time series
and fine-grained outpatient count time series. Generally, a nonlinear mapping F(⋅) is applied into the predictive
formula:

ŷT+1 = F(y1, y2, … , yT , x1, x2, … , xT),

s.t., yt =
n∑

i=1
xt,i. (1)

Moreover, let X = [x1, x2, … , xT] denote the fine-grained data in a time-span of size T, and y = [y1, y2, … , yT] be
the equal-grained data in a time-span of size T.

3.2 Dual-grained representation

The proposed DGR model is illustrated using three parts below.

3.2.1 Data processing

Normalization and denormalization. We normalize the data to range [0, 1]. This can also speed up the training process
of models. The min–max normalization and zero-score standardization are two most commonly used normalization
methods.52

The min–max normalization is chosen to compress all the variables into the range [0, 1]. Because zero-score stan-
dardization requires that the input variable belongs to Gaussian distribution, while min–max normalization is not. The
normalization formula and its denormalization formula are as follows:

d′ = d − min(d)
max(d) − min(d)

, (2)

d = d′ ∗ (max(d) − min(d)) + min(d), (3)

where d ∈ RM denotes a feature of all the observed samples, M is the number of observed samples, d′ is the normalized
data, max(d) is the maximum value of d, and min(d) is the minimum value of d. The denormalization formula is applied
for outputs of models in postprocessing stage.

One-step forward split. The time series data cannot be directly fed into a model. Hence, we use one-step forward to
split those time series data into inputs and outputs, and use the obtained inputs and outputs data to train models. Given
an equal-grained time series [y1, y2, … , yM], and several fine-grained time series [x1, x2, … , xM], the one-step forward
split is formulated as:

⎡⎢⎢⎢⎢⎢⎣

y1 y2 … yT x1 x2 … xT

y2 y3 … yT+1 x2 x3 … xT+1

… … … … … … … …
yM−T−1 yM−T … yM−1 xM−T−1 xM−T … xM−1

⎤⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎣

yT+1

yT+2

…
yM

⎤⎥⎥⎥⎥⎥⎦
, (4)

where the left part is inputs of a model, and the right part is outputs of a model.
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3.2.2 Equal-grained representation

The process of equal-grained representation is shown in the middle-bottom part of DGR within Figure 2. The RNN
encodes the input sequences into a features representation in machine translation. Here, we use RNN to encode win-
dowed time series into a feature representation. Given the equal-grained input sequence y = [y1, y2, … , yT], the RNN
can be applied to learn a mapping from y to hk with:

hk = f1(hk−1, y), (5)

where hk ∈ Rm is the hidden state of RNN at time k, m is the size of the hidden state, and f 1 is a nonlinear activation
function that could be a LSTM or a GRU.

Since the GRU has few parameters and the similar usage as LSTM, we exploit a GRU as f 1 to capture the periodicity
and latency of infectious diseases in the long-term trend of the sequence. Each GRU unit has a memory cell with the state
st at time t. The access of the memory cell will be controlled by two sigmoid gates: reset gate rt and update gate zt. The
update of a GRU unit can be summarized as follows:

rk = 𝜎(Wr[hk−1; y]), (6)

zk = 𝜎(Wz[hk−1; y]), (7)

h̃k = tanh(Wh̃[rk ∗ hk−1; y]), (8)

hk = (1 − zk) ∗ hk−1 + zk ∗ h̃k, (9)

ok = 𝜎(Wohk), (10)

where [;] indicates a concatenated vector, * indicates the element-wise multiplication, and 𝜎, tanh are the activation
functions used in this structure in order to keep the information flowing through the GRU within a specific range. Wr,
Wz, Wh̃, Wo ∈ Rm×(m+n) is the weight that is optimized during training, and rk, zk ∈ Rn are parameters to learn. The
feature space is represented by [hk−1;ak] and the prediction is represented by ok. The key reason for using GRU is that it
overcomes the problem of vanishing gradients, better capture temporal dynamics of equal-grained time series, and few
learned parameters.

After the feature representation of equal-grained data, the hidden state is linearly combined to generate outputs. The
generated value from represented equal-grained data is formulated as:

c = wchk + bc, (11)

where c is the consolidated output of fine-grained data side, wc ∈ Rm is a weight parameter needs to be learned, and bc is
a bias term, and hk is the hidden state which is represented from equal-grained data.

3.2.3 Fine-grained representation

The fine-grained inputs include much sequential fluctuation details and short-term incidence patterns, which are
significant to short-term prediction. The process of fine-grained representation is shown in the shadow part within
Figure 2.

To distinguish the fine-grained inputs, we adopt a linear layer to process the input of fine-grained data, and get the
transformed outputs from the linear layer. The transformation is formulated as follows:

F = Wf ∗ X + bf , (12)

where F ∈ Rn×T is the output of linear transformation, * indicates the element-wise multiplication, Wf ∈ Rn×T is the
weight corresponding to the input dimension, and bf is a bias term.
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Based on the transformed fine-grained inputs, the softmax function is exploited to highlight the periodic events, for
example, every Saturday of a week. The softmax layer is formulated as:

P = softmax(F),

softmax(pi,t) =
efi,t∑T
j=1 efi,j

,

s.t., pi,t ∈ P, fi,t ∈ F, (13)

where P is the output of the softmax layer. The key reason for using the softmax layer is that the periodic events can be
highlighted. Once the recent periodic trends of a time series is precisely captured, the accuracy of short-term prediction
be improved.

We adopt another RNN layer to represent the temporal dynamic of the highlighted outputs, and get states from the
RNN outputs. The mapping is formulated as follows:

h′
k = f2(h′

k−1,P), (14)

where h′
k ∈ Rm is the hidden state of RNN at time k, m is the size of the hidden state, and f 2 is a nonlinear activation

function that could be a LSTM or a GRU. To make the model simpler, another GRU is selected to f 2, and is update the
same as Equations (6)–(10).

After the feature representation of fine-grained data, the hidden state is linearly combined to generate output. The
generated value from represented fine-grained data is formulated as:

g = wgh′
k + bg, (15)

where g is the consolidated output of fine-grained data side, wg ∈ Rm is learned parameters, bg is a bias term, and h′
k is

the hidden state which is represented from equal-grained data.
Finally, the outputs from two stages (i.e., Equations (11) and (15)) are combined using a fully connected layer, the

formula is as follows:

ŷT+1 = 𝜎(wm[c; g] + bm), (16)

where [ct; cy] ∈ R2 is the concatenated vector of outputs, wm ∈ R2 is the weight of those outputs, ŷT+1 is the predicted
value of the number of outpatients in the next week, and bm is a bias term.

4 EXPERIMENTAL SETUP

This section gives data collections, evaluation metrics, and comparable methods.

4.1 Data collection and configuration

As Figure 3 plotted, a total of 261 weeks data were collected to develop the time series models. The HFMD outpatient
visit counts are obtained from the Chinese Center for Disease Control and Prevention, All individual-level data are
anonymized.

The numbers of HFMD cases from January, 2012 to December, 2015 are used to train models, and the rest data are
used to evaluate the predictive performance of models. Reminder that the number of HFMD outpatient counts are in a
time sequence. Hence, the front 80% data is used to train models and the rest as test set. The windows size T is varied
from 1 to 20, to find the best performance of models.

Basic statistical characteristics of fine-grained data and HFMD outpatient counts are listed at Table 3.
All neural models are trained using the Adam optimizer.53 The batch size is set to 32. Their learning rate is set to 0.001,

and mean squared error (MSE) is chosen as the loss function. For RNN and LSTM, the number of hidden neurons is set
to {32, 64}.
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F I G U R E 3 The distribution of weekly outpatient visit counts from January 1, 2012 to December 31, 2016 [Color figure can be viewed
at wileyonlinelibrary.com]

T A B L E 3 Basic statistical characteristics of fine-grained time series and HFMD counts (261 samples)

Symbols Parameter (Unit)

Range

Mean Median STDMin Max

H7 the daily number of outpatients on Sunday (count) 0 88 16.98 10 16.47

H1 the daily number of outpatients on Monday (count) 0 82 17.48 12 16.07

H2 the daily number of outpatients on Tuesday (count) 0 80 16.59 11 15.54

H3 the daily number of outpatients on Wednesday (count) 0 73 15.73 10 15.15

H4 the daily number of outpatients on Thursday (count) 0 69 15.25 10 14.89

H5 the daily number of outpatients on Friday (count) 0 68 15.20 10 13.87

H6 the daily number of outpatients on Saturday (count) 0 72 15.81 11 14.57

C the weekly number of outpatients (count) 2 435 113.04 79 100.76

Abbreviation: HFMD, hand, foot, and mouth disease; STD, standard deviation.

4.2 Evaluation metrics

The performance evaluation metrics are used to observe the overall efficiency of the prediction of time series data. For
forecasting task or analysis task of time series data, there are many error metrics, such as mean absolute error (MAE),
normalized mean absolute error, mean absolute percentage error (MAPE), MSE, root mean square error (RMSE), and
correlation coefficient (R2). We choose some metrics, since some of them are logically equivalent. For example, the RMSE
value can be obtained once the MSE value is figured out, and vice versa.

The evaluation criteria are combined with MAE, RMSE, MAPE, and R2. These criteria can be expressed in the
following mathematical expressions:

MAE = 1
N

N∑
i=1

(|yi
T+1 − ŷi

T+1|), (17)

RMSE =

√√√√ 1
N

N∑
i=1

(yi
T+1 − ŷi

T+1)
2
, (18)

MAPE = 1
N

N∑
i=1

(|yi
T+1 − ŷi

T+1|)
|yi

T+1| × 100%, (19)

http://wileyonlinelibrary.com
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T A B L E 4 The comparable methods used for the competitions on two kinds of inputs

Comparable method Name Weekly data Daily + weekly data

MLR47 Multiple linear regression Yes Yes

SVR21 Support vector machine regression Yes Yes

GBR22 Gradient boosting regression Yes Yes

RFR23 Random forest regression Yes Yes

Xgboost54 Extreme Gradient Boosting regression Yes Yes

RNN46 Recurrent neural network Yes Yes

LSTM26 Long and short term memory Yes Yes

DA-RNN49 Dual-attention RNN Yes

Abbreviations: GBR, gradient boosting decision tree regression; LSTM, long and short term memory; MLR, multiple linear regression;
RFR, random forest regression; RNN, recurrent neural networks; SVR, support vector machine regression.

R2 = 1 −
∑N

i=1 (yi
T+1 − ŷi

T+1)
2

∑N
i=1 yi

T+1
2 . (20)

In the above equations, yi
T+1 is the ith actual value in the test period, ŷi

T+1 is the ith predicted value, N is the length of
the testing period. The performance with the smallest MAE, RMSE, and MAPE and the largest R2 are considered to be
the best model.

4.3 Comparable methods

The comparable methods are listed at Table 4. The descriptions on these methods are given as follows.
MLR47 is widely used for modeling the linear relationship between the input variables and the target variable. The

advantage is that the parameters do not need to be tuned.
SVR21 can efficiently perform a nonlinear regression using the kernel functions, which implicitly mapping inputs into

high-dimensional feature spaces. Specifies the kernel type and penalty parameter to build the prediction model.
GBR22 produces a prediction model in the form of an ensemble of weak prediction models, typically decision trees.
RFR23 is an ensemble learning method for regression via learning decision trees. The number of trees and the

minimum number of samples are tuned, to adjust the model.
Xgboost54 has gained much popularity and attention recently, which append regularization term into loss function,

and it is an improvement on the gradient boosting. Models can be adjusted by the number of trees, learning rate, and
maximum tree depth.

RNN46 exhibits temporal dynamic states of the sequence by their internal state. The hidden neurons are used to control
the complexity of RNN.

LSTM26 is a kind of RNN, which is composed of a cell, an input gate, an output gate and a forget gate.
DA-RNN49 is based on the encoder–decoder framework, which exploits input attention and temporal attention

mechanisms to process exogenous data.

5 RESULTS AND ANALYSES

This section conducts several experiments to investigates the effects on prediction performance, and visualizes the
correlations between fine-grained inputs and equal-inputs. These experiments and analyses focus on the following
questions:

1. How parameter T affects the prediction performance? Intuitively, how the past observed values affect the prediction
on the upcoming value?
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2. What is the degree of performance improvement via fine-grained representation? In detail, could the DGR outperform
other comparable methods? Could the prediction performance of DGR be improved by consolidating the fine-grained
representation? Could the performance of comparable methods be improved by directly input fine-grained data and
equal-grained data?

3. How the hidden size of GRU affects the prediction performance?
4. Why the prediction performance can benefit from fine-grained data? In other words, what is the insights between

fine-grained data and equal-grain data?

5.1 Effects on parameter T

To investigate the effects on parameter T of the proposed DGR, we measure the performance of DGR by varying parameter
T. To investigate the effects on the hidden size of GRU component, we measure the performance of DGR by varying the
hidden size in 32, 64. The performance in terms of MAE, RMSE, MAPE, and R2 is plotted Figure 4. We summarize the
major observation from these results as follows:

1. The optimal values of MAE, RMSE, and R2 are found T = 13, respectively.
2. The optimal MAPE value are found at T = 14.
3. The trend of performance are degraded when T is greater or less than 13.
4. The DGR(32) is more robust than DGR(64) when varies window size T. The best performance and worst performance

are found at DGR(64).

As plotted in Figure 4(A,B,D), the DGR(32) and DGR(64) obtain the optimal values of MAE, RMSE, R2, and second
best MAPE values at T = 13, respectively. When the window size T is set to 14, the MAPE value achieves the optimal value.
In reality, T = 13 means that the upcoming values have relations with past 13 weeks values. The duration of 13 weeks is
equivalent to one quarter. This suggests that the outbreak period of HFMD infection is one quarter. Moreover, spring and
autumn are the peak periods of outbreaks.

As shown in Figure 4(C), the optimal MAPE values are found at T = 14. Compared with MAE, MAPE is the percentage
of the error to the real values, and its value is the average absolute error over the testing set. MAPE is insensitive to
prediction errors when the actual value is small.

It can be observed that the performance is degraded when the T is set smaller or greater than 13. The major reason
is that the past observed values is strongly related to the future values. Few inputs of past observations are easy to cause
insufficient information while training a model. Numerous inputs of past observations would interference the mapping
from past values to future values.

The DGR with 64 hidden neurons gets the best result at T = 13. The DGR with 32 hidden neurons outperforms the
DGR with 64 hidden neurons in terms of model stability and overall performance. The models with many neurons are sus-
ceptible to random disturbances, and require more training samples to reach a converged status. Therefore, the prediction
performance shows unstable oscillations as T gradually increases.

5.2 Performance comparison

The optimal MAE, RMSE, MAPE, and R2 values for other models are found around T = 13. For fair comparison, we
compare all the models by fixing T = 13. As presented in Figure 5, all the comparable methods are well-tuned, and their
performance is measured in terms of MAE, RMSE, MAPE, and R2.

According to the prediction results solely based on weekly data, see the blue bars in Figure 5, DGR and RNN methods
have the best prediction results, and SVR and MLR have the second best performance. Actually, the DGR method can be
regarded as a simple GRU method by removing the fine-grained representation component. This reveals that the RNN
methods and the linear methods are effective in forecasting, when the data scale of training set is small, such as hundreds
of samples. Noted that all tree-based methods get unstable performance. When training a small scale data, the tree-based
method is difficult to eliminate the random disturbance of a time series. Hence, the prediction accuracy of tree-based
methods are degraded.

According to the results of predictions based on weekly and daily data, see green bars in Figure 5, the performance
of traditional machine learning methods generally declines when compared with predictions based on weekly data.



12 WANG et al.

(A) (B)

(C) (D)

F I G U R E 4 The performance of DGR with varying window size T in terms of MAE, RMSE, MAPE, and R2. For each metric, the
optimal values are found at red dash line. DGR, dual-grained representation; MAE, mean absolute error; MAPE, mean absolute percentage
error; RMSE, root mean square error [Color figure can be viewed at wileyonlinelibrary.com]

However, the prediction performance based on deep learning methods, especially the RNN method has been significantly
improved, which means that fine-grained data can effectively improve the model performance. Traditional machine
learning methods cannot extract sufficient input information or feature details from small-scale input data to predict
the target variable. The DA-RNN method shows the worst prediction performance. The potential reason is the complex
hybrid neural network remembers too much trained information, which would lead to a poor performance in dealing with
unknown inputs.

Compared with LSTM, the RNN and GRU methods have fewer parameters and therefore are easier to converge. In
the case of the small scale inputs, the predict performance of RNN and GRU is better, and the effect is better than LSTM.
Vanilla RNN cannot effectively extract long-sequence information and solve the problem of sequence dependence. The
GRU model achieves effective control of historical time information through the gating unit, thereby better capturing the
long-term dependence of the sequence. It should be noted that the GRU model has the best MAPE value. The main reason
is that the MAPE index is sensitive to the magnitude of the real value, and the GRU model has a good fitting performance
for the time period with a large real value, but the overall prediction result of total samples still fluctuates and oscillates,
so MAE and RMSE values are not ideal.

The proposed DGR achieves the best results under both input conditions. There are two potential reasons for the
excellent performance of the DGR method. First of all, this article adds a GRU unit to extract the time dynamics of the

http://wileyonlinelibrary.com
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(A)

(B)

(C)

(D)

F I G U R E 5 Comparison of 13 methods on two inputs in terms of four metrics. The windows size T is fixed at 13. For MAE, RMSE, and
MAPE, the lower value of is the better performance. For R2, the higher value is the better performance. MAE, mean absolute error; MAPE,
mean absolute percentage error; RMSE, root mean square error [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 6 The visualization of correlations between the target variable and the fine-grained variables [Color figure can be viewed at
wileyonlinelibrary.com]

time series of outpatients, which is effective for establishing connections between different time points. Second, for the
input of daily data, this article uses another GRU structure to establish the relationship between the target variable and the
fine-grained inputs, mapping the fine-grained dynamic changes to the equal-grained dynamic changes is a new method
to reduce the loss of equal-grained prediction accuracy.

5.3 Correlation analysis

To investigate the impact of fine-grained data, we visualize the correlations between equal-grained inputs and fine-grained
inputs.

As shown in Figure 6, the target variable (equal-grained data) is significantly correlated with fine-grained variables.
Their Pearson correlation coefficient values are measured and plotted in the Northwest of first seven subfigures, respec-
tively. The comparison of those seven correlations is plotted in the last subfigure. The infected outpatient counts in Friday
are weakest correlated to outpatient counts in the whole week, but the counts in Saturday are strongest correlated to the
whole week’s counts. The potential reasons are as below: (a) social activities are mostly on Friday; (b) people tend to check
their health statuses on weekends, even if they get sick on weekdays, especially on Saturday.

Nevertheless, the significant correlated fine-grained data is overlooked. This article discovered the possibility of
optimizing the time series prediction problem by leveraging fine-grained characteristics.

6 CONCLUSIONS

This article focuses on the prediction of HFMD outpatient visit counts in upcoming week, by leveraging past weekly
counts and daily counts within PH-CPS. We proposed DGR to benefit from both weekly data and daily data. The DGR
first extracts temporal patterns from dual-grained time series data, by exploiting two designed time series processing
components. Intensive experiments on the real HFMD data collection reveals the effectiveness of our proposed method.
Technically, DGR discovers and consolidates fine-grained data into equal-grained data in predicting future values.

In the future, the multihorizon prediction will be further studied, and the simultaneous prediction of multiple
infectious diseases as well.

http://wileyonlinelibrary.com
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